The Laplace transform of Dirichlet L-functions

Σχετικά έγγραφα
2 Composition. Invertible Mappings

Math221: HW# 1 solutions

Uniform Convergence of Fourier Series Michael Taylor

Example Sheet 3 Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Homework 3 Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

F19MC2 Solutions 9 Complex Analysis

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

4.6 Autoregressive Moving Average Model ARMA(1,1)

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Statistical Inference I Locally most powerful tests

ST5224: Advanced Statistical Theory II

Section 8.3 Trigonometric Equations

Matrices and Determinants

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Finite Field Problems: Solutions

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

On the k-bessel Functions

The k-α-exponential Function

EE512: Error Control Coding

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Solution Series 9. i=1 x i and i=1 x i.

w o = R 1 p. (1) R = p =. = 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Solutions to Exercise Sheet 5

Other Test Constructions: Likelihood Ratio & Bayes Tests

Inverse trigonometric functions & General Solution of Trigonometric Equations

Every set of first-order formulas is equivalent to an independent set

6.3 Forecasting ARMA processes

Second Order Partial Differential Equations

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Congruence Classes of Invertible Matrices of Order 3 over F 2

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

D Alembert s Solution to the Wave Equation

CRASH COURSE IN PRECALCULUS

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Homomorphism in Intuitionistic Fuzzy Automata

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Srednicki Chapter 55

Problem Set 3: Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Tridiagonal matrices. Gérard MEURANT. October, 2008

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Reminders: linear functions

Approximation of distance between locations on earth given by latitude and longitude

C.S. 430 Assignment 6, Sample Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Second Order RLC Filters

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

A General Note on δ-quasi Monotone and Increasing Sequence

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

A Note on Intuitionistic Fuzzy. Equivalence Relation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SOME PROPERTIES OF FUZZY REAL NUMBERS

Homework 8 Model Solution Section

If we restrict the domain of y = sin x to [ π 2, π 2

SPECIAL FUNCTIONS and POLYNOMIALS

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A summation formula ramified with hypergeometric function and involving recurrence relation

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 7.6 Double and Half Angle Formulas

Lecture 26: Circular domains

Parametrized Surfaces

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

MathCity.org Merging man and maths

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

( y) Partial Differential Equations

Math 6 SL Probability Distributions Practice Test Mark Scheme

Fractional Colorings and Zykov Products of graphs

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Exercises to Statistics of Material Fatigue No. 5

Differential equations

Solution to Review Problems for Midterm III

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Commutative Monoids in Intuitionistic Fuzzy Sets

Iterated trilinear fourier integrals with arbitrary symbols

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

The Pohozaev identity for the fractional Laplacian

Lecture 21: Properties and robustness of LSE

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Generating Set of the Complete Semigroups of Binary Relations

The semiclassical Garding inequality

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Transcript:

Nonlinear Analysis: Modelling and Control, 1, Vol. 17, No., 17 138 17 The Lalace transform of Dirichlet L-functions Aidas Balčiūnas a, Antanas Laurinčikas b a Institute of Mathematics and Informatics, Vilnius University Akademijos str. 4, Vilnius LT-8663, Lithuania a.balciunui@gmail.com b Faculty of Mathematics and Informatics, Vilnius University Naugarduko str. 4, Vilnius LT-35, Lithuania antanas.laurincikas@mif.vu.lt Received: 17 August 11 / Revised: 17 Aril 1 / Published online: 1 May 1 Abstract. In the aer, a formula for the Lalace transform of the square of Dirichlet L-functions on the critical line is obtained. Keywords: Dirichlet L-function, functional equation, Lalace transform, Riemann zeta-function. 1 Introduction Let s = σ + it be a comlex variable. The Lalace transform Ls) of the function fx) is defined by Ls) = fx)e sx dx rovided the integral exists for σ > σ with some σ. The function Ls) can be alied for the investigation of the asymtotics for the mean value T M T f) def = fx) dx. Suose that fx) for all x [, ) and, for a given m >, as δ. Then [1, Cha. VII], Lδ) 1 δ logm 1 δ M T f) T log m T c Vilnius University, 1

