Free Energy Calculation

Σχετικά έγγραφα
Free Energy and Phase equilibria

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

DuPont Suva 95 Refrigerant

CE 530 Molecular Simulation

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ST5224: Advanced Statistical Theory II

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

2 Composition. Invertible Mappings

DuPont Suva 95 Refrigerant

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homework 3 Solutions

Solutions to Exercise Sheet 5

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Section 8.3 Trigonometric Equations

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Concrete Mathematics Exercises from 30 September 2016

The challenges of non-stable predicates

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

derivation of the Laplacian from rectangular to spherical coordinates

The Simply Typed Lambda Calculus

( y) Partial Differential Equations

Statistical Inference I Locally most powerful tests

Inverse trigonometric functions & General Solution of Trigonometric Equations

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Areas and Lengths in Polar Coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

5.4 The Poisson Distribution.

Numerical Analysis FMN011

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Matrices and Determinants

Example Sheet 3 Solutions

the total number of electrons passing through the lamp.

Finite Field Problems: Solutions

Solution Series 9. i=1 x i and i=1 x i.

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Homework 8 Model Solution Section

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

EE512: Error Control Coding

Problem Set 3: Solutions

Every set of first-order formulas is equivalent to an independent set

Block Ciphers Modes. Ramki Thurimella

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Approximation of distance between locations on earth given by latitude and longitude

2. Chemical Thermodynamics and Energetics - I

4.6 Autoregressive Moving Average Model ARMA(1,1)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Higher Derivative Gravity Theories

Variational Wavefunction for the Helium Atom

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Lecture 34 Bootstrap confidence intervals

Parametrized Surfaces

Exercises to Statistics of Material Fatigue No. 5

6.3 Forecasting ARMA processes

Fractional Colorings and Zykov Products of graphs

An Inventory of Continuous Distributions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling

Srednicki Chapter 55

Section 9.2 Polar Equations and Graphs

TMA4115 Matematikk 3

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

D Alembert s Solution to the Wave Equation

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Second Order RLC Filters

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Strain gauge and rosettes

Section 7.6 Double and Half Angle Formulas

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

6. MAXIMUM LIKELIHOOD ESTIMATION

1 String with massive end-points

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Second Order Partial Differential Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

[1] P Q. Fig. 3.1

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Μηχανική Μάθηση Hypothesis Testing

5. Choice under Uncertainty

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Notes on the Open Economy

Local Approximation with Kernels

Finite difference method for 2-D heat equation

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

From the finite to the transfinite: Λµ-terms and streams

Transcript:

Free Energy Calculation 1

Outline Free energies: classical thermodynamics Free energies: statistical thermodynamics Monte Carlo simulations: what went wrong? Experiments: how to make a chemical potentialmeter? Free energy techniques: Thermodynamic integration Krikwood coupling parameter Widom test particle insertion Overlapping distribution Histogram method Umbrella sampling 2 2

Chemical potential Until now we have assumed that most of our systems are closed: NVE Let us now assume that our system can exchange matter First law du = TdS pdv + i Chemical potential µ i U n i U n i S,V,n j S,V,n j dn i Change in U if we add one mole of component i at constant S, V, n j 3

How is the chemical potential is defined in term of A,G,H A U TS da = du TdS SdT Using du = TdS pdv + U n i i U S,V,n j dn i da = SdT pdv + i n i A dn i S,V,n j da = SdT pdv + i Chemical potential A µ i n i n i T,V,n j = dn i T,V,n j U n i S,V,n j 4

Energy du = TdS pdv + i µ i dn i Enthalpy dh = TdS + Vdp + i µ i dn i Helmholtz free energy da = SdT pdv + i µ i dn i Gibbs free energy dg = SdT + Vdp + i µ i dn i Chemical potential µ i U n i S,V,n j = H n i S,p,n j = A n i T,V,n j = G n i T,p,n j 5

G is extensive How does the Gibbs free energy change if the system is increased by a factor k? G = kg G =(k 1)G dg = SdT + Vdp + Integration gives i µ i dn i G = 0 + 0 + i µ i n i G = 0 + 0 + i µ i (k 1)n i Which gives: G = i µ i n i 6

α β Equilibrium Let us consider a system with a constant number of particles, volume, and energy. This system consists of two phases α and β Question: When are these two systems in equilibrium? ds = ds α + ds β = 0 ds α = duα T α + pα T α dvα µ α i T α dnα i 1 i ds α + ds β = T α 1 p T β du α α + T α pβ T β dv α µ α i T α µβ i T β dn α i i Equilibrium: T α = T β p α = p β µ α i = µ β i 7

