A MULTIPLIER APPROACH TO UNDERSTANDING THE MACRO IMPLICATIONS OF HOUSEHOLD FINANCE

Σχετικά έγγραφα
Mean-Variance Analysis

Statistical Inference I Locally most powerful tests

Other Test Constructions: Likelihood Ratio & Bayes Tests

1) Formulation of the Problem as a Linear Programming Model

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

IMES DISCUSSION PAPER SERIES

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

EE512: Error Control Coding

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solutions to Exercise Sheet 5

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Problem Set 3: Solutions

The Simply Typed Lambda Calculus

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios

Section 8.3 Trigonometric Equations

Monetary Policy Design in the Basic New Keynesian Model

(Noise Trading Behavior in SET)

Matrices and Determinants

Ηλεκτρονικοί Υπολογιστές IV

Models for Probabilistic Programs with an Adversary


ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

5.4 The Poisson Distribution.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates

The challenges of non-stable predicates

Lecture 2. Soundness and completeness of propositional logic

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Sticky Leverage. Joao Gomes, Urban Jermann & Lukas Schmid. Wharton School, Duke & UCLA

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates

Arbitrage Analysis of Futures Market with Frictions

Example Sheet 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ECON 381 SC ASSIGNMENT 2

Supplementary Appendix

2 Composition. Invertible Mappings

Section 9.2 Polar Equations and Graphs

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Every set of first-order formulas is equivalent to an independent set

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

Research on Economics and Management

Working Paper Series 06/2007. Regulating financial conglomerates. Freixas, X., Loranth, G. and Morrison, A.D.

ST5224: Advanced Statistical Theory II

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

Bayesian modeling of inseparable space-time variation in disease risk

PARTIAL NOTES for 6.1 Trigonometric Identities

ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΚΕΦΑΛΑΙΑΚΗΣ ΕΠΑΡΚΕΙΑΣ ΜΕ ΗΜΕΡΟΜΗΝΙΑ ΑΝΑΦΟΡΑΣ 30/09/2015 ΠΙΝΑΚΑΣ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΤΟΙΧΕΙΩΝ ΔΕΙΚΤΗ ΚΕΦΑΛΑΙΑΚΗΣ ΕΠΑΡΚΕΙΑΣ


Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Homework 8 Model Solution Section

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Approximation of distance between locations on earth given by latitude and longitude

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

UMI Number: All rights reserved

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

( y) Partial Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 6: Working Capital

Instruction Execution Times

ΣΟΡΟΠΤΙΜΙΣΤΡΙΕΣ ΕΛΛΗΝΙΔΕΣ

Inverse trigonometric functions & General Solution of Trigonometric Equations

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΝΑΥΤΙΛΙΑ

Reminders: linear functions

Συστήματα Διαχείρισης Βάσεων Δεδομένων

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Second Order RLC Filters

Κατανοώντας και στηρίζοντας τα παιδιά που πενθούν στο σχολικό πλαίσιο

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

C.S. 430 Assignment 6, Sample Solutions

Differential equations

Μηχανική Μάθηση Hypothesis Testing

derivation of the Laplacian from rectangular to spherical coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Durbin-Levinson recursive method

Lecture 34 Bootstrap confidence intervals

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6. MAXIMUM LIKELIHOOD ESTIMATION

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Local Approximation with Kernels

ADVANCED STRUCTURAL MECHANICS

Transcript:

A MULTIPLIER APPROACH TO UNDERSTANDING THE MACRO IMPLICATIONS OF HOUSEHOLD FINANCE YiLi Chien, Harold Cole and Hanno Lustig Roine Vestman, New York University October 30, 2007

OVERVIEW OF THE PAPER Taking heterogeneity in households trading technology as a given, what are the implications for... 1....the moments of asset prices? What role does non-participation play? 2....households portfolios? 3....consumption moments? 4....the wealth distribution? Methodological contribution A solution method based on multipliers, rather than moments of the wealth distribution Related papers Empirical household finance: Calvet, Campbell and Sodini (2007) Models with non-participation: Basak and Cuoco (1998), Guvenen (2005) Distributional implications: Krusell and Smith (1997), Favilukis (2007)

