CURVILINEAR COORDINATES

Σχετικά έγγραφα
28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Spherical Coordinates

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Homework 8 Model Solution Section

Parametrized Surfaces

Answer sheet: Third Midterm for Math 2339

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Areas and Lengths in Polar Coordinates

derivation of the Laplacian from rectangular to spherical coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Areas and Lengths in Polar Coordinates

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Section 9.2 Polar Equations and Graphs

2 Composition. Invertible Mappings

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Reminders: linear functions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Numerical Analysis FMN011

Geodesic Equations for the Wormhole Metric

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Section 8.3 Trigonometric Equations

CYLINDRICAL & SPHERICAL COORDINATES

Variational Wavefunction for the Helium Atom

Solutions to Exercise Sheet 5

EE512: Error Control Coding

Section 8.2 Graphs of Polar Equations

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Strain gauge and rosettes

4.6 Autoregressive Moving Average Model ARMA(1,1)

Approximation of distance between locations on earth given by latitude and longitude

Second Order Partial Differential Equations

Cosmological Space-Times

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ECE 468: Digital Image Processing. Lecture 8

Lecture 26: Circular domains

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Matrices and Determinants

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CRASH COURSE IN PRECALCULUS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

D Alembert s Solution to the Wave Equation

[1] P Q. Fig. 3.1

11.4 Graphing in Polar Coordinates Polar Symmetries

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Example 1: THE ELECTRIC DIPOLE

Lecture 15 - Root System Axiomatics

Other Test Constructions: Likelihood Ratio & Bayes Tests

Rectangular Polar Parametric

PARTIAL NOTES for 6.1 Trigonometric Identities

Example Sheet 3 Solutions

Orbital angular momentum and the spherical harmonics

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

the total number of electrons passing through the lamp.

SPECIAL FUNCTIONS and POLYNOMIALS

Srednicki Chapter 55

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Finite Field Problems: Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Trigonometric Formula Sheet

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Homework 3 Solutions

Physics 554: HW#1 Solutions

Notes 6 Coordinate Systems

Chapter 3: Vector Analysis

Derivations of Useful Trigonometric Identities

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Démographie spatiale/spatial Demography

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Solution Series 9. i=1 x i and i=1 x i.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lifting Entry (continued)

w o = R 1 p. (1) R = p =. = 1

Section 7.6 Double and Half Angle Formulas

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Math221: HW# 1 solutions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Laplace s Equation in Spherical Polar Coördinates

1 String with massive end-points

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

(As on April 16, 2002 no changes since Dec 24.)


( ) 2 and compare to M.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Transcript:

CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular directed lines, measured in the same unit of length. Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, usually at ordered pair (0, 0). The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin. For Cartesian co-ordinate system, the coordinates are represented by x,y,z coordinates and the square of the distance between two points is given by ds 2 = dx 2 + dy 2 + dz 2 and other vector operators are given by Gradient ψ = ˆx ψ x + ŷ ψ y + ẑ ψ z Divergence. V = V x x + V y y + V z z 1

Curl Laplacian (. ψ). ψ = x V ˆx ŷ ẑ = x y z V x V y V z ( ) ψ + x y ( ) ψ + y z ( ) ψ z Introduction to Curvilinear Co-ordinate System The Curvilinear co-ordinates are the common name of different sets of coordinates other than Cartesian coordinates. In many problems of physics and applied mathematics it is usually necessary to write vector equations in terms of suitable coordinates instead of Cartesian coordinates. First, we develop the vector analysis in rectangular Cartesian coordinate to see the fundamental role played by the vector-valued differential operator,. All objects of interests are constructed with the del operator - the gradient of a scalar field, the divergence of a vector field and the curl of a vector field. Later we generalize the results to the more general setting, orthogonal curvilinear coordinate system and it will be a matter of taking into account the scale factors h 1, h 2 and h 3. Curvilinear coordinate systems are general ways of locating points in Euclidean space using coordinate functions that are invertible functions of the usual x i Cartesian coordinates. Their utility arises in problems with obvious geometric symmetries such as cylindrical or spherical symmetry. Circular Cylindrical Co-ordinate System A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis, the direction from the axis relative to a chosen reference direction, and the distance from a chosen reference plane perpendicular to the axis. The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point. The origin of the system is the point where all three coordinates can be given as zero. This is the intersection between the reference plane and the axis. Cylindrical coordinates are useful 2

in connection with objects and phenomena that have some rotational symmetry about the longitudinal axis, such as water flow in a straight pipe with round cross-section, heat distribution in a metal cylinder, electromagnetic fields produced by an electric current in a long, straight wire, accretion discs in astronomy, and so on. The three coordinates (ρ, φ, z) of a point P are defined as: The radial distance ρ is the Euclidean distance from the z axis to the point P. The azimuth φ is the angle between the reference direction on the chosen plane and the line from the origin to the projection of P on the plane. The height z is the signed distance from the chosen plane to the point P. In Circular Cylindrical Co-ordinate System, x = ρ cos φ y = ρ sin φ 3