Vapor-liquid equilibria Equilibrium: T α = T β p α = p β µ α = µ β Van der Waals equation of P = k BT v b a v 2 We need to compute the chemical potential 8

Chemical potential In equilibrium we have: µ α (T, V α )=µ β (T, V β ) Equilibrium if: How to relate this to the equation of state? µ αβ = µ α (T, V α ) µ β (T, V β ) α µ µ αβ = dv = 0 V Recall that we derived the relation between changes in the chemical potential and temperature and pressure (Gibbs-Duhem) G = µ i n i or, for a pure component G = nµ i n i dµ i = SdT + Vdp or ndµ = SdT + Vdp dµ = sdt + vdp i β T,n 9

µ αβ = α β dv µ v We need to find µ v µ v T T Which gives: = µ T T,n p p = 0 + v v µ αβ = = 0 dµ = sdt + vdp µ µ = µ(t, P) v T T µ p + v p v α = T dvv β α β T T =0 =v p v T (p p coex )dv Equation of state gives us the chemical potential T = vp β α α β pdv 10

Vapor-liquid equilibria Equilibrium: T α = T β p α = p β µ α = µ β Equal chemical potential if α β (p p coex )dv = 0 Equilibrium if these areas are equal 11

NVT ensemble Define de Broglie wave length: Partition function: Free energy: F = 1 lnq( N,V,T ) β 12 12

Example: ideal gas Free energy: 13

Thermo recall (3) Helmholtz Free energy: Pressure Energy: 14

Free energy: Pressure: βf = N ln Λ 3 + N ln N V Energy: Chemical potential: βµ IG = ln Λ 3 + ln ρ +1 µ i = F N i T,V,N j βµ IG = βµ 0 + ln ρ 15 15

Monte Carlo simulation What is the difference between <A> and F? 16 16

The price of importance sampling A NVT = 1 1 dr N Q NVT Λ 3N N! A( r N )exp βu ( r N ) = dr N A( r N )P( r N ) = dr N A( r N )P( r N ) dr N P( r N ) = dr N A( r N )C exp βu ( r N ) = dr N A( r N ) exp βu r N dr N C exp βu ( r N ) dr N exp βu ( r N ) Generate configuration using MC: with r N 1,r N 2,r N 3,r N N { 4,r M } A = 1 M M A P MC ( r N ) = C MC exp βu r N i=1 N ( r i ) = dr N A( r N )P MC r N dr N P MC r N = dr N A( r N )C MC exp βu r N dr N C MC exp βu ( r N ) = dr N A( r N )exp βu ( r N ) dr N exp βu ( r N ) 17 17

Experimental (2) F V N,T = P F( P) F P 0 = V V o F V N,T dv? Works always for vapor-liquid Requires a large number of simulations to fit the equation of state Does not work for solid-liquid 18 18

Thermodynamic integration Coupling parameter U ( λ) = ( 1 λ)u I + λu II Lennard-Jones Stockmayer Q NVT ( λ) = 1 Λ 3N N! dr N exp βu λ 19 19

Q NVT F λ ( λ) = λ N,T 1 Λ 3N N! = 1 β dr N λ ln Q exp βu λ ( λ) = dr N U λ exp βu λ dr N exp βu λ F( λ = 1) F( λ = 0) = d Free energy as ensemble average! λ U λ λ λ U ( λ) = ( 1 λ)u I + λu II 20 20

Molecular association B + A G 1 Experimentally we can measure the free energies of association. B A B G 2 + A A B We would like to have the molecule which has the optimal free energy of association 21 21

How to compute the free energy of association? B + A G 1 B A Solution: compute the potential of mean force = the reversible work required to bring B to the host 22 22

A+B G 1 AB G solv G bind A+B G 2 AB We do not need to know the absolute value, but to see whether B or B is better we need to know only: ΔΔG = ΔG 1 ΔG 2 U ( λ) = U ( B) + λ U ( B' ) U ( B) In a simulation it is easier to compute: ΔΔG = ΔG bind ΔG solv 23 23

B A G 1bond B A U ( λ) = U ( B) + λ U ( B' ) U ( B) F( λ = 1) F( λ = 0) = d λ U λ λ λ When will this computation be accurate? 24 24

Q NVT = 1 Λ 3N N! Chemical potential dr N exp βu r N Scaled coordinates: s=r/l Q NVT = V N Λ 3N N! = ln = N ln ds N βf = ln( Q ) NVT V N Λ 3N N! ln exp βu s N ; L 1 Λ 3 ρ ln ( dsn exp βu ( s N ; L) ) ( dsn exp βu ( s N ; L) ) 25 25