MODEL Notation Aggregate shock: z t Idiosyncratic shock: η t (iid across HH s) π(z t+1, η t+1 z t, η t ) = π(z t+1 z t )π(η t+1 z t+1, η t ) Successor nodes: z t+1 z t ; set of successor histories: {z τ z t } History from zero to t 1 contained in η t : η t 1 (η t ) Endowment Y (z t ) = exp {z t } Y (z t 1 ) Diversifiable income: (1 γ)y (z t ) Non-diversifiable income: γy (z t )η t Preferences } U(c) = E { t 1 βt π(z t, η t ) c(zt,η t ) 1 α 1 α

FOUR TRADING TECHNOLOGIES 4 types of HH s Active traders: Complete, z-complete Passive traders: Diversified, Non-participants Prices Aggregate state prices: q [( z t+1, η t+1), (z t, η t ) ] = π(η t+1 z t+1, η t )q(z t+1, z t ) Arrow-Debreu prices: P(z t, η t ) = π(z t, η t )P(z t, η t ) = q(z t, z t 1 )q(z t 1, z t 2 )..q(z 1, z 0 )q(z 0 ) m(z t+1 z t ) = P(z t+1 )/P(z t ) is one SDF

BUDGET CONSTRAINTS 1. Complete traders (c) γy (z t )η t + a t 1 (z t, η t ) + σ(z t 1, η t 1 ) [ (1 γ)y (z t ) + ω(z t ) ] c(z t, η t ) q(z t+1, z t ) a t (z t+1, η t+1 )π(η t+1 z t+1, η t ) + σ(z t, η t )ω(z t ) z t+1 z t η t+1 η t 2. z-complete traders (z) γy (z t )η t + a t 1 (z t, η t 1 ) + σ(z t 1, η t 1 ) [ (1 γ)y (z t ) + ω(z t ) ] c(z t, η t q(z t+1, z t )a t (z t+1, η t ) + σ(z t, η t )ω(z t ) z t+1 z t

BUDGET CONSTRAINTS AND MARKET CLEARING 3. Diversified traders (div) γy (z t )η t + σ(z t 1, η t 1 ) [ (1 γ)y (z t ) + ω(z t ) ] c(z t, η t ) σ(z t, η t )ω(z t ) 4. Non-participants (np) γy (z t )η t + a t 1 (z t 1, η t 1 ) c(z t, η t ) Market clearing η t [ µ1 at 1 c (zt, η t ) + µ 2 at 1 z (zt, η t 1 (η t )) +µ 4 a np t 1 (zt 1 (z t ), η t 1 (η t )) z t+1 z t q(z t+1, z t )a t (z t, η t ) ] π(η t z t ) = 0 [ ] µ 1 σ c (z t, η t ) + µ 2 σ z (z t, η t ) + µ 3 σ div (z t, η t ) π(η t z t ) = 1 η t

MEASURABILITY CONSTRAINTS Net wealth â t 1 (z t, η t ) a t 1 (z t, η t ) + σ(z t 1, η t 1 ) [ (1 γ)y (z t ) + ϖ(z t ) ] 2. z-complete traders ] ] â t 1 (z t, [η t 1, η t ) = â t 1 (z t, [η t 1, η t ) z t, η t 1 and η t, η t N 3. Diversified traders â t 1 ( [ z t 1 ] [, z t, η t 1 ] [, η t ) (1 γ)y (z t 1, z t ) + ϖ(z t 1, z t ) = â t 1 ( z t 1 ] [, z t, η t 1 ], η t ) (1 γ)y (z t 1, z t ) + ϖ(z t 1, z t ) 4. Non-participants z t 1, η t 1 and z t, z t Z and η t, η t N ] ] ] ] â t 1 ( [z t 1, z t, [η t 1, η t ) = â t 1 ( [z t 1, z t, [η t 1, η t ) z t 1, η t 1 and z t, z t Z and η t, η t N