z = z Unit vectors in Cylindrical co-ordinate system ρ = xˆx + yŷ ρˆρ = cos φ ˆx + ρ sin φ ŷ ˆρ = cos φ ˆx + sin φ ŷ ˆφ = cos(90 + φ)ˆx + sin(90 + φ)ŷ = sin φˆx + cos φŷ ẑ = ẑ Cartesian unit vectors in terms of cylindrical unit vectors we ve ˆρ = ˆx cos φ + ŷ sin φ (1) ˆφ = ˆx sin φ + ŷ cos φ (2) ẑ = ẑ (1) sin φ + (2) cos φ sin φˆρ + cos φ ˆφ = ˆx sin φ cos φ + ŷ sin 2 φ sin φ cos φˆx + cos 2 φŷ ŷ = sin φˆρ + cos φ ˆφ (1) cos φ (2) sin φ cos φˆρ sin φ ˆφ = ˆx cos 2 φ + ŷ sin φ cos φ + ˆx sin 2 φ ŷ sin φ cos φ ˆx = cos φˆρ sin φ ˆφ 4

ẑ = ẑ The unit vectors ê 1, ê 2, ê 3 are relabeled by ˆρ, ˆφ, ẑ. A differential displacement vector d S = ˆρ ds ρ + ˆφ ds φ + ẑ ds z Gradient Divergence Curl Laplacian. V = 1 ρ = 1 ρ 2 ψ = 1 ρ = ˆρ dρ + ˆφ ρdφ + ẑ dz ψ = ˆρ ψ ρ + ˆφ 1 ρ ψ φ + ẑ ψ z [ ρ (ρv ρ) + φ (ρv φ) + ] z (ρv z) ρ (ρv ρ) + 1 ρ φ (ρv φ) + 1 ρ V = 1 ˆρ ρ ˆφ ẑ ρ ρ φ z V ρ ρ V φ V z z (ρv z) ( ρ ψ ) + 1 ( ) 2 ψ + 2 ψ ρ ρ ρ 2 φ 2 z 2 5

Spherical Polar Co-ordinate System In Spherical Polar Co-ordinate System, x = r sin θ cos φ y = r sin θ sin φ z = r cos θ h 1 = 1 h 2 = r h 3 = r sin θ Unit vectors in spherical polar coordinates x = r sin θ cos φ y = r sin θ sin φ z = r cos θ 6

r = xˆx + yŷ + zẑ rˆr = r sin θ cos φˆx + r sin θ sin φŷ + r cos θẑ ˆθ = sin(90 + θ) cos φˆx + sin(90 + θ) sin φŷ + cos(90 + θ)ẑ ˆθ = cos θ cos φˆx + cos θ sin φŷ sin θẑ ˆx ŷ ẑ ˆφ = sin θ cos φ sin θ sin φ cos θ cos θ cos φ cos θ sin φ sin θ = ˆx ( sin 2 θ sin φ cos 2 θ sin φ ) +ŷ ( cos 2 θ cos φ + sin 2 θ cos φ ) +ẑ (sin θ cos θ sin φ cos φ sin θ cos θ ˆφ = sin φˆx + cos φŷ Cartesian unit vectors in terms of spherical polar unit vectors. We ve ˆr = ˆx sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ (1) ˆθ = ˆx cos θ cos φ + ŷ cos θ sin φ ẑ sin θ (2) ˆφ = ˆx sin φ + ŷ cos φ (3) (1) sin θ cos φ + (2) cos θ cos φ + (3) sin φ sin θ cos φˆr+cos θ cos φˆθ sin φ ˆφ = sin 2 θ cos 2 φˆx+sin 2 θ sin φ cos φŷ+sin θ cos θ cos φẑ+ cos 2 θ cos 2 φˆx + cos 2 θ cos φ sin φŷ sin θ cos θ cos φẑ + ˆx sin 2 φ ŷ sin φ cos φ ˆx = sin θ cos φˆr + cos θ cos φˆθ sin φ ˆφ (1) sin θ sin φ + (2) cos θ sin φ + (3) cos φ sin θ sin φˆr+cos θ sin φˆθ+cos φ ˆφ = sin 2 θ sin φ cos φˆx+sin 2 θ sin φ ŷ+sin θ cos θ sin φẑ+ 7