Chemical potential: Widom test particle method βf = ln( Q ) NVT = N ln 1 Λ 3 ρ ln ( dsn exp βu ( s N ; L) ) βf = βf IG + βf ex µ F N V,T } 26 26

βf ( N) ) βf N + 1) βµ = N + 1 N = ln Q( N + 1) Q N = ln V N +1 Λ 3N + 3 ( N + 1)! V N Λ 3N N! V = ln Λ 3 N + 1 βµ = βµ IG + βµ ex βµ ex = ln ds N +1 ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) exp βu s N +1 ; L ds N exp βu ( s N ; L) 27 27

βµ ex = ln ds N +1 ds N exp βu s N +1 ; L exp βu ( s N ; L) U ( s N +1 ; L) = ΔU + + U ( s N ; L) βµ ex = ln = ln ds N ds N +1 ds N +1 ( ) exp β ΔU + + U s N ; L ds N exp βu ( s N ; L) ds N { exp βδu + }exp βu s N ; L ds N exp βu ( s N ; L) = ln ds N +1 exp βδu + NVT Ghost particle! 28 28

29 29

Hard spheres = r σ U r βµ ex = ln ds N +1 exp βδu + NVT 0 r > σ exp βδu + = 0 if overlap 1 no overlap Probability to insert a test particle! 30 30

Lennard-Jones fluid 31 31

βf( N ) βµ = βf N + 1 N + 1 N = ln Q( N + 1) Q N = ln βµ = βµ IG + βµ ex V N +1 Λ 3N + 3 ( N + 1)! V N Λ 3N N! V = ln Λ 3 N + 1 βµ ex = ln ds N +1 Real-particle method ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) exp βu s N +1 ; L ds N exp βu ( s N ; L) 32 32

βµ ex = ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) U ( s N +1 ; L) = ΔU + + U ( s N ; L) U ( s N ; L) = U ( s N +1 ; L) ΔU + βµ ex = ln = ln ds N +1 exp βu s N +1 ; L exp +βδu + βu s N +1 ; L ds N +1 = + ln exp +βδu + N +1VT ds N +1 exp βu s N +1 ; L ds N +1 exp +βδu + exp βu s N +1 ; L real particle! 33 33

Real particle energy 34 34

Other ensembles: NPT NVT: Helmholtz free energy µ F N V,T NPT: Gibbs free energy µ G N P,T βg = ln( Q NPT ) Q NPT = 1 Λ 3N N! ds N dvv N exp βvp exp βu s N ; L βµ = βg ( N) ) βg N + 1) N + 1 N βµ = ln Q N + 1 Q N 35 35

βµ = ln Q N + 1 Q N βµ = ln 1 Λ 3N + 3 ( N + 1)! 1 Λ 3N N! dvv N +1 exp βvp ds N +1 ds N dvv N exp βvp exp βu s N +1 ; L exp βu ( s N ; L) βµ = ln 1 Λ 3 N + 1 dvv N exp( βvp)v ds N exp βu s N ; L ds N +1 exp βδu + dvv N exp( βvp) ds N exp βu ( s N ; L) 36 36

βµ = ln 1 Λ 3 N + 1 dvv N exp( βvp)v ds N exp βu s N ; L ds N +1 exp βδu + dvv N exp( βvp) ds N exp βu ( s N ; L) ln βµ = ln Λ 3 βp βp N + 1 ds N dvv N exp βvp exp βu s N ; L ds N +1V exp βδu + dvv N exp( βvp) ds N exp βu ( s N ; L) The volume fluctuates! βpv N + 1 ds N +1 exp βδu + βpv N + 1 ds N +1 exp βδu + βµ = ln( Λ 3 βp) ln βpv N + 1 ds N +1 exp( βδu + ) 37 37

NVT versus NPT NVT: βµ = β ln( ρ) ln ds N +1 exp βδu + NVT NPT: βµ = ln( Λ 3 βp) ln βpv N + 1 ds N +1 exp( βδu + ) 38 38

Overlapping Distribution Method Two systems: System 0: N, V,T, U 0 System 1: N, V,T, U 1 Q 0 = V N Λ 3N N! ds N exp( βu 0 ) Q 1 = V N ds N exp( βu Λ 3N 1 ) N! ΔβF = βf 1 βf 0 = ln( Q 1 Q 0 ) = ln ds N exp βu 1 ds N exp βu 0 = ln q 1 q 0 ds N exp( βu 1 ) = q 1 q 0 ds N exp( βu 0 ) 39

