Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Σχετικά έγγραφα
Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Supplementary information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Electronic Supplementary Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Crossed Intramolecular Rauhut-Currier-Type Reactions via Dienamine Activation

Effect of uridine protecting groups on the diastereoselectivity

Aluminium-mediated Aromatic C F Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene. Frameworks

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Supporting Information

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Pd-Catalyzed Oxidative Cross-Coupling of N-Tosylhydrazones. with Arylboronic Acids

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information for

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

SI1. Supporting Information. Synthesis and pharmacological evaluation of conformationally restricted -opioid receptor agonists

Supporting Information for. Palladium-catalyzed Addition Reaction of Aroyl/Heteroaroyl Acid Anhydrides to Norbornenes

Supporting information

New Glucuronic Acid Donors for the Modular Synthesis of Heparan Sulfate Oligosaccharides

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information

Supporting Information. Experimental section

Supporting Information

Supporting Information

Supporting Information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting information

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Supplementary Information

Supporting Information. Experimental section

P-Stereogenic PNP Pincer-Pd Catalyzed Intramolecular Hydroamination of Amino-1,3-dienes

Synthesis of eunicellane-type bicycles embedding a 1,3- cyclohexadiene moiety

Experimental procedure

Aminofluorination of Fluorinated Alkenes

Supporting Information

SUPPORTING INFORMATION

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information. for

Electronic Supplementary Information (ESI)

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Palladium-Catalyzed C H Monoalkoxylation of α,β-unsaturated Carbonyl Compounds

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Supporting Information For

Supporting Information

Selective mono reduction of bisphosphine

Supporting Information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Asymmetric Transamination of α-keto Acids Catalyzed by. Chiral Pyridoxamines

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Supporting Information

Supporting Information

Transcript:

Supporting Information for Angew. Chem. Int. Ed. Z51732 Wiley-VCH 2003 69451 Weinheim, Germany

SM 1 Equilibrium and Kinetic euterium Isotopic Effects on the Hetero-iels-Alder Addition of Sulfur ioxide** Frédéric Monnat, [a] Pierre Vogel [a] *, Rubén Meana and José A. Sordo [b] * [a] Prof. r. P. Vogel, r. F. Monnat Institute of Molecular and Biological Chemistry, Swiss Institute of Technology, BCH CH-1015 Lausanne-origny (Switzerland) Fax: (+41) 21-693-93-75; E-mail: pierre.vogel@epfl.ch. [b] Prof. r. José A. Sordo, Mr. Rubén Meana Laboratorio de Química Computacional, epartamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, Principado de Asturias (Spain) Fax: (+34) 98-523-78-50; E-mail: jasg@correo.uniovi.es

SM 2 General. Reagents and solvents are from Fluka, Buchs, Switzerland. Solvents are distilled before use. Anhydrous THF and Et 2 O are distilled from Na/benzophenone, CH 2 Cl 2 from CaH 2. Sulfur dioxide was dried by a column of basic alumina 90 (Merck, activity I). Kinetic measurements and NMR tube preparations for the reactions with sulfur dioxide, see [F. Monnat, P. Vogel, J. A. Sordo, Helv. Chim. Acta 2002, 85, 712]. Spectral recording, see [K. Kraehenbuehl, S. Picasso, P. Vogel, Helv. Chim. Acta 1998, 81, 1439]. cis-(3,3-2 H 2 )-3a,4,5,6,7,7a-Hexahydro-2-benzofuran-1(3H)-one (8). A suspension of NaB 4 (5 g, 0.119 mol, 98 atom %, Fluka) in anhydrous tetrahydrofuran (THF, 23 ml), was added dropwise to a stirred solution of cis-cyclohexane-1,2- dicarboxylic anhydride (18.4 g, 0.119 mol) in anhydrous THF (120 ml) cooled to 0 C and under Ar atmosphere. The white suspension is then stirred at 20 C for 2 days and 5 M aqueous HCl (50 ml) was added slowly at 0 C. Water (60 ml) was added and the mixture extracted with Et 2 O (90 ml, 4 times). The combined ethereal extracts were washed with H 2 O (100 ml, twice), dried (MgSO 4 ) and the solvent was evaporated in vacuo. The residue was purified by flash column chromatography on silica gel (light petroleum ether/acoet