cos 2 θ sin φ cos φˆx + cos 2 θ sin 2 φŷ sin θ cos θ sin φẑ ˆx sin φ cos φ + cos φ ŷ Then ŷ = ˆr sin θ sin φ + ˆθ cos θ sin φ + ˆφ cos φ (1) cos θ (2) sin θ ˆr cos θ ˆθ sin θ = ˆx sin θ cos θ cos φ + ŷ sin θ cos θ sin φ + ẑ cos 2 θ ˆx sin θ cos θ cos φ ŷ sin θ cos θ sin φ + ẑ sin 62θ Then ẑ = ˆr cos θ ˆθ sin θ Spherical polar coordinate scale factor h r, h θ and h φ Thus, Then, dx = x r x = r sin θ cos φ y = r sin θ sin φ z = r cos θ x x dr + dθ + θ φ dφ dy = y y y dr + dθ + r θ φ dφ dz = z z z dr + dθ + r θ φ dφ dx = sin θ cos φdr + r cos φ cos θdθ r sin θ sin φdφ dy = sin θ sin φdr + r cos θ sin φdθ + r sin θ cos φdφ dz = cos θdr r sin θdθ ds 2 = dx 2 + dy 2 + dz 2 = (sin θ cos φdr+r cos φ cos θdθ r sin θ sin φdφ)(sin θ cos φdr+r cos φ cos θdθ r sin θ sin φdφ)+ 8

(sin θ sin φdr+r cos θ sin φdθ+r sin θ cos φdφ)(sin θ sin φdr+r cos θ sin φdθ+r sin θ cos φdφ)+ (cos θdr r sin θdθ)(cos θdr r sin θdθ) = sin 2 θ cos 2 φdr 2 + r sin θ cos φ cos 2 θdr dθ r sin 2 θ sin φ cos φdr dφ+ r sin θ cos θ cos 2 φdr dθ + r 2 cos 2 θ cos 2 φ dθ 2 r 2 sin θ cos θ sin φ cos φdθ dφ r sin 2 θ sin φ cos φdφdr r 2 sin θ cos θ sin φ cos φdθ dφ + r 2 sin 2 θ sin 2 φdφ 2 + sin 2 θ sin 2 φdr 2 + r sin θ cos θ sin 2 φdr dθ + r sin 2 θ sin φ cos φdr dφ+ r sin 2 θ sin φ cos φdφ dr + r 2 sin θ cos θ sin φ cos φdφ dθ + r 2 sin 2 θ cos 2 θdφ 2 + cos 2 θdr 2 r sin θ cos θdr dθ r sin θ cos θdr dθ + r 2 sin 2 θdθ 2 = dr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 Thus we ve ds 2 = (h 1 dq 1 ) 2 + (h 2 dq 2 ) 2 + (h 3 dq 3 ) 2 = dr 2 + (rdθ) 2 + (r sin θdφ) 2 Then h r = 1 h θ = r h φ = r sin θ A line element Gradient Divergence. V = dr = ˆrdr + ˆθrdθ + ˆφr sin θdφ ψ = ˆr ψ r + ˆθ 1 ψ r θ + ˆφ 1 ψ r sin θ φ [ 1 ( Vr r 2 sin θ ) + r 2 sin θ r θ (V θ r sin θ) + ] φ (V φ r) curl V = 1 r 2 sin θ ˆr rˆθ r sin θ ˆφ r θ φ V r rv θ r sin θv φ 9

Laplacian [ 1. ψ = r 2 sin θ r [ 1 = r 2 sin θ r ( r 2 sin θ ψ r ( r 2 sin θ ψ r ) + ( 1 θ r ) + θ ) ψ θ r sin θ + φ ) ( sin θ ψ θ + ( 1 φ sin θ ( )] 1 ψ r sin θ φ r )] ψ φ General form of operators Gradient We ve Divergence. V = 1 h 1 h 2 h 3 d S = ê 1 ds 1 + ê 2 ds 2 + ê 3 ds 3 ds i = h i dq i ψ ψ ψ ψ = ê 1 + ê 2 + ê 3 S 1 S 2 S 3 1 ψ 1 ψ 1 ψ = ê 1 + ê 2 + ê 3 h 1 q 1 h 2 q 2 h 3 q 3 [ (V 1 h 2 h 3 ) + (V 2 h 1 h 3 ) + ] (V 3 h 1 h 2 ) q 1 q 2 q 3 Curl Laplacian(. ψ) [ 1. ψ = h 1 h 2 h 3 q 1 V 1 ê 1 h 1 ê 2 h 2 ê 3 h 3 = h 1 h 2 h 3 q 1 q 2 q 3 h 1 V 1 h 2 V 2 h 3 V 3 ( ) 1 ψ h 2 h 3 + ( ) 1 ψ h 1 h 3 + ( )] 1 ψ h 1 h 2 h 1 q 1 q 2 h 2 q 2 q 3 h 3 q 3 The area element dσ i j = ds i ds j 10

The volume element = h i h j dq i dq j dτ = ds 1 ds 2 ds 3 = h 1 h 2 h 3 dq 1 dq 2 dq 3 11