Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009"

Transcript

1 Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March

2 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two default free assets, one total default asset 1.2 Two default free assets, one defaultable with recovery 2. Two defaultable assets 2

3 Two default-free assets, one defaultable asset Two default-free assets, one defaultable asset We present a particular case where there are two default-free assets the savings account Y 1 with constant interest rate r 3

4 Two default-free assets, one defaultable asset Two default-free assets, one defaultable asset We present a particular case where there are two default-free assets the savings account Y 1 with constant interest rate r An asset with dynamics dy 2 t = Y 2 t (μ 2,t dt + σ 2,t dw t ) where the coefficients μ 2,σ 2 are F-adapted processes 4

5 Two default-free assets, one defaultable asset Two default-free assets, one defaultable asset We present a particular case where there are two default-free assets the savings account Y 1 with constant interest rate r An asset with dynamics dy 2 t = Y 2 t (μ 2,t dt + σ 2,t dw t ) where the coefficients μ 2,σ 2 are F-adapted processes a defaultable asset dy 3 t = Y 3 t (μ 3,t dt + σ 3,t dw t + κ 3,t dm t ), where the coefficients μ 3,σ 3,κ 3 are G-adapted processes with κ

6 Two default-free assets, one defaultable asset Here, M is the compensated martingale of the default process M t = H t t 0 (1 H s )λ s ds W is an F and a G-Brownian motion, where F is the natural filtration of W and G = H F, λ is an F adapted process. 6

7 Two default-free assets, one defaultable asset Our aim is to hedge defaultable claims. As we shall establish, the case of total default for the third asset (i.e. κ 3,t 1) is really different from the others. 7

8 Two default-free assets, a total default asset Two default-free assets, a total default asset We assume that dy 3 t = Y 3 t (μ 3,t dt + σ 3,t dw t dm t ). Y 3 t = Ỹ 3 t 1 t<τ. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 8

9 Two default-free assets, a total default asset Arbitrage condition, completeness of the market Our aim is to determine the emm(s) Q for the model dyt 1 = Yt 1 rdt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t dm t ). when Y 1 is the numéraire. The probability Q such that Y i,1 = Y i /Y 1 are martingales is dq Gt = L t dp Gt, where dl t = L t (θ t dw t + ζ t dm t ) dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 9

10 Two default-free assets, a total default asset with as soon as ζ> 1. θ = r μ σ 2 ζλ = μ 3 r + σ 3 r μ σ 2, dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 10

11 Two default-free assets, a total default asset Under Q are martingales. W t = W t M t = M t t 0 t 0 θ s ds (1 H s )λ s ζ s ds Under Q, the process is a martingale where H t t 0 (1 H s )λ sds λ t = λ t (1 + ζ t ) dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 11

12 Two default-free assets, a total default asset Here, our aim is to hedge survival claims (X, 0,τ), i.e. contingent claims of the form X 1 T<τ where X F T. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 12

13 Two default-free assets, a total default asset Here, our aim is to hedge survival claims (X, 0,τ), i.e. contingent claims of the form X 1 T<τ where X F T. The price of the contingent claim is C t = e r(t t) E Q (X 1 T<τ G t ) dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 13

14 Two default-free assets, a total default asset Here, our aim is to hedge survival claims (X, 0,τ), i.e. contingent claims of the form X 1 T<τ where X F T. The price of the contingent claim is C t = e r(t t) E Q (X 1 T<τ G t ) The hedging strategy consists of a triple of predictable processes φ 1,φ 1,φ 3 such that φ 3 t Y 3 t = C t, t <τ, φ 1 t e rt + φ 2 t Y 2 t =0 and which satisfies the self financing condition dc t = φ 1 t re rt dt + φ 2 t dyt 2 + φ 3 t dyt 3 dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 14

15 Two default-free assets, a total default asset Indeed, under Q, forr = 0, one has and, dc t = α t dw t C t dm t φ 2 t dy 2 t + φ 3 t dy 3 t = φ 2 t σ 2 Y 2 t dw t C t dm t hence the existence of φ 2,andφ 1 such that φ 1 t e rt + φ 2 t Y 2 t =0 dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 15

16 PDE Approach PDE Approach We are working in a model with constant (or Markovian) coefficients dy t = Y t rdt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t dm t ). dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 16