SM 3 2:1), giving a colorless oil (13.8 g, 81%), b.p. 100 C (1 Torr). UV (CH 3 CN) λ max : 212 (ε = 300). IR (film) ν: 2935, 2885, 2855, 1780, 1450, 1360, 1330, 1210, 1120, 1045, 990, 980, 915, 855 cm -1. 1 H-NMR (400 MHz, CCl 3 ) δ H : 2.66-2.62 (m, H- C(7a)), 2.48-2.43 (m, H-C(3a)), 2.14-2.09 (m, H a -C(7)), 1.85-1.79 (m, H a -C(4)), 1.67-1.57 (m, H b -C(7), H a -C(6), et H a - C(5)), 1.27-1.18 (m, H b -C(4), H b -C(6), H b -C(5)). Signals at δ H 4.2 & 3.92 ppm show less than 2% of H. 13 C-RMN (100.6 MHz, CCl 3 ) δ C : 178.5 (s, C(1)), 71.1 (quint, 1 J(C,)=22, C(3)), 39.4 (d, 1 J(C,H)=126, C(7a)), 35.2 (d, 1 J(C,H)=135, C(3a)), 27.1 (t, 1 J(C,H)=128, C(4)), 23.4 (t, 1 J(C,H)=128, C(5)), 22.9 (t, 1 J(C,H)=128, C(7)), 22.5 (t, 1 J(C,H)=128, C(6)). 2 H- NMR (61.4 MHz, CCl 3 ) δ : 4.20 (s, a -C(3)), 3.95 (s, b - C(3)). CI-MS (NH 3 ) m/z: 143 ([M+H + ], 7), 142 (M +, 7), 97 ([M+H + -CO 2 ], 27), 83 (85), 81 (100). Anal. calcd. for C 8 H 10 2 O 2 (142.19): H 7.09, C 67.58; found: H 7.20, C 67.70. cis-cyclohexane-1,2-(α,α- 2 H 2 )-dimethanol (9). Lactone 8 (3 g, 21.1 mmol) was added portionwise to a stirred suspension of LiAlH 4 (1.6 g, 42.2 mmol) in anhydrous THF (44 ml) under Ar atmosphere. The mixture was stirred at 20 C for 1 h and a saturated aqueous solution of NH 4 Cl (12 ml) was added

SM 4 portionwise. Et 2 O (30 ml), then H 2 O (10 ml) were added. The precipitate was taken off by filtration on Celite, rinsing with Et 2 O. The solvent was evaporated in vacuo yielding a white solid (2.92 g, 95%), m.p. 39-40 C. UV (CH 3 CN) λ max : 192 (ε = 200). IR (KBr) ν: 3340, 2925, 2860, 1450, 1355, 1145, 1095, 1075, 1040, 1025, 970, 675 cm -1. 1 H-NMR (400 MHz, CCl 3 ) δ H : 3.79 (dd, 2 J(H a -C(α'), H b -C(α'))=11.0, 3 J(H a -C(α'), H- C(2))=8.0, H a -C(α')), 3.60 (dd, 2 J(H a -C(α'), H b -C(α'))=11.0, 3J(H a -C(α'), H-C(2))=4.0, H b -C(α')), 2.29 (s, H-OC(α), H-O C(α')), 1.95 (m, H-C(1), H-C(2)), 1.56-1.37 (m, H 2 -C(3), H 2 - C(4), H 2 -C(5), H 2 -C(6)). 13 C-NMR (100.6 MHz, CCl 3 ) δ C : 63.8 (t, 1 J(C,H)=140, C(α')), 63.0 (quint, 1 J(C,)=21, C(α)), 39.7 (d, 1 J(C,H)=129, C(2)), 39.6 (d, 1 J(C,H)=129, C(1)), 27.0 (d, 1J(C,H)=125, C(3), C(6)), 23.9 (t, 1 J(C,H)=127, C(4), C(5)). 2 H-NMR (61.4 MHz, CCl 3 ) δ : 3.75 (s, a -C(α)), 3.575 (s, b - C(α)). CI-MS (NH 3 ) m/z: 147 ([M+H + ], 0.3), 128 ([M-H-OH] +, 3), 111 ([M+H + -2 H-2 OH], 23), 98 (83), 96 (86), 81 (100). Anal. calcd. for C 8 H 14 2 O 2 (146.22): H 9.65, C 65.71; found: H 9.41, C 65.77.