THE HOUSEHOLD PROBLEM Lagrangian L = min max β t {χ,ν,ϕ}{c,â} t=1 u(c(z t, η t ))π(z t, η t ) (z t,η t ) +χ {present value budget constr.} + ν(z t, η t ) { measurability constr. in (z t, η t ) } t 1 (z t,η t ) + ϕ(z t, η t ) { borrowing constr. in (z t, η t ) } t 1 (z t,η t ) Lagrangian a la Marcet and Marimon (1999) ζ 0 = χ; ζ(z t, η t ) = ζ(z t 1, η t 1 ) + ν(z t, η t ) ϕ(z t, η t ) L z = min max β t u(c(z t, η t ))π(z t, η t ) {χ,ν,ϕ}{c,â} t=1 (z t,η t ) { + ζ(z t, η t ) ( γy (z t )η t c(z t, η t) ) } t 1 (z t,η t ) { ν(z + t, η t )â t 1 (z t, η t 1 } ) ϕ(z t, η t ) {borrowing constr. in (z t, η t )} t 1 (z t,η t )

THE AGGREGATE MULTIPLIER AND THE SDF FOC for consumption, irrespective of trading tech. Consumption sharing rule c(z t, η t ) C (z t ) β t u (c(z t, η t )) P(z t ) = ζ(zt, η t ) 1 α h(z t ) Stochastic discount factor m(z t+1 z t ) = β = ζ(z t, η t ), h(z t ) = ζ(z t, η t ) 1 α π(η t z t ) η t ( C (z t+1 ) C (z t ) ) α ( h(z t+1 ) α ) h(z t )

A NET SAVINGS FUNCTION THE PRESENT DISCOUNTED VALUE OF FUTURE SAVINGS HH s net savings functions, j {c, z, div, np}: ] S j (ζ(z t, η t ); z t, η t ) = [γη t ζ(zt, η t ) 1 α h(z t C (z t ) ) Ratio of savings to aggr. consumption + π(zt+1, ηt+1 )P(zt+1 ) π(z z t+1,η t, η t )P(z t ) t+1 S(ζ(z t+1, η t+1 ); z t+1, η t+1 ) S j (ζ(z t, η t ); z t, η t ) = Sj (ζ(z t, η t ); z t, η t ) Y (z t )

WITHOUT NON-PARTICIPANTS, THE (CONDITIONAL) EQUITY RISK PREMIUM IS THE BREEDEN-LUCAS ONE Conditions φ(z t+1 z t ) = φ(z t+1 ) π(η t+1, z t+1 η t, z t ) = ϕ(η t+1 η t )φ(z t+1 z t ) Given the conditions and without non-participants, ζ and the consumption share are independent of z t h t+1 h t non-random m(z t+1 z t ) = β ( C (z t+1 ) C (z t ) The role of non-participants ) α ( ) h(z t+1 ) α h(z t ) np s measurability condition in terms of net savings is given by: S np t+1 (ζ(zt+1, η t+1 ); z t+1, η t+1 np ) S t+1 e z = (ζ( zt+1, η t+1 ); z t+1, η t+1 ) t+1 e z t+1 np spill risk to other household types In the presence of np, {h t+1 /h t } depends on z t+1

SHIFTING AGGREGATE RISK TO ACTIVE TRADERS Div. do not bear any of the residual aggregated risk created by np Div s measurability constraint Sa div (z t, z t+1 ) [(1 γ)y (z t, z t+1 ) + ω(z t, z t+1 )] = Sa div (z t, z t+1 ) [(1 γ)y (z t, z t+1 ) + ω(z t, z t+1 )]

CALIBRATION Endowment process Y (z t ) as in Mehra and Prescott (1985) η as in STY (2003) (1 γ) = 0.1 Households µ np = 0.7 α = 5 β = 0.95

ASSET PRICING (TABLE 3)

CONSUMPTION (TABLE 5)

THE EQUITY SHARE ALONG THE WEALTH DISTRIBUTION (TABLE 9)

IS THERE A MAPPING BETWEEN CCL AND CALVET, CAMPBELL, AND SODINI (2007)? Is there no financial income in non-diversifiable income? Calvet et al (2007) focus on households financial portfolios and argue that many are subject to idiosyncratic risk Would Calvet et al (2007) agree that a diversified trader is somebody who is afraid of making investment mistakes (CCL p. 5)? How categorize households in the data? Portfolio holdings would be natural! np=easy div=well-diversified stock-holders? c=? z=? without c or z there is no equilibrium! What about HH s Sharpe ratios? What about HH s trading volume or trading pattern?

WHERE ARE ENTREPRENEURS AND THEIR CAPITAL? Where does an entrepreneur with little non-proprietary wealth belong? Moskowitz and Vissing-Jorgenssen (AER, 2004) Entrepreneurs as a group own a lot of capital They face a lot of uninsurable risk (they are not c or z) They are also poorly diversified (not div) Are they np? But np in the strict sense are typically poor!

IT S NICE TO BE AN ACTIVE TRADER - A LITTLE TOO NICE? c z div np E [ R W R f ] 0.125 0.062 0.008 0.012 σ [ log(c)] 5.64 7.13 11.4 12.5 Portfolio positions In model: c holds leveraged equity portfolios (160%), z: 93% Average returns are increasing in the degree of insurance Empirical research (Vissing-Jorgensen, Guvenen) reject the hypothesis of complete markets for stockholders, but not for non-stockholders Would their tests reject complete markets among active traders? Again, who are c and z? Trading frequency and volume Empirically, the evidence of households trading frequency and trading volumes is mixed std of fraction invested in stocks for c is 60% std of fraction invested in stocks for z is 30%

COMPETING SOLUTION METHODS Does the multiplier method outperform the Krusell-Smith method? Regressing log SDF on mean wealth R 2 << R 2 KS Is the solution method applicable in the presence of capital? Yes? Market clearing vs. finding SDF Krusell-Smith: Clear market by market CCL: Find sdf as a function of households multipliers (h(z t )) Many HH s and few assets easier to clear market? Few HH s and many asset easier to find h(z t )? Are there other model features that may matter?

HOUSEHOLD PORTFOLIOS (TABLE 4)

THE WEALTH DISTRIBUTION (TABLE 8) OUT OF SAMPLE

COMPUTATION (1) MARTINGALE CONDITIONS FOR CUMULATIVE MULTIPLIERS Complete z-complete ζ(z t, η t ) ζ(z t, η t ) = ζ(z t 1, η t 1 ) ϕ(z t, η t ) η t+1 η t ζ(z t+1, η t+1 )π(η t+1 z t+1, η t ) Diversified ζ(z t, η t ) ζ(z t+1, η t+1 m(z ) t+1 z t )R(z t+1 ) E {m(z t+1 z t )R(z t+1 ) z t } π(ηt+1 z t+1, η t ) z t+1 z t η t+1 η t R(z t+1 ) = return on tradable income claim Non-participants ζ(z t, η t ) ζ(z t+1, η t+1 m(z ) t+1 z t ) E {m(z z t+1 z t,η t+1 η t+1 z t ) z t } π(ηt+1 z t+1, η t ) t

COMPUTATION (2) RECURSIVE FORMULATION THROUGH PDV OF FUTURE SAVINGS HH s net savings functions, j {c, z, div, np}: ] S j (ζ(z t, η t ); z t, η t ) = [γη t ζ(zt, η t ) 1 α h(z t C (z t ) + ) π(zt+1, ηt+1 )P(zt+1 π(z z t+1,η t, η t )P(z t ) t+1 Operator S(ζ(z t+1, η t+1 ); z t+1, η t+1 ) T j (z t+1, η t+1 z t, η t )(ζ(z t, η t )) = ζ(z t+1, η t+1 ) j {c, z, div, np} Operator for the aggregate multiplier T h Joint distr of multipliers and endowments: Φ j t Recall h(z t ) = η t ζ(z t, η t ) 1 α π(η t z t ) Integrate [ T j ] 1 α over η t+1 η t and then over j to get fixed point of { h 1 t (z t ) } = T h { ht 0 (z t ) }