17 PDE Approach PDE Approach We are working in a model with constant (or Markovian) coefficients dy t = Y t rdt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t dm t ). Let C(t, Y 2 t,y 3 t,h t ) be the price of the contingent claim G(Y 2 T,Y3 T,H T ) and λ be the risk-neutral intensity of default. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 17

18 PDE Approach Then, t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+r y 3 3 C(t, y 2,y 3 ;0) r C(t, y 2,y 3 ;0) σ i σ j y i y j ij C(t, y 2,y 3 ;0)+λ C(t, y 2, 0; 1) = 0 2 i,j=2 where r = r + λ dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 18

19 PDE Approach Then, t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+r y 3 3 C(t, y 2,y 3 ;0) r C(t, y 2,y 3 ;0) σ i σ j y i y j ij C(t, y 2,y 3 ;0)+λ C(t, y 2, 0; 1) = 0 2 i,j=2 where r = r + λ and t C(t, y 2 ;1)+ry 2 2 C(t, y 2 ;1)+ 1 2 σ2 2y C(t, y 2 ;1) rc(t, y 2 ;1)=0 dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 19

20 PDE Approach Then, t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+r y 3 3 C(t, y 2,y 3 ;0) r C(t, y 2,y 3 ;0) σ i σ j y i y j ij C(t, y 2,y 3 ;0)+λ C(t, y 2, 0; 1) = 0 2 i,j=2 where r = r + λ and t C(t, y 2 ;1)+ry 2 2 C(t, y 2 ;1)+ 1 2 σ2 2y C(t, y 2 ;1) rc(t, y 2 ;1)=0 with the terminal conditions C(T,y 2,y 3 ;0)=G(y 2,y 3 ;0), C(T,y 2 ;1)=G(y 2, 0; 1). dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 20

21 PDE Approach The replicating strategy φ for Y is given by formulae φ 3 t Yt 3 = ΔC(t) = C(t, Yt 2, 0; 1) + C(t, Yt 2,Yt ;0) 3 3 σ 2 φ 2 t Y 2 t = ΔC(t)+ i=2 Y i t σ i i C(t) φ 1 t Y 1 t = C(t) φ 2 t Y 2 t φ 3 t Y 3 t. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 21

22 PDE Approach The replicating strategy φ for Y is given by formulae φ 3 t Yt 3 = ΔC(t) = C(t, Yt 2, 0; 1) + C(t, Yt 2,Yt ;0) 3 3 σ 2 φ 2 t Y 2 t = ΔC(t)+ i=2 Y i t σ i i C(t) φ 1 t Y 1 t = C(t) φ 2 t Y 2 t φ 3 t Y 3 t. Note that, in the case of survival claim, C(t, Yt 2, 0; 1) = 0 and φ 3 t Yt 3 = C(t, Yt,Y 2 t ; 3 0) for every t [0,T]. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 22

23 PDE Approach The replicating strategy φ for Y is given by formulae φ 3 t Yt 3 = ΔC(t) = C(t, Yt 2, 0; 1) + C(t, Yt 2,Yt ;0) 3 3 σ 2 φ 2 t Y 2 t = ΔC(t)+ i=2 Y i t σ i i C(t) φ 1 t Y 1 t = C(t) φ 2 t Y 2 t φ 3 t Y 3 t. Note that, in the case of survival claim, C(t, Yt 2, 0; 1) = 0 and φ 3 t Yt 3 = C(t, Yt,Y 2 t ; 3 0) for every t [0,T]. Hence, the following relationships holds, for every t<τ, φ 3 t Y 3 t = C(t, Y 2 t,y 3 t ;0), φ 1 t Y 1 t + φ 2 t Y 2 t =0. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 23

24 PDE Approach The replicating strategy φ for Y is given by formulae φ 3 t Yt 3 = ΔC(t) = C(t, Yt 2, 0; 1) + C(t, Yt 2,Yt ;0) 3 3 σ 2 φ 2 t Y 2 t = ΔC(t)+ i=2 Y i t σ i i C(t) φ 1 t Y 1 t = C(t) φ 2 t Y 2 t φ 3 t Y 3 t. Note that, in the case of survival claim, C(t, Yt 2, 0; 1) = 0 and φ 3 t Yt 3 = C(t, Yt,Y 2 t ; 3 0) for every t [0,T]. Hence, the following relationships holds, for every t<τ, φ 3 t Y 3 t = C(t, Y 2 t,y 3 t ;0), φ 1 t Y 1 t + φ 2 t Y 2 t =0. The last equality is a special case of the balance condition. It ensures that the wealth of a replicating portfolio falls to 0 at default time. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 24