SM 5 cis-cyclohexane-1,2-(α,α- 2 H 2 )-dimethyl bis(paratoluenesulfonate) (10). A solution of diol 9 (5.97 g, 40.8 mmol) in anhydrous pyridine (26 ml) was added dropwise to a stirred mixture of paratoluenesulfonyl chloride (24.4 g, 120 mmol), 4-dimethylaminopyridine (0.781 g, 6.4 mmol) in anhydrous pyridine (20 ml) cooled to 0 C and under Ar atmosphere. After stirring at 20 C for 25 min, H 2 O (40 ml) was added and the mixture stirred at 20 C for 20 min. The precipitate was collected (Büchner filter), washed with H 2 O, then with MeOH. It was then dried in vacuo, yielding a white solid (12.9 g, 69%), m.p. 79-80 C. UV (CH 3 CN) λ max : 272 (ε = 2100), 261 (2500), 224 (22'900), 200 (15'900). IR (KBr) ν: 3035, 2930, 2860, 1600, 1450, 1350, 1190. 1175, 960, 940, 820, 665, 555 cm -1. 1 H-NMR (400 MHz, CCl 3 ) δ H : 7.77 (d, 3 J(H-C(3'), H- C(2'))=8.0, 4 H-C(2')), 7.37 (d, 3 J(H-C(3'), H-C(2'))=8.0, 4 H-C(3')), 3.91 (d, 3 J(H-C(1), H-C(α'))=7.0, H 2 -C(α')), 2.47 (s, 2 Me), 2.04 (m, H-C(1), H-C(2)), 1.40-1.30 (m, H 2 -C(3), H 2 -C(4), H 2 -C(5) et H 2 -C(6)). 13 C-NMR (100.6 MHz, CCl 3 ) δ C : 144.9 (s, 2C(4')), 132.7 (s, 2C(1')), 129.9 (d, 1 J(C,H)=161, 4C(3')), 127.8 (d, 1J(C,H)=166, 4C(2')), 70.3 (t, 1J(C,H)=148, C(α')), 69.6 (quint, 1 J(C,)=22, C(α)), 36.4 (d, 1J(C,H)=130, C(2)), 36.2 (d, 1 J(C,H)=130, C(1)), 25.7 (t,

SM 6 1J(C,H)=128, C(3)), 25.6 (t, 1 J(C,H)=128, C(6)), 22.8 (t, 1J(C,H)=129, C(4)), 22.7 (t, 1 J(C,H)=129, C(5)), 21.6 (q, 1J(C,H)=127, 2 Me). 2 H-NMR (61.4 MHz, CCl 3 ) δ : 3.90 (s, 2 - C(α)). CI-MS (NH 3 ) m/z: 472 ([M+NH + 4 ], 100), 471 ([M+NH 3 ] +, 69), 454 ([M] +, 0.6), 283([M-OTs] +, 19), 155 (Ts +, 8), 112 ([M-2 OTs] +, 6), 111 (56), 110 (32). Anal. calcd. for C 22 H 26 2 O 6 S 2 (454.59): H 5.76, C 58.13; found: H 5.73, C 58.06. 1-[( 2 H 2 )-Methylidene]-2-methylidenecyclohexane (3). Bistosylate 10 (7.2 g, 15.8 mmol) was added portionwise to a stirred solution of t-buok (7.1 g) in anhydrous MSO (63 ml). After stirring at 25 C for 35 min, the mixture was cooled to 0 C and H 2 O (60 ml) was added. The mixture was extracted with pentane (50 ml, 3 times). The combined extracts were washed with saturated aqueous solution of NH 4 Cl (20 ml, twice) and dried (MgSO 4 ). Solvent distillation at 1 atmosphere, then distillation of the residue under reduced pressure, b.p. 30 C (600 mbar). The crude diene 3 is then redistilled with a Vigreux column, b.p. 46-50 C (80 mbar), colorless liquide (900 mg, 52%). UV (CH 3 CN) λ max : 221 (ε = 4000). IR (film) ν: 3080, 2935, 2885, 2860, 2840, 1630, 1595, 1440, 1260, 1100, 1020, 890, 820, 805, 740, 715 cm -1. 1 H-NMR