System 0: N, V,T, U 0 System 1: N, V,T, U 1 Let us define p 1 ( ΔU ) ds N exp( βu 1 )δ U 1 U 0 ΔU and ds N exp βu 1 p 0 ( ΔU ) ds N exp( βu 0 )δ U 1 U 0 ΔU ds N exp( βu 0 ) 40 40

ΔβF = ln p 1 ds N exp βu 1 ds N exp βu 0 = ln q 1 q 0 ( ΔU ) = ds N exp( βu 1 )δ U 1 U 0 ΔU ds N exp( βu 1 ) p 0 ( ΔU ) = ds N exp( βu 0 )δ U 1 U 0 ΔU ds N exp( βu 0 ) p 1 ( ΔU ) = ds N exp β ( U 1 U 0 ) exp[ βu 0 ]δ U 1 U 0 ΔU ds N exp( βu 1 ) exp[ βδu ] ds N exp[ βu 0 ]δ ( U 1 U 0 ΔU ) = ds N exp( βu 1 ) =ΔU: Because of the δ function it can be taken outside the integration ds N exp( βu 1 ) = q 1 q 0 ds N exp( βu 0 ) 41 41

Overlapping Distribution Method p 1 ( ΔU ) = exp[ βδu ] ds N exp[ βu 0 ]δ U 1 U 0 ΔU ds N exp( βu 1 ) = q 0 exp( βδu ) q 1 ds N exp[ βu 0 ]δ U 1 U 0 ΔU ds N exp( βu 0 ) q 0 = exp( βδf) q 1 ds N exp( βu 1 ) = q 1 q 0 ds N exp( βu 0 ) 42 42

Let us define two new functions: f 0 f 1 ( ΔU ) ln p ( 0 ΔU ) 0.5βΔU ( ΔU ) ln p ( 1 ΔU ) + 0.5βΔU βδf = f 1 ( ΔU ) f 0 ( ΔU ) Fit f 0 and f 1 to two polynomials that only differ by the offset. f 1 f 0 ( ΔU ) C 1 + aδu + bδu 2 + cδu 3 βδf = C ( ΔU ) 1 C 0 C 0 + aδu + bδu 2 + cδu 3 Simulate system 0: compute f 0 Simulate system 1: compute f 1 43 43

System 0: N-1, V,T, U + 1 ideal gas System 1: N, V,T, U ΔU = U 1 U 0 System 0: test particle energy System 1: real particle energy 44 44

System 0: N-1, V,T, U + 1 ideal gas System 1: N, V,T, U f 0 ( ΔU ) ln p 0 ( ΔU ) 0.5βΔU f 1 ( ΔU ) ln p 1 ( ΔU ) + 0.5βΔU p 0 ( ΔU ) Accurate sampling only if there is overlap between p 1 ( ΔU ) the two distributions How to create this overlap? 45 45

Intermezzo: order parameters and Landau Free energies (1) Landau free energy density: β f ( q) = ln 1 Λ 3N N! δ ( q q ( r N ))exp βu r N Probability to find the system with order parameter q Free energy: P( q)dq exp β f q dq dr N F = f ( q)dq 46

Probability to find the system with order parameter q P( q)dq exp β f q dq P( q) q 47 47

Histogram method (1) P( q) Define a set of windows: q U j ( q) = min if q < q j 0 if q min max j < q < q j max if q > q j For each window determine: P j q 48 48

P j ( q) For each window separately Connect the windows using some overlap between Windows 49 49

Umbrella sampling (1) exp β f q = 1 Λ 3N N! δ ( q q ( r N ))exp βu r N exp βδf q Δf q = f ( q) f IG ( q) = dr N δ ( q q ( r N ))exp βu r N ( ) δ q q r N dr N dr N exp βδf q exp βδf q = π ( r N )π 1 ( r N )δ ( q q( r N ))exp βu r N π ( r N )π 1 ( r N )δ q q( r N ) dr N dr N = π 1 ( r N )δ ( q q( r N ))exp βu ( r N ) π ( r N )dr N π 1 ( r N )δ q q( r N ) π ( r N )dr N 50 50

exp βδf q exp βδf q = π 1 ( r N )δ ( q q( r N ))exp βu ( r N ) π ( r N )dr N π 1 ( r N )δ q q( r N ) π ( r N )dr N δ ( q q( r N ))exp βu ( r N ) = π 1 δ ( q q( r N ))π 1 r N π ( r N ) π This is NOT a Boltzmann distribution How to choose π? P( q) Ideal sampling q 51 51

P( q) q βf( q) = exp( βf est q ) π r N q 52 52