25 PDE Approach Example 1 Consider a survival claim Y = 1 {T<τ} g(yt 2 ). Its pre-default pricing function C(t, y 2,y 3 ;0)=C g (t, y 2 ) where C g solves t C g (t, y;0)+ry 2 C g (t, y;0)+ 1 2 σ2 2y 2 22 C g (t, y;0) r C g (t, y;0) = 0 The solution is C g (t, y) = e (r r)(t T ) C r,g,2 (t, y) =e λ (t T ) C r,g,2 (t, y), C g (T,y;0) = g(y) where C r,g,2 is the price of an option with payoff g(y T ) in a BS model with interest rate r and volatility σ 2. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 25

26 PDE Approach Example 2 Consider a survival claim of the form Y = G(Y 2 T,Y 3 T,H T )= 1 {T<τ} g(y 3 T ). Then the post-default pricing function C g ( ; 1) vanishes identically, and the pre-default pricing function C g ( ;0) is C g (t, y 2,y 3 ;0)=C r,g,3 (t, y 3 ) where C α,g,3 (t, y) is the price of the contingent claim g(y T )inthe Black-Scholes framework with the interest rate α and the volatility parameter equal to σ 3. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 26

27 Two default-free assets, one defaultable asset with Recovery, PDE approach Two default-free assets, one defaultable asset with Recovery, PDE approach Let the price processes Y 1,Y 2,Y 3 satisfy dyt 1 = ryt 1 dt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t + κ 3 dm t ) with σ 2 0and where the coefficients are constant. Assume that the relationship σ 2 (r μ 3 )=σ 3 (r μ 2 ) holds and κ 3 0,κ 3 > 1. dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 27

28 Two default-free assets, one defaultable asset with Recovery, PDE approach Two default-free assets, one defaultable asset with Recovery, PDE approach Let the price processes Y 1,Y 2,Y 3 satisfy dyt 1 = ryt 1 dt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t + κ 3 dm t ) with σ 2 0and where the coefficients are constant. Assume that the relationship σ 2 (r μ 3 )=σ 3 (r μ 2 ) holds and κ 3 0,κ 3 > 1. Then the price of a contingent claim Y = G(YT 2,Y3 T,H T ) can be represented as π t (Y )=C(t, Yt 2,Yt 3 ; H t ), where the pricing functions C( ;0) and C( ;1) satisfy the following PDEs dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 28

29 Two default-free assets, one defaultable asset with Recovery, PDE approach t C(t, y 2,y 3 ;1)+ry 2 2 C(t, y 2,y 3 ;1)+ry 3 3 C(t, y 2,y 3 ;1) rc(t, y 2,y 3 ;1) σ i σ j y i y j ij C(t, y 2,y 3 ;1)=0 2 i,j=2 dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 29

30 Two default-free assets, one defaultable asset with Recovery, PDE approach t C(t, y 2,y 3 ;1)+ry 2 2 C(t, y 2,y 3 ;1)+ry 3 3 C(t, y 2,y 3 ;1) rc(t, y 2,y 3 ;1) σ i σ j y i y j ij C(t, y 2,y 3 ;1)=0 2 and i,j=2 t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+y 3 (r κ 3 λ) 3 C(t, y 2,y 3 ;0) rc(t, y 2,y 3 ;0)+ 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;0) 2 i,j=2 +λ ( C(t, y 2,y 3 (1 + κ 3 ); 1) C(t, y 2,y 3 ;0) ) =0 dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 30

31 Two default-free assets, one defaultable asset with Recovery, PDE approach t C(t, y 2,y 3 ;1)+ry 2 2 C(t, y 2,y 3 ;1)+ry 3 3 C(t, y 2,y 3 ;1) rc(t, y 2,y 3 ;1) σ i σ j y i y j ij C(t, y 2,y 3 ;1)=0 2 and i,j=2 t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+y 3 (r κ 3 λ) 3 C(t, y 2,y 3 ;0) rc(t, y 2,y 3 ;0)+ 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;0) 2 i,j=2 +λ ( C(t, y 2,y 3 (1 + κ 3 ); 1) C(t, y 2,y 3 ;0) ) =0 subject to the terminal conditions C(T,y 2,y 3 ;0)=G(y 2,y 3, 0), C(T,y 2,y 3 ;1)=G(y 2,y 3, 1). dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 31