SM 7 (400 MHz, C 2 Cl 2 ) δ H : 4.94 (dm, 2 J(H cis -C(2'), H trans C(2'))=2.6, H cis -C(2')), 4.67 (dm, 2 J(H cis -C(2'), H trans C(2'))=2.6, H trans - C(2')), 2.30-2.27 (m, H 2 -C(3), H 2 -C(6)), 1.68-1.65 (m, H 2 - C(4), H 2 -C(5)). 13 C-NMR (100.6 MHz, C 2 Cl 2 ) δ C : 150.2 (s, C(2)), 150.1 (s, C(1)), 107.9 (t, 1 J(C,H)=156, C(2 )), 107.4 (quint, 1 J(C,)=24, C(1 )), 35.7 (t, 1 J(C,H)=126, C(3)), 35.6 (t, 1 J(C,H)=126, C(6)), 27.2 (2 t quint, 1 J(C,H)=128, 2J(C,H)=5, C(4), C(5)). 2 H-NMR (61.4 MHz, CCl 3 ) δ : 4.97 (s, cis -C(1')), 4.70 (s, trans -C(1')). GC-CI-MS (NH 3 ) m/z: 128 ([M+NH + 4 ], 10), 111 ([M+H + ], 100), 110 (M +, 32), 95 (6), 79 (2). (4,4-2 H 2 )-1,4,5,6,7,8-Hexahydro-2,3-benzoxathiine-3-oxide (4), (1,1-2 H 2 )-1,4,5,6,7,8-hexahydro-2,3-benzoxathiine-3-oxide (5) and (1,1-2 H 2 )-1,3,4,5,6,7-hexahydrobenzo[c]thiophene 2,2- dioxide (6). A mixture of diene 3 (11.6 mg, 0.21 molar), anhydrous sulfur dioxide (233 mg, 7.31 molar) in CCl 2 (total volume of 0.5 ml) was made in a 5 mm pyrex NMR tube (vac. line, bulb-to-bulb distillation, liquid N 2 ). The NMR tube was left at 75 C. After 780 min ( 1 H-NMR) 99% conversion was reached and a 51.4/46.5/2.1 mixture of 4, 5 and 6 was formed.