18 A. Balčiūnas, A. Laurinčikas as T. The latter examle shows that Lalace transforms can be used in the moment roblem of zeta and L-functions. Let χ be a Dirichlet character mod q, and let Ls, χ) denote the corresonding L-function which is defined, for σ > 1, by Ls, χ) = χm) m s. Denote by χ the rincial character mod q. Then it is well known that the function Ls, χ ) is analytically continued to the whole comlex lane, excet for a simle ole at s = 1 with residue 1 1 ), where denotes a rime number. If χ χ, then Ls, χ) is analytically continued to an entire function. In the theory of Dirichlet L-functions, usually the moments T χ=χ mod q) Lσ + it, χ) k dt, k, σ 1, are considered, see, for examle, []. This corresonds to the Lalace transform χ=χ mod q) Lσ + it, χ) k e sx dx. The aim of this note is an exlicit formula for the individual Lalace transform Ls, χ) of L1/ + ix, χ), i.e., for the function Ls, χ) = ) 1 e L + ix, χ sx dx. In forthcoming aers, this formula will be alied for the investigation of the Mellin transform of L1/ + ix, χ), for the case of ζρ + ix) with 1/ < ρ < 1, see [3]. In a series of aers, A. Ivič, M. Jutila and Y. Motohashi develoed the method of Mellin transforms for the moment roblem in the theory of zeta-functions, see, for examle, [4]. These remarks show the motivation of the aer. For the statement of the formula, we need some notation. Let Gχ) denote the Gauss sum, i.e., Gχ) = q χl)e l/q. l=1 www.mii.lt/na

The Lalace transform of Dirichlet L-functions 19 Moreover, let where { if χ 1) = 1, a = 1 if χ 1) = 1, { ɛχ) if a =, Eχ) = ɛ 1 χ) if a = 1, ɛχ) = Gχ) q, ɛ 1 χ) = Gχ) q. As usual, denote by dm) the divisor function dm) = d m 1. Theorem 1. Suose that χ is a rimitive character mod q, q > 1. Then Ls, χ) = a e is/ { dm)χm) ex m } e is + λs, χ), qeχ) q where the function λs, χ) is analytic in the stri {s C: σ < π}, and, for σ θ, < θ < π, the estimate λs, χ) = O 1 + s ) 1) is valid. Let µm) be the Möbius function, and let γ denote the Euler constant. Theorem. Suose that χ is the rincial character mod q, q > 1. Then Ls, χ ) = ie is/ +πe is/ n q 1 1 ) ) π γ log π s i + m q µm)µn) m k=1 { dk) ex kn m e is log 1 + ) µm) log m m q } + λs, χ ), where the function λs, χ ) has the same roerties as λs, χ) in Theorem 1. The case q = 1 corresonds the Riemann zeta-function. Let L ζ s) be the Lalace transform of ζ1/ + ix). Corollary 1. We have L ζ s) = ie is/ γ log π +πe is/ ) ) π s i where function λs) has the same roerties as λs, χ). dm) ex { me is} + λs), Nonlinear Anal. Model. Control, 1, Vol. 17, No., 17 138

13 A. Balčiūnas, A. Laurinčikas Lemmas First we remind the functional equation for Ls, χ). We reserve the notation used in introduction. Let ) s+a)/ ) π s + a ls, χ) = Γ Ls, χ). q Lemma 1. Suose that χ is a rimitive character mod q, q > 1. Then ls, χ) = Eχ)l1 s, χ). Proof of the lemma is given, for examle, in [5]. Lemma. For σ > 1, Proof. For σ > 1, we have that L s, χ) = L s, χ) = χm) m s n=1 dm)χm) m s. χn) n s = am) m s, where am) = ) m χd)χ = χm)dm). d d m Denote by ϕq) the Euler totient function. Lemma 3. Let σ be arbitrary real number. Then, for σ σ, Ls, χ) = E ϕq) qs 1) + O σ q c t + ) c), where c = cσ ) >, and E = { 1 if χ = χ, if χ χ. The lemma is Theorem 7.3. from [6]. Lemma 4. The estimate ) 1 L + it, χ = O q c1 t + ) c 1 ) holds with some c 1 >. Proof. The lemma is a corollary of Lemma 3 and the integral Cauchy formula. www.mii.lt/na

The Lalace transform of Dirichlet L-functions 131 Lemma 5. Suose that a >. Then 1 a+i a i Γs)b s ds = e b. The lemma is the well-known Mellin formula, see, for examle, [7]. 3 Proof of Theorems Define the function λs, χ) by λs, χ) = ) 1 e L + ix, χ sx dx e is/ i 1 a 1/+i 1/ i First suose that a =. Then the formulae Lz, χ)l1 z, χ)e izπ/ s) cos πa πz ) dz. 1) give cos s = eis + e is and Ls, χ) = L s, χ) e is/ i 1/+i 1/ i = e is/ = + Lz, χ)l1 z, χ)e izπ/ s) dz cos πz L 1 + ix, χ)l 1 ex{ ix, χ) ex{ L 1 + ix, χ) ex{ xs} ex{ } + ex{ } dx + is xs} } + ex{ } dx L 1 + ix, χ) ex{ + xs} ex{ } + ex{ } dx. ) Since 1 ex{ ex{ } } + ex{ } = ex{ ex{ } } + ex{ }, Nonlinear Anal. Model. Control, 1, Vol. 17, No., 17 138

13 A. Balčiūnas, A. Laurinčikas we find from 1) and ) that λs, χ) = L 1 + ix, χ) e xs ex{ } ex{ } + ex{ } dx L 1 + ix, χ) e xs ex{ ex{ } + ex{ Now let a = 1. In this case, in view of the formula we find that e is/ 1/+i 1/ i = e is/ = Clearly, we have 1 + ex{ sin s = eis e is, i Lz, χ)l1 z, χ)e izπ/ s) dz sin πz L 1 + ix, χ)l 1 ex{ } ix, χ) ex{ L 1 + ix, χ) ex{ ex{ xs} } ex{ } dx L 1 + ix, χ) ex{ ex{ ex{ } } ex{ thus, from 1) and 4), it follows that λs, χ) = + } dx. 3) + is xs} } ex{ } dx + xs} } ex{ } dx. 4) } = ex{ ex{ } L 1 + ix, χ) e xs ex{ } ex{ } ex{ } dx } ex{ }, L 1 + ix, χ) e xs ex{ } ex{ dx. 5) } ex{ } By estimates for L1/ + ix, χ) of Lemma 3, we have that the integrals in 3) and 5) converge uniformly in comact subsets of the stri {s C: σ < π}, thus, the function λs, χ) is analytic in that stri. www.mii.lt/na

The Lalace transform of Dirichlet L-functions 133 It remains to estimate the function λs, χ). Suose that σ θ, where < θ < π. First let s is small. Then the integrals in 3) and 5) are bounded by a constant. If s is large, then integrating by arts with resect to e ±sx and using the estimate ) 1 ) L + ix, χ ) 1 1 = L + ix, χ L ) 1 1 = il )L + ix, χ ix, χ = O q x + )) c )) ix, χ ) 1 1 il )L + ix, χ ix, χ with some c >, which follows from Lemmas 3 and 4, we obtain that λs, χ) = O s 1). So, in all cases, we have that, for σ θ, < θ < π, Equality 1) shows that Ls, χ) = e is/ i 1 a λs, χ) = O 1 + s ) 1). 1/+i 1/ i Lz, χ)l1 z, χ)e izπ/ s) cos πa πz ) dz + λs, χ), 6) where the function λs, χ) is analytic in the stri {s C: σ < π}, and, for σ θ, < θ < π, the estimate λs, χ) = O 1 + s ) 1) is valid. It remains to calculate the integral in 6). Using Lemma 1, we find ) z+1/ π L1 z, χ) = E 1 Γ z χ) + a ) q Γ 1 + a z χ). 7) )Lz, Taking into account the formulas, see [8], and Γz)Γ1 z) = π, z / Z, sin πz Γz)Γ z + 1 ) = π z Γz), Nonlinear Anal. Model. Control, 1, Vol. 17, No., 17 138

134 A. Balčiūnas, A. Laurinčikas we obtain that and Γ z ) Γ 1 z ) = Γ z )Γ 1 + z ) Γ 1 z )Γ 1 + z ) = Γ z )Γ 1 + z π = π z Γz) cos πz π ) cos πz = 1 z π 1/ Γz) cos πz, Γ 1 + z ) Γ1 z ) = Γ 1 + z )Γ 1 z ) Γ1 z )Γ 1 z ) = π π 1+z Γ1 z) cos πz = π 1/ Γz) sin πz z cos πz = 1 z π 1/ Γz) sin πz. Since a = or a = 1, hence we have that Γ z + a ) πa Γ 1 + a z ) = 1 z π 1/ Γz) cos πz ), and, in view of 7), this gives L1 z, χ) = E 1 χ) 1 z π z q z 1/ Γz) cos Hence, we find that e is/ i 1 a 1/+i 1/ i e is/ = i 1 a qeχ) Next we rove Theorem 1. Lz, χ)l1 z, χ)e izπ/ s) cos πa πz ) dz 1/+i 1/ i Γz)L z, χ) πa πz ) Lz, χ). q e is ) z dz. 8) Proof. Let χ be a non-rincial character. Then the integrand in 8) is a regular function in the stri {z C: 1/ < Rz < }. Therefore, e is/ i 1 a qeχ) e is/ 1/+i 1/ i = i 1 a qeχ) Γz)L z, χ) +i i q e is Γz)L z, χ) ) z dz q e is ) z dz. 9) www.mii.lt/na

The Lalace transform of Dirichlet L-functions 135 Moreover, in view of Lemmas and 5, +i i Γz)L z, χ) q e is ) z dz = This, 8), 9) and 6) rove Theorem 1. Next we rove Theorem. dm)χm) = +i i ) z m Γz) e is dz q { dm)χm) ex m e }. is q Proof. Let χ be the rincial character mod q. Then we have that Ls, χ ) = ζs) 1 1 ) s, where ζs) is the Riemann zeta-function. Using the functional equation ) ) s 1 s π s/ Γ ζs) = π 1 s)/ Γ ζ1 s), we find that Therefore, L1 z, χ ) = ζ1 z) 1 1 ) 1 z = ζz) 1 z π z Γz) cos πz Lz, χ )L1 z, χ )e izπ/ s) = ζ z) 1 z π z Γz) cos πz and, similarly to the case of non-rincial character, we obtain Ls, χ ) = e is/ i 1/+i 1/ i Γz)ζ z) e is) z 1 1 ) 1 z. 1 1 ) z 1 1 ) 1 z, 1 1 ) z 1 1 ) 1 z dz + λs, χ ). 1) The roduct q z) = 1 1 ) 1 z Nonlinear Anal. Model. Control, 1, Vol. 17, No., 17 138

136 A. Balčiūnas, A. Laurinčikas has zeroes lying on the line σ = 1. Therefore, we write q z) as a sum. Using the Möbius function µm), we obtain that z) = µm)m z 1. q The function Γz)ζ z) e is) z 1 1 z ) m z 1 has the ole of order at z = 1. Moreover, since and Γ1) = 1, Γ 1) = γ, we find that Res z=1 Γz)ζ z) e is) z Therefore, ζz) = 1 z 1 + γ + γ 1 z 1) +..., = lim z 1 z 1) Γz)ζ z) e is) z) = e is Res z=1 Γz)ζ z) e is) z 1 1 z ) m z 1 ) ) π γ log π s i. = lim z 1) Γz)ζ z) e is) z 1 1 ) )m z 1 z 1 z = lim z 1 z 1) Γz)ζ z) e is) z) + lim z 1 z 1) Γz)ζ z) e is) z + lim z 1 z 1) Γz)ζ z) e is) z log m ) = eis π γ log π s i + e is ) 1 1 1 ) = eis 1 1 ) γ log π ) 1 1 z ) m z 1 1 1 z ) 1 1 ) 1 log z 1 1 z 1 1 ) z m z 1 log 1 + e is ) 1 log m ) π s i + log 1 + log m m z 1 1 1 ) ). www.mii.lt/na

The Lalace transform of Dirichlet L-functions 137 Thus, in view of 1), Ls, χ ) = ie is/ ie is/ 1 1 ) ) π γ log π s i + +i i Γz)ζ z) e is) z log 1 + ) µm) log m m q 1 1 ) z 1 1 ) 1 z dz +λs, χ ). 11) We have that 1 1 ) z 1 1 ) 1 z = n q m q µm) m µn) ) z m. n Moreover, for σ > 1, ζ s) = k=1 Therefore, the alication of Lemma 5, leads to Γz)ζ z) e is) z = µm)µn) m n q m q k=1 +i i This together with 11) roves the theorem. References dk) k s. 1 1 ) z 1 1 ) 1 z dz { dk) ex kn m e is 1. E.C. Titchmarsh, The Theory of Riemann Zeta-Function, nd edition revised by D.R. Heath- Brown, Clarendon Press, Oxford, 1986.. H.L. Montgomery, Toics in Multilicative Number Theory, Lect. Notes Math., Vol. 7, Sringer, Berlin, Heidelberg, New York, 1971. 3. A. Laurinčikas, The Mellin transform of the square of the Riemann zeta-function in the critical stri, Integral Transforms Sec. Funct., 7),. 467 476, 11. 4. A. Ivič, M. Jutila, Y. Motohashi, The Mellin transform of owers of the zeta-function, Acta Arith., 95,. 35 34,. 5. K. Chandrasekharan, Arithmetical Functions, Sringer-Verlag, New York, Berlin, 197. }. Nonlinear Anal. Model. Control, 1, Vol. 17, No., 17 138

138 A. Balčiūnas, A. Laurinčikas 6. K. Prachar, Primzahlverteilung, Sringer-Verlag, Berlin, Götingen, Heidelberg, 1957. 7. E.C. Titchmarsh, Theory of Functions, Oxford University Press, Oxford, 1939. 8. A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht, Boston, London,. www.mii.lt/na