32 Two default-free assets, one defaultable asset with Recovery, PDE approach The replicating strategy equals φ =(φ 1,φ 2,φ 3 ) ( φ t = σ 2 κ 3 Yt 2 κ 3 σ i y i i C(t, Yt 2,Yt,H 3 t ) φ 3 t = i=2 σ 3 ( C(t, Y 2 t,y 3 1 κ 3 Y 3 t t (1 + κ 3 ); 1) C(t, Yt 2,Yt ;0) 3 )), ( C(t, Y 2 t,yt (1 3 + κ 3 ); 1) C(t, Yt 2,Yt ;0) 3 ), and where φ 1 t is given by φ 1 t Y 1 t + φ 2 t Y 2 t + φ 3 t Y 3 t = C t. dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 32

33 Two default-free assets, one defaultable asset with Recovery, PDE approach Example Consider a survival claim of the form Y = G(Y 2 T,Y 3 T,H T )= 1 {T<τ} g(y 3 T ). Then the post-default pricing function C g ( ; 1) vanishes identically, and the pre-default pricing function C g ( ; 0) solves t C g ( ;0) + ry 2 2 C g ( ;0)+y 3 (r κ 3 λ) 3 C g ( ;0) σ i σ j y i y j ij C g ( ;0) (r + λ)c g ( ;0)=0 2 i,j=2 C g (T,y 2,y 3 ;0) = g(y 3 ) Denote α = r κ 3 λ and β = λ(1 + κ 3 ). Then, C g (t, y 2,y 3 ;0)=e β(t t) C α,g,3 (t, y 3 ) where C α,g,3 (t, y) isthe price of the contingent claim g(y T ) in the Black-Scholes framework with the interest rate α and the volatility parameter equal to σ 3. Let C t be the current value of the contingent claim Y,sothat C t = 1 {t<τ} e β(t t) C α,g,3 (t, y 3 ). dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 33

34 Two default-free assets, one defaultable asset with Recovery, PDE approach The hedging strategy of the survival claim is, on the event {t <τ}, φ 3 t Yt 3 = 1 e β(t t) C α,g,3 (t, Yt 3 )= 1 C t, κ 3 κ 3 φ 2 t Yt 2 = σ ( ) 3 Yt 3 e β(t t) y C α,g,3 (t, Yt 3 ) φ 3 t Yt 3 σ 2. dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 34

35 Two default-free assets, one defaultable asset with Recovery, PDE approach Hedging of a Recovery Payoff The price C g of the payoff G(YT 2,Y3 T,H T )= 1 {T τ} g(yt 2) solves t C g ( ;1)+ry y C g ( ;1)+ 1 2 σ2 2y 2 yy C g ( ;1) rc g ( ;1) = 0 C g (T,y;1) = g(y) hence C g (t, y 2,y 3, 1) = C r,g,2 (t, y 2 ) is the price of g(yt 2 Y 1,Y 2. Prior to default, the price of the claim solves ) in the model t C g ( ;0) + ry 2 2 C g ( ;0)+y 3 (r κ 3 λ) 3 C g ( ;0) σ i σ j y i y j ij C g ( ;0) (r + λ)c g ( ;0)= λc g (t, y 2 ;1) 2 i,j=2 C g (T,y 2,y 3 ;0) = 0 Hence C g (t, y 2,y 3 ;0)=(1 e λ(t T ) )C r,g,2 (t, y 2 ). dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 35

36 Two defaultable assets with total default Two defaultable assets with total default Assume that Y 1 and Y 2 are defaultable tradeable assets with zero recovery and a common default time τ. dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 Then with dỹ i t Yt 1 = 1 {τ>t} Ỹt 1, Yt 2 = 1 {τ>t} Ỹt 2 = Ỹ i t ((μ i + λ t )dt + σ i dw t ),i=1, 2 dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 36

37 Two defaultable assets with total default The wealth process V associated with the self-financing trading strategy (φ 1,φ 2 ) satisfies for t [0,T] ( t ) V t = Yt 1 V0 1 + φ 2 u dỹ u 2,1 where Ỹ 2,1 t = Ỹ 2 t /Ỹ 1 t. Obviously, this market is incomplete, however, some contingent claims are hedgeable, as we present now. 0 dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 37