SM 8 Sultines 4 and 5 are equilibrated first and then converted into 6 in a few minutes at 40 C. ata for 4: 1 H-NMR (400 MHz, C 2 Cl 2 /CFCl 3 /SO 2, 213K) δ H : 4.27 (d, 3 J(H a -C(1), H b -C(1))=15.8, H a -C(1)), 4.12 (d, 3 J(H a -C(1), H b -C(1))=15.8, H b -C(1)), 1.91-1.89 (m, H 2 -C(5)), 1.85-1.83 (m, H 2 -C(8)), 1.78-1.72 (m, H a -C(6), H a -C(7)), 1.58-1.50 (m, H b - C(6), H b -C(7)). 13 C-NMR (100.61 MHz, C 2 Cl 2 /CFCl 3 /SO 2, 213K) δ C : 125.8 (s, C(8a)), 117.4 (s, C(4a)), 60.0 (t, 1 J(C,H)=150, C(1)), 49.0 (quint, 1 J(C,)=20, C(4)), 29.0 (t, 1 J(C,H)=127, C(5)), 24.8 (t, 1 J(C,H)=127, C(8)), 22.1 (t, 1 J(C,H)=129, C(6)), 21.4 (t, 1 J(C,H)=127, C(7)). 2 H-NMR (61.4 MHz, C 2 Cl 2 /CFCl 3 /SO 2, 203K) δ : 3.38 (br. s, a -C(4)), 2.72 (br. s, b -C(4)). 17 O-NMR (54.2 MHz, C 2 Cl 2 /CFCl 3 /SO 2, 213K) δ 17O : 133 (br. s, ν ½ =1080, O=S(3)), 77 (br. s, ν ½ =1790, O(2)). ata for 5: 1 H-NMR (400 MHz, C 2 Cl 2 /CFCl 3 /SO 2, 213K) δ H : 3.40 (dm, 3 J(H a -C(4), H b -C(4))=17.0, H a -C(4)), 2.73 (dm, 3 J(H a -C(4), H b -C(4))=17.0, H b -C(4)), 1.91-1.89 (m, H 2 -C(5)), 1.85-1.83 (m, H 2 -C(8)), 1.78-1.72 (m, H a -C(6), H a -C(7)), 1.58-1.50 (m, H b - C(6), H b -C(7)). 13 C-NMR (100.61 MHz, C 2 Cl 2 /CFCl 3 /SO 2, 213K) δ C : 125.6 (s, C(8a)), 117.6 (s, C(4a)), 59.3 (quint, 1J(C,)=22, C(1)), 49.6 (t, 1 J(C,H)=137, C(4)), 29.1 (t,

SM 9 1J(C,H)=127, C(5)), 24.8 (t, 1 J(C,H)=127, C(8)), 22.1 (t, 1J(C,H)=129, C(6)), 21.4 (t, 1 J(C,H)=127, C(7)). 2 H-NMR (61.4 MHz, C 2 Cl 2 /CFCl 3 /SO 2, 203K) δ : 4.24 (br. s, a -C(1)), 4.11 (br. s, b -C(1)). 17 O-NMR (54.2 MHz, C 2 Cl 2 /CFCl 3 /SO 2, 213K) δ 17O : 133 (br. s, ν ½ =1080, O=S(3)), 77 (br. s, ν ½ =1790, O(2)). Example of kinetic measurements 3 + (SO 2 ) 2 4 + 5 + SO 2 6 + SO 2 diene 3: sultine 1: 4, sultine 2: 5, sulfolene: 6. 0.30 0.25 T = -54 C conc [mol/dm 3 ] 0.20 0.15 0.10 diene sultine 1 sultine 2 0.05 sulfolene 0.00 0 100 200 300 400 500 600 700 800 900 1000 1100 time [min]

SM 10 0.30 T = -54 C 0.25 conc [mol/dm 3 ] 0.20 0.15 0.10 sultine 2 sultine 1 0.05 sulfolène 0.00 diène 0 10000 20000 30000 40000 50000 time [min] Simulation of the kinetics 3 + (SO 2 ) 2 4 + 5 + SO 2 6 + SO 2 0.35 0.30 0.25 T = -54 C sulfolène conc [mol/dm 3 ] 0.20 0.15 0.10 0.05 sultine 1 sultine 2 0.00 diène 0 200 400 600 800 1000 temps 10 3 [min] 13 C-NMR spectrum of 1 + 3 + SO 2 4 + 5 + 2.

SM 11 + + SO 2-75 C S O O + S O O + S O O 3 1 4 5 2 + peak 1/T2 1: 1.5831e+001 ± 1.17e+000 2: 2.0207e+001 ± 4.54e-001 peak height 1: 7.9564e+003 ± 4.03e+002 2: 2.3289e+004 ± 3.57e+002 rel. integrals (%) 1: 21.11+/- 3.82 2: 78.89+/- 7.42 toluene dienes (1+3) dienes (1+3) sultines 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

SM 12 Kinetics of the disappearence of dienes 1 + 3 at 75 C, [SO 2 ] o = 2.76 moldm -3, [1] o = 0.21 moldm -3, [3] o = 0.11 moldm -3 0.225 0.200 0.175 conc [mol/dm 3 ] 0.150 0.125 0.100 0.075 0.050 0.025 0.000 0 100 200 300 400 500 600 700 800 900 1000 1100 time [min]