38 Two defaultable assets with total default Hedging Survival claim: martingale approach A strategy (φ 1,φ 2 ) replicates a survival claim C = X 1 {τ>t} whenever we have T ) ỸT (Ṽ φ 2 t dỹ 2,1 t = X for some constant Ṽ 1 0 and some F-predictable process φ 2. It follows that if σ 1 σ 2, any survival claim C = X 1 {τ>t} is attainable. 0 Let Q be a probability measure such that Ỹ 2,1 t is an F-martingale under Q. Then the pre-default value Ũt(C) attimetof (X, 0,τ) equals ) Ũ t (C) =Ỹ t (X(Ỹ 1 T 1 ) 1 F t. E Q dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 38

39 Two defaultable assets with total default Example: Call option on a defaultable asset We assume that Yt 1 = D(t, T ) represents a defaultable ZC-bond with zero recovery, and Yt 2 = 1 {t<τ} Ỹt 2 is a generic defaultable asset with total default. The payoff of a call option written on the defaultable asset Y 2 equals C T =(Y 2 T K) + = 1 {T<τ} (Ỹ 2 T K) + The replication of the option reduces to finding a constant x and an F-predictable process φ 2 that satisfy x + T 0 φ 2 t dỹ 2,1 t =(Ỹ 2 T K) +. Assume that the volatility σ 1,t σ 2,t of Ỹ 2,1 is deterministic. Let F 2 (t, T )=Ỹ 2 t ( D(t, T )) 1 dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 39

40 Two defaultable assets with total default The credit-risk-adjusted forward price of the option written on Y 2 equals where and C t = Ỹ 2 t N ( d + ( F 2 (t, T ),t,t) ) K D(t, T )N ( d ( F 2 (t, T ),t,t) ), d ± ( f, t, T )= ln f ln K ± 1 2 v2 (t, T ) v(t, T ) v 2 (t, T )= T t (σ 1,u σ 2,u ) 2 du. Moreover the replicating strategy φ in the spot market satisfies for every t [0,T], on the set {t <τ}, φ 1 t = KN ( d ( F 2 (t, T ),t,t) ), φ 2 t = N ( d + ( F 2 (t, T ),t,t) ). dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 40

41 Two defaultable assets with total default Hedging Survival claim: PDE approach Assume that σ 1 σ 2. Then the pre-default pricing function v satisfies the PDE ( μ 2 μ 1 t C + y 1 μ 1 + λ σ 1 σ 2 σ ) ( μ 2 μ 1 1 C + y 2 μ 2 + λ σ 2 σ 2 σ 1 ( y 2 1σ C + y 2 2σ C +2y 1 y 2 σ 1 σ 2 12 C with the terminal condition C(T,y 1,y 2 )=G(y 1,y 2 ). ) = ) 2 C ( μ 1 + λ σ 1 μ 2 μ 1 σ 2 σ 1 ) C dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 41

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Part III - Pricing A Down-And-Out Call Option

Part III - Pricing A Down-And-Out Call Option Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A 2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Mean-Variance Hedging on uncertain time horizon in a market with a jump

Mean-Variance Hedging on uncertain time horizon in a market with a jump Mean-Variance Hedging on uncertain time horizon in a market with a jump Thomas LIM 1 ENSIIE and Laboratoire Analyse et Probabilités d Evry Young Researchers Meeting on BSDEs, Numerics and Finance, Oxford

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

DOI /J. 1SSN

DOI /J. 1SSN 4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton

Διαβάστε περισσότερα

Math 5440 Problem Set 4 Solutions

Math 5440 Problem Set 4 Solutions Math 544 Math 544 Problem Set 4 Solutions Aaron Fogelson Fall, 5 : (Logan,.8 # 4) Find all radial solutions of the two-dimensional Laplace s equation. That is, find all solutions of the form u(r) where

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Financial Risk Management

Financial Risk Management Pricing of American options University of Oulu - Department of Finance Spring 2018 Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Appendix to Technology Transfer and Spillovers in International Joint Ventures

Appendix to Technology Transfer and Spillovers in International Joint Ventures Appendix to Technology Transfer and Spillovers in International Joint Ventures Thomas Müller Monika Schnitzer Published in Journal of International Economics, 2006, Volume 68, 456-468 Bundestanstalt für

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα