Free boundary problem for the Navier-Stokes equations

Σχετικά έγγραφα
L p approach to free boundary problems of the Navier-Stokes equation

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Example Sheet 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

D Alembert s Solution to the Wave Equation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2 Composition. Invertible Mappings

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Uniform Convergence of Fourier Series Michael Taylor

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Every set of first-order formulas is equivalent to an independent set

Reminders: linear functions

Iterated trilinear fourier integrals with arbitrary symbols

Congruence Classes of Invertible Matrices of Order 3 over F 2

Parametrized Surfaces

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Numerical Analysis FMN011

Matrices and Determinants

Section 8.3 Trigonometric Equations

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Homework 8 Model Solution Section

Second Order Partial Differential Equations

Statistical Inference I Locally most powerful tests

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Space-Time Symmetries

5. Choice under Uncertainty

C.S. 430 Assignment 6, Sample Solutions

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

On a free boundary problem of magnetohydrodynamics in multi-connected domains

Lecture 26: Circular domains

Areas and Lengths in Polar Coordinates

On the maximal L p -L q regularity of the Stokes problem with first order boundary condition; model problems

Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EE512: Error Control Coding

Local Approximation with Kernels

Other Test Constructions: Likelihood Ratio & Bayes Tests

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Tridiagonal matrices. Gérard MEURANT. October, 2008

derivation of the Laplacian from rectangular to spherical coordinates

Solutions to Exercise Sheet 5

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

On the Galois Group of Linear Difference-Differential Equations

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Spherical Coordinates

Homework 3 Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Differential equations

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

The Pohozaev identity for the fractional Laplacian

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Srednicki Chapter 55

w o = R 1 p. (1) R = p =. = 1

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

6.3 Forecasting ARMA processes

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Math221: HW# 1 solutions

Lecture 13 - Root Space Decomposition II

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( ) 2 and compare to M.

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

ST5224: Advanced Statistical Theory II

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Lecture 21: Properties and robustness of LSE

1 String with massive end-points

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Solution Series 9. i=1 x i and i=1 x i.

Approximation of distance between locations on earth given by latitude and longitude

Problem Set 3: Solutions

The semiclassical Garding inequality

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

New bounds for spherical two-distance sets and equiangular lines

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Math 5440 Problem Set 4 Solutions

Second Order RLC Filters

High order interpolation function for surface contact problem

4.6 Autoregressive Moving Average Model ARMA(1,1)

Concrete Mathematics Exercises from 30 September 2016

The Simply Typed Lambda Calculus

Finite Field Problems: Solutions

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Transcript:

Free boundary problem for the Navier-Stokes equations Yoshihiro Shibata Department of Mathematics & Research Institute of Sciences and Engineerings, Waseda University Fluids under Pressure Summer School 216, Aug 29 Sept 2 Nečas Center for Mathematical Modelling, Prague, Czech Republic Organizers: S Nečasová, T Bodnár, and G P Galdi Partially supported by Top Global University Project and JSPS Grant-in-aid for Scientific Research (S) # 242244 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 1 / 6

Some physical backgound the cavitation A cloud of bubles created by a screw propeller droplet fall, motion of the surface of the sea YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 2 / 6

One phase problem for the incompressible viscous fluid flow Let Ω be a domain in R N, which is occupied by some viscous fluid Let Γ be the boundary of Ω Let Ω t and Γ t be time evolutions of Ω and Γ for t > Let n t be the unit outer normal to Γ t Problem is to find a domain Ω t, velocity v = (v 1,, v N ) and pressure p satisfying (1) div v = in <t<t Ω t (, T ), t v + (v )v Div (µd(v) pi) = in <t<t Ω t (, T ), (µd(v) pi)n t = σh(γ t )n t, V Γt = v n t on <t<t Γ t (, T ), v t= = v, Ω t t= = Ω = Ω µ : positive constant, viscosity coefficient, σ: positive constant, coefficient of surface tension H(Γ t ): doubled mean curvature of Γ t, V Γt : evolution speed of Γ t in the n t direction D(v) = v + v = doubled deformation tensor whose (i, j) component is i v j + j v i, I is the N N identity matrix YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 3 / 6

Modelling φ t : Ω Ω t : ξ x = φ t (ξ) is the diffeomorphism Navier-Stokes equations in the isothemal case ρ t + div (ρu) = ρ(u t + u u) = Div T (eq for the mass conservation), (eq for the conservation of momentum) ρ:mass density, u = (u 1,, u N ): velocity field, T = (T ij ): stress tensor, Div T i = Reynolds tranport theorem : v(x, t) = ( t φ t )(φ 1 t (x)), J: Jacobina of the trasformation x = φ t (ξ), = t J = (div v)j Conservation of Mass d ρ dx = d ρ(φ t, t)j dξ = ((ρ t + div (ρv))j dξ = div (ρ(v u)) dx = ρ(v u) n t dσ dt Ω t dt Ω Ω Ω t Γ t (v u) n t = on Γ t = d ρ dx = Γ t : boundary of Ω t, n t : unit outer normal to Γ t dt Ω t V Γt = u n t on Γ t (kinematic condition) V Γt = v n t : evolution speed of the free surface If Γ t is given by F (x, t) = locally, then F t + u F = In fact, = d dt F (ϕ t, t) = F t + F v, and F v = F n t v = F n t u = F u N j=1 T ij x j YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 4 / 6

Modelling Conservation of Momentum: d ρu dx = d ρ(φ t, t)u(φ t, t)j dξ = (ρ t + ρ v)u + ρ(u t + v u) + ρudiv v)j dξ dt Ω t dt Ω Ω using the momentum eq = (Div [ρ(v u) u] + Div T) dx = {(ρ(v u) n t )u + Tn t } dx = Tn t dx = Ω t Γ t Γ t Tn t = div Γt T Γt = Tn t dx = = the conservation of momenutum d ρu dx = Γ t dt Ω t Here, we assume that div Γt T Γt = σh Γt n t (the surface tension only acts on Γ t H Γt n t = Γt x = div Γt n t Γt : the Laplace-Beltrami op on Γ t, x: position vector of Γ t YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 5 / 6

Modelling Incompressibility : Assume that ρ is positive constant Eq of mass conservation: ρ t + div (ρu) = = div u = Constitutive Relation : Classical Newton Law T = µd(u) pi Assume that ( t φ)(φ 1 (x)) = u(x, t), and then x = φ t (ξ) is a solution of the Cauchy problem dx dt = u(x, t) (t > ), x t= = ξ v(ξ, t) = u(φ t (ξ), t) : the Lagrange representation of the velocity field Lagrange map: x = ξ + Γ t = {x = X v (ξ, t), ξ Γ}, t v(ξ, s) ds = X v (ξ, t)(= φ t (ξ)) Ω t = {x = X v (ξ, t), ξ Ω} This expresses the fact that the free surface Γ t consists for all t > of the same fluid particles, which do not leave it and are not incident on it from Ω t Point in solving the free boundary problem : Transform time dependent domain Ω t to some fixed domain 1 Lagrange transform: Ω t Ω 2 Hanzawa transform: Ω t = {x = f(y, t) y D} with some unknow function f 3 any other transformation else??? YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 6 / 6

Equation in the Lagrange coordinate t Lagrange transform: x = ξ + u(ξ, s) ds Let A be the inverse matrix of the Jacobi matrix x t j u j = δ jk + ds ξ k ξ k t x = A ξ = ξ + V ( u(ξ, s) ds) ξ Passing to the Lagrange coordinates and setting p(x u (ξ, t), t) = q(ξ, t), t u Div (µd(u) qi) = F(u), div u = G 1 (u) = div G 2 (u) in Ω (, T ), (2) (µd(u) qi + H(u))n t σh(γ t )n t = on Γ (, T ), u t= = v(ξ) in Ω n t = T A 1 n T A 1 n 1, n : the unit outer normal to Γ t t t t F(u) = V ( u ds) t u + V 2 ( u ds) 2 u + V 3 ( u ds)( 2 u ds, u), t t t G 1 (u) = V 4 ( u ds) u, G 2 (u) = V 5 ( u ds)u, H(u) = V 6 ( u ds) u, t with some matrices V j = V j (w) of polynomials with respect to w = u(ξ, s) ds such that V j () = for j =, 2, 4, 5, and 6 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 7 / 6

Boundary condition Let Π t d = d < d, n t > n t, Π d = d < d, n > n And then, d = is equivalent to Π Π t d = and n d = Boundary condition: (S(u, q) + H(u))n t σh(γ t )n t = with S(u, q) = µd(u) qi equivalent to Π Π t (µd(u) + H(u))n t = and t n (S(u, q) + H(u))n t σn Γt (ξ + u ds) = t we have used the fact that H(Γ t )n t = Γt X u (ξ, t) = Γt (ξ + u ds) The first condition is equivalent to Π µd(u)n = Π (Π Π t )µd(u)n t + Π µd(u)(n n t ) Π Π t H(u)n t To find the equivalent condtion to the second equations, we observe that t t σn Γt (ξ + u ds) = σn {( Γt Γ )(ξ + u ds)} σn Γ ξ H(Γ) t σn Γ u ds YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 8 / 6

t t ) = σn {( Γt Γ )(ξ + u ds)} σh(γ) σ Γ (n u ds t t } + σ {2( Γ n) Γ u ds + ( Γ n) u ds t ( t ) = σn {( Γt Γ )(ξ + u ds)} σh(γ) + (m σ Γ ) n u ds t t t } mn u ds + σ {2( Γ n) Γ u ds + ( Γ n) u ds [ t = (m σ Γ ) n u ds σ(m σ Γ ) 1( t t )] n {( Γt Γ )(ξ + u ds)} ( Γ n) u ds K(u) t t σh(γ) mn u ds + 2σ( Γ n) Γ u ds Here, we choose m so large positive numeber in such a way that (m σ Γ ) 1 exists t t Let K(u) = n ( Γ Γt ) u ds + n ( Γ Γt )ξ ( Γ n) u ds, t η = n u ds (m Γ ) 1 K(u) Thus, the second equation may be written in the form : t η n u = (m σ Γ ) 1 t K(u), < µd(u)n t, n > q < n t, n > + < H(u))n t, n > +(m σ )η t t σh(γ) mn u ds + 2σ( Γ n) Γ u ds = YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 9 / 6

The second equation is changed as follows: =< µd(u)n, n > + < µd(u)(n t n), n > q < n t, n > + < H(u))n t, n > +(m σ )η t t σh(γ) mn u ds + 2σ( Γ n) Γ u ds, so that =< µd(u)n, n > q + (m σ Γ )η + (< n t, n > 1 1)(< µd(u)n, n > +(m σ Γ )η) { t t } < n t, n > 1 σh(γ) < n t, n > 1 mn u ds 2σ( Γ n) Γ u ds, Thus, our nonlinear equations in the Lagrange coordinate is: (3) t u Div S(u, q) = F(u), div u = G 1 (u) = div G 2 (u) in Ω (, T ), t η n u = (m Γ ) 1 t K(u) on Γ (, T ), S(u, q)n + (σ(m Γ )η)n = σ < n t, n > 1 H(Γ)n + I(u, η) on Γ (, T ) u t= = v in Ω, η t= = on Γ, with (4) I(u, η) = Π ((Π Π t )µd(u)n t + µd(u)(n n t ) Π t H(u)n t ) + [(1 < n, n t > 1 )(< µd(u)n, n > +(m σ Γ )η) t t + < n, n t > 1 (mn u ds 2σ( Γ n) Γ u ds)]n, t t K(u) = n ( Γ Γt ) u ds + n ( Γ Γt )ξ ( Γ n) u ds YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 1 / 6

Example of domains Main condition for the domain Ω For any f L q (Ω), there exists a unique u Ĥ1 q,(ω) of the weak Dirichlet problem: ( u, φ) Ω = (f, φ) Ω for any φ Ĥ1 q, (Ω) with some q and q (1 < q, q < ) Ĥ 1 q,(ω) = {u L q,loc (Ω) u L q (Ω) N, u Γ = } Example of domains: (1) Ω is a bounded domain : drop problem (2) Ω is a perturbed half space: ocean problem without bottom Let φ(x ) be a function in W 3 1/r R (R N 1 ) with N < r < Let H φ = {x = (x 1,, x N ) R N x N > φ(x ) (x R N 1 )}, Γ φ = {x = (x 1,, x N ) R N x N = φ(x ) (x R N 1 )} Assume that there exists an R > such that Ω B R = H φ B R and Γ B R = Γ φ B R, where B R = {x R N x > R} and B R = {x R N x < R} for any R > In addition, we assume that Γ is a hypersurface of W 3 1/r R class (3) Ω is an exterior domain the model for cavitation problem Ω = B c 1 f(x) = log x (N = 2), f(x) = x (N 1) 1 (N 3) satisfy f = in B c 1 and f x =1 = But, C (Ω) is in general not dense in Ĥ1 q,(ω), so these function are not non-trivial solutions to the homoneneous weak Dirichlet problem weak and strong are different in the exterior domains! YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 11 / 6

Local well-posedness Theorem Let R >, N < q < and 2 < p < Then, there exists a time T depending on R such that for any initial data v with v R satisfying the compatibility B q,p 2(1 1/p) (Ω) condition: (5) div v = on Ω, D(v )n < D(v )n, n > n = on Γ, problem (3) admits unique solutions u, q and η with u L p ((, T ), H 2 q (Ω) N ) H 1 p((, T ), L q (Ω) N )), η L p ((, T ), H 3 1/q q satisfying the estimate: (Γ)) Hp((, 1 T ), Wq 2 1/q (Γ))) q L p ((, T ), H 1 q (Ω) + Ĥ1 q,(ω)), u Lp((,T ),H 2 q (Ω)) + t u Lp((,T ),Lq(Ω)) + t η Lp((,T ),W 3 1/q q with some constant C independent of R Remark (Γ)) + tη Lp((,T ),W 2 1/q (Γ)) + q Lp((,T ),Lq(Ω)) CR (1) q Hq 1 (Ω) + Ĥ1 q, (Ω) means that there exist q 1 Hq 1 (Ω) and q 2 Ĥ1 q, (Ω) such that q = q 1 + q 2 Especially, q Γ = q 1 Γ (2) Since the map: x = X u (ξ, t) is invertible, the problem with Euler coordinate is also uniquely solvable for certain time interval (, T ) q YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 12 / 6

Some references H Abels, The initial-value problem for the Navier-Stokes equations with a free surface in L q Sobolev spaces, Adv Differential Equations, 1 (25), 45 64 G Allain, Small-time existence for the Navier-Stokes equations with a free surface, Appl Math Optim, 16 (1987), 37 5 J T Beale, The initial value problem for the Navier-Stokes equations with a free boundary, Comm Pure Appl Math, 34 (1981), 359 392 J T Beale, Large time regularity of viscous surface waves, Arch Rat Mech Anal, 84 (1984), 37 352 J T Beale and T Nishida, Large time behavior of viscous surface waves, Lecture Notes in Numer Appl Anal, 128 (1985), 1 14 Y Enomoto and Y Shibata, On the R-sectoriality and its application to some mathematical study of the viscous compressible fluids, Funk Ekvaj, 56 (213), 441 55 Y Hataya and S Kawashima, Decaying solution of the Navier-Stokes flow of infinite volume without surface tension, Nonlinear Anal, 71 (29), 2535 2539 Y Hataya, A remark on Beal-Nishida s paper, Bull Inst Math Acad Sin (NS), 6 (211), 293 33 I Sh Mogilevskiĭ and V A Solonnikov, On the solvability of a free boundary problem for the Navier-Stokes equations in the Hölder spaces of functions, Nonlinear Analysis A Tribute in Honour of Giovanni Prodi, Quaderni, Pisa, (1991), 257 272 P B Mucha and W Zaj aczkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion, Applicationes Mathematicae, 27 (2), 319 333 T Nishida, Equations of fluid dynamics free surface problems, Comm Pure Appl Math, 39 (1986), S221 S238 M Padula and V A Solonnikov, On the local solvability of free boundary problem for the Navier-Stokes equations, J Math Sci, 17 (21), 522 553 M Padula and V A Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation, Quad Mat, 1 (22), 185 218 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 13 / 6

H Saito and Y Shibata, On the global well posedness of free boundary problem for the Navier-Stokes equations with surface tension, in preparation B Schweizer, Free boundary fluid systems in a semigroup approach and oscillatory behavior, SIAM J Math Anal, 28 (1997), 1135 1157 Y Shibata, On the maximal L p-l q regularity of the Stokes equations and the one phase free boundary problem for the Navier-Stokes equations, in Mathematical Analysis on the Navier-Stokes Equations and Related Topics, Past and Future - In memory of Prof T Miyakawa (ed T Adachi et al), Gakuto International Series, 35, Math Sci Appl, 211, 185 28 Y Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal L p-l q regularity class, J Differential Equations, 258 (215), 4127 4155 Y Shibata, On the R-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations, submitted to proceedings of the International Conference on Mathematical Fluid Dynamics, Present and Future V A Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface, Zap Nauchn Sem (LOMI), 152 (1986), 137 157 (in Russian); English transl J Soviet Math, 4 (1988), 672 686 V A Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid, Izv Akad Nauk SSSR Ser Mat, 51 (1987), 165 187 (in Russian); English transl Math USSR Izv, 31 (1988), 381 45 V A Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval, Algebra i Analiz, 3 (1991), 222 257 (in Russian); English transl St Petersburg Math J, 3 (1992), 189 22 V A Solonnikov, Lectures on evolution free boundary problems: Classical solutions, Mathematical aspects of evolving interfaces (Funchal, 2), Lecture Notes in Math, 1812, Springer, Berlin, 23, 123 175 D Sylvester, Large time existence of small viscous surface waves without surface tension, Commun Partial Differential Equations, 15 (199), 823 93 N Tanaka, Global existence of two phase non-homogeneous viscous incompressible weak fluid flow, Commun Partial Differential Equations, 18 (1993), 41 81 A Tani, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface, Arch Rat Mech Anal, 133 (1996), 299 331 A Tani and N Tanaka, Large time existence of surface waves in incompressible viscous fluids with or without surface tension, Arch Rat Mech Anal, 13 (1995), 33 314 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 14 / 6

The linearized problem (6) t u Div (µd(u) qi) = f, in Ω (, T ), div u = f d = div f d in Ω (, T ), t η n u = g in Γ (, T ), (µd(u) qi)n + (σ(m Γ )η)n = h in Γ (, T ), u t= = in Ω, η t= = on Γ, Maximal L p -L q regularity theorem Let T > and 1 < p, q < Assume that 2/p + 1/q < 1 Let f L p ((, T ), L q (Ω) N ), f d L p ((, T ), Hq 1 (Ω)) Hp((, 1 T ), Wq 1 (Ω)), f d Hp((, 1 T ), L q (Ω) N ), g L p ((, T ), Wq 2 1/q (Γ)), h L p ((, T ), Hq 1 (Ω) N ) Hp((, 1 T ), Wq 1 (Ω) N ), which satisfy the compatibility condition: div f d t= = in Ω and Π h t= = on Γ YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 15 / 6

Maximal Regularity Theorem Problem (6) admits unique solutions u, q and η with u Hp((, 1 T ), L q (Ω) N ) L p ((, T ), Hq 2 (Ω) N ), q L p ((, T ), Hq 1 (Ω) + Ĥ1 q,(ω)), η L p ((, T ), Hq 3 (Ω)) Hp((, 1 T ), Hq 2 (Ω)) possessing the estimate: (7) [[(u, q, η)]] t Ce γt I((, t), f, f d, g, h) with some positive constants γ and C Here, we have set [[(u, q, η)]] t = u Lp((,t),H 2 q (Ω)) + t u Lp((,t),L q(ω)) + q Lp((,t),L q(ω)) + η Lp((,t),W 3 q (Ω)) + t η Lp((,t),W 2 q (Ω)), I((, t), f, f d, g, h) = { f Lp((,t),L q(ω)) + (f d, h) Lp((,t),H 1 q (Ω)) + g Lp((,T ),Wq 2 1/q (Γ)) + tf d Lp((,t),Lq(Ω)) + t (f d, h) Lp((,t),W q 1 (Ω)) } YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 16 / 6

Abstract Setting Let me consider the equations u t Au = f in Ω (, T ), Bu Γ = g, u t= = u X, Y UMD Banach space (Hilbert transforms on X and Y are bounded), Y X, Y is dense in X, A : Y X: closed linear op Ay X C y Y Z = [X, Y ] 1/2 (complex interpolation),and then u H 1/2 p ((, T ), Z) provided that u L p ((, T ), Y ) H 1 p((, T ), X) = M p,q Assumption for B: Bu H 1/2 p ((, T ), X) L p ((, T ), Z) provided that u M p,q Example: A =, B = / ν (Neumann boundary condition); X = L q (Ω), Y = H 2 q (Ω), Z = H 1 q (Ω) Cauchy problen : u t Au = in Ω (, ), Bu Γ =, u t= = u Assumption Assume that A generates a C analytic semigroup {T (t)} t on X such that T (t)x X Ce γt x X, t T (t)x X Ct 1 e γt x X (x X), t T (t)x X Ce γt x Y (y D = {v Y Bv Γ = }) Then, T (t)u M p,q provided that u (X, Y ) 1 1/p,p and e γt T (t)u Lp((, ),Y ) + e γt t T (t)u Lp((, ),X) C u (X,Y )1 1/p,p YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 17 / 6

( ) Let l s p = {(a n ) (2 sn a n ) p < } (1 p < ), l s = {(a n ) sup 2 ln a n < } n= (e 2γt t u(t) X ) p dt = n= 2 n+1 (2 n/p e γ2n+1 sup t u(t) X ) p 2 n <t<2 n+1 n= 2 n (e 2γt t u(t) X ) p dt Thus, setting a n = e γ2n+1 sup t u(t) X, we have 2 n <t<2 n+1 (e 2γt t u(t) X ) p dt (2 n/p a n ) p = (a n ) 1/p l n= On the other hand, using the estimates: t u(t) X Ct 1 e γt u X and t u(t) X Ce γt u Y, we have 2 n a n u X, a n u Y, so that (a n ) l 1 u X, (a n ) l u Y Since we know that l 1/p p = (l 1, l ) 1 1/p,p, we have (a n ) 1/p l C u (X,Y )1 p,p, p so that (a n ) l 1 u X, (a n ) l u Y Since we know that l 1/p p = (l 1, l ) 1 1/p,p, we have (a n ) 1/p l C u (X,Y )1 p,p p p n Z YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 18 / 6

Operator Valued Fourier Multiplier Theorem R-boundedness A family T L(X, Y ) of operators is R-bounded if there exists a constant C > such that for all m N, (T k ) k=1,,m T, and (x k ) k=1,,m X we have m L r k T k x k C m L r k x k p ([,1];Y ) p ([,1];X) k=1 Here the Rademacher functions r k, k N, are given by r k : [, 1] { 1, 1}, t sign(sin(2 k πt)) The smallest such C is called R bound of T on L(X, Y ) which is written by R L(X,Y ) T in what follows Weis operator valued Fourier mutliplier theorem: Math Ann 319 (21), 735 758 Let X and Y be two UMD Banach spaces and 1 < p < Let M be a function in C 1 (R \ {}, L(X, Y )) such that k=1 R L(X,Y ) {(ρ d dρ )l M(ρ) ρ R \ {}} = κ l < (l =, 1) Let T M be the operator defined by T M ϕ = F 1 [MF[ϕ]] for any ϕ with F[ϕ] D(R, X) Then, T M is extended to a bounded linear operator from L p (R, X) into L p (R, Y ) Moreover, denoting this extension also by T M, we have T M L(Lp(R,X),L p(r,y )) C(κ + κ 1 ) for some positive constant C depending on p, X and Y YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 19 / 6

Next, we consider t u Au = f in Ω (, T ), Bu = g on Ω (, T ) Extending f and g suitably to R, we consider Apply the Laplace transform in time t = λ Σ ϵ,λ = {λ C arg λ π ϵ, λ λ } λv Av = ˆf in Ω, Bv Γ = ĝ Γ (λ = γ + iτ) u L p (R, Y ) H 1 p(r, X) = λv X, λ 1/2 v Z = [X, Y ] 1/2,, v Y X = {F = (F 1, F 2, F 3 ) F 1, F 2 X, F 3 Z}, F 1 ˆf, F 2 λ 1/2 ĝ, F 3 ĝ Assumption There exists a solution operator S(λ) Hol (Σ ϵ,λ L(X, Y )) such that for any λ Σ ϵ,λ and ( ˆf, ĝ) X Z, v = S(λ)( ˆf, λ 1/2 ĝ, ĝ) is a unique solution and R L(X,X) ({(τ τ ) l (λs(λ)) λ Σ ϵ,λ }) C (l =, 1) R L(X,Z) ({(τ τ ) l (λ 1/2 S(λ)) λ Σ ϵ,λ }) C (l =, 1), R L(X,Y ) ({(τ τ ) l S(λ) λ Σ ϵ,λ }) C (l =, 1) Then, u = L 1 [S(λ)( ˆf(λ), λ 1/2 ĝ(λ),ˆ(λ))] is a unique solution of the time dependent problem Apply the Weis theorem and note that L[f](λ) = e λt f(t) dt = F[e γt f], L 1 [g(λ)] = 1 e λt g(λ)] = e γt F 1 [g(γ + iτ)](t) R 2π R e γt t u Lp(R,X) + e γt Λ 1/2 γ u Lp(R,Z) + e γt u Lp(R,Y ) C{ e γt f Lp(R,X) + e γt Λ 1/2 γ g Lp(R,X) + e γt g Lp(R,Z)} γ λ e γt Λ 1/2 γ f = L 1 [λ 1/2 ˆf(λ)], H 1/2 p ((, T ), Z) = {v w : e γt Λ 1/2 γ w Lp(R,Z) < and w (,T ) = v} YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 2 / 6

Reduced Stokes equations (Grubb-Solonnikov method) Let Ĥ 1 q (Ω) = {v L q,loc (Ω) v L q (Ω) N, v Γ = } Assume that the Weak Dirichlet Problem ( u, φ) Ω = (f, φ) Ω has unique solution v H 1 q,(ω) for any f L q (Ω) N ( φ H 1 q, (Ω)) Example bounded domain, half-space, perturbed half-space, layer, perturbed layer, exterior domain Exterior domain: Ω = B c 1 = { x > 1} f(x) = log x (N = 2), f(x) = x (N 2) (N 3) are non-trivial sol of the strong Dirichlet prob: f = in Ω, f x =1 = But, they are not solutions of homogeneous weak Dirichlet problem ( ) C (Ω) is not dense in H 1 q (Ω) Stokes problem λu Div (µd(u) pi) = f, div u = g in Ω, (µd(u) p)n = h Here, to solve div u = g, it is necessary to assume that G : (g, φ) Ω = (G, φ) Ω ( φ H 1 q, (Ω)) div u = g means that (u, φ) Ω = (G, φ) Ω ( φ H 1 q, (Ω)) Reduced Stokes problem λu Div (µd(u) K(u)I) = f in Ω, (µd(u) K(u)I)n Γ = Here, for u H 2 q (Ω), let K(u) be a unique solution of the weak Dirichlet problem: ( K(u), φ) Ω = (Div (µd(u) div u, φ) Ω ( φ Hq 1,(Ω)), K(u) =< µd(u)n, n > div u = on Γ Equivalence Assume that (f, φ) Ω = ( φ Hq 1,(Ω)) and < h, n >= on Γ Then, Stokes and Reduced Stokes are equivalent YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 21 / 6

Stokes = Reduced Stokes Let g be a solution of the variational problem: λ(g, φ) Ω + ( g, φ) Ω = (f, φ) Ω ( φ Hq 1,(Ω)), g = on Γ Let u and p be solutions of λu Div (µd(u) pi) = f, div u = g in Ω, (µd(u) p)n = h on Γ And then, (f, φ) Ω = λ(u, φ) Ω (µdiv D(u) div u, φ) ΩK(u) ( div u, φ) Ω + ( p, φ) Ω Since (g, φ) Ω = (λ 1 (f + g), φ) Ω div u = g yields λ(u, φ) Ω = ((f + g), φ) Ω Thus, ( (p K(u)), φ) Ω = From the boundary condition ( φ H 1 q, (Ω)), = K(u) + g p = K(u) p (( )div u = g = on Γ, ) Thus, p = K(u), so that u satisfies, =< h, n >=< µd(u)n, n > p = K(u) + div u p λu Div (µd(u) K(u)) = f in Ω, (µd(u) K(u)I)n Γ = YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 22 / 6

Reduced Stokes = Stokes Given divergence deta g, let G be a function: (G, φ) Ω = (g, φ) Ω ( φ H 1 q, (Ω)) Let L be a solution of the weak Dirichlet problem: ( L, φ) Ω = (λg g, φ) Ω ( φ Hq 1,(Ω)), L = g on Γ Let u be a solution of the Reduced Stokes eq λu Div (µd(u) K(u)) = f + L in Ω, (µd(u) K(u)I)n = h + gn on Γ ( L, φ) Ω = ( L + f, φ) Ω = λ(u, φ) Ω (µdiv D(u) div u, φ) Ω ( div u, φ) Ω + ( K(u), φ) Ω Thus, λ((u G), φ) Ω ( (div u g), φ) Ω = ( φ Ĥ1 q, (Ω)) Taking φ H 1 q, (Ω)), we have λ((div u g), φ) Ω + ( (div u g), φ) Ω = Moreover, div u g =< µd(u)n, n > K(u) g = g g = on Γ Thus, the uniqueness implies that div u = g in Ω Thus, by the equation, λ((u G), φ) Ω = ( φ Ĥ1 q, (Ω)) = ((u G), φ) Ω = ( φ Ĥ1 q,(ω)) = div u = g in Ω Let p = K(u) L, and then noting that K(u) g = K(u) + L on Γ, we have λu Div (µd(u) pi) = f, div u = g in Ω, (µd(u) p)n = h YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 23 / 6

Local estimate of K(u) Let D be any compact subset of Ω, and then we have K(u) Lq(D) C D { 2 u 1/q L q(ω) u 1 1/q L q(ω) + u L q(ω)} In fact, let f be arbitrary element of C (D), Let ψ Ĥ2 q,(ω) be a solution of the strong Dirichlet problem: ψ = f in Ω, possessing the estimate: ψ H 1 q (Ω) C φ L q (Ω) By Poincarés inequality, (f, φ) Ω f Lq (D) φ Lq(D) C D f Lq (D) φ Lq(Ω) Thus, by the Hahn-Banach, F L q : (f, φ) Ω = (F, φ) Ω ( φ Ĥ1 q,(ω)) Ĥ2 q (Ω) = {ψ Ĥ1 q (Ω) ψ H1 q (Ω)N } Thus, ψ exists Then, (K(u), f) Ω = (K(u), ψ) Ω = (K(u), n ψ) Γ ( K(u), ψ) Ω = (< µd(u)n, n > div u, n ψ) Γ (µdiv D(u) div u, ψ) Ω = (< µd(u)n, n > div u, n ψ) Γ ((µd(u) div ui)n, ψ) Γ + (µd(u) div ui, 2 ψ) Ω Since u Lq(Γ) C 2 u 1/q L q(ω) u L q(ω), (K(u), f) Ω C D { 2 u 1/q L q(ω) u 1 1/q L q(ω) + u L q(ω)} ψ H 1 q (Ω) C D { 2 u 1/q L q(ω) u 1 1/q L q(ω) + u L q(ω)} f Lq (Ω) This implies the required inequality YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 24 / 6

Existence of R bounded solution operator in R N Consider the Stokes eq in R N R t u Div (µd(u) pi) = f, div u = g = div g in R N R Consider the resolvent problem in R N λv Div (µd(u) pi) = ˆf = L[f], div u = ĝ = div ĝ in R N ˆf = λv µ u µ div u + p = λv µ v µ g + p div ˆf = λdiv v µ div v µ ĝ + p = λ ˆ div g 2µ ĝ + p Thus, p = 1 div ˆf λ 1 div ĝ + 2µĝ Thus, v = (λ ) 1 (ˆf 1 div ˆf) + λ(λ ) 1 1 div ĝ 2µ(λ ) 1 ĝ Let F 1 L q (R N ) N, F 2 L q (R N ) N and F 3 H 1 q (R N ) be variables corresponding to ˆf, λĝ and ĝ Let X q (R N ) = {(F 1, F 2, F 3 ) L q (R N ) N L q (R N ) N H 1 q (R N )} Let S(λ)(F 1, F 2, F 3 ) = F 1[ F[F 1 ](ξ) ξ 2 ξξ F[F 1 ](ξ) ] λ + ξ 2 + F 1[ ξ 2 ξξ F[F 2 ] ] λ + ξ 2 2µF 1[ iξf[f 3 ](ξ) ] λ + ξ 2 Let Σ ϵ,λ = {λ C arg λ π ϵ, λ λ } with < ϵ < π/2 and λ > We have λ + ξ 2 sin ϵ 2 ( λ + ξ 2 ) for any λ Σ ϵ, and ξ R N YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 25 / 6

Theorem (Theorem 33 in Y Enomoto and Y Shibata, Funkcialaj Ekvacioj 56 (213), 441 55) Let m(λ, ξ) be a function that is a C function with respect to ξ R N \ {} for any λ Σ ϵ,λ and satisfies the estimate: ξ αm(λ, ξ) C α ξ α for any α N N Let M(λ)f = F 1 ξ [m(λ, ξ)f[f](ξ)] Then, M is a R bounded operator satisfying the estimate: R L(Lq(R N ))({M(λ) λ Σ ϵ,λ }) C q max C α α n/2+2 v = S(λ)(ˆf, λĝ, ĝ) is a unique solution, and R L(Xq(R N ),L q(r N )){(τ τ ) l (λs(λ)) λ Σ ϵ }) C(l =, 1, λ = γ + iτ), R L(Xq(R N ),L q(r N )){(τ τ ) l (λ 1/2 S(λ)) λ Σ ϵ }) C(l =, 1), R L(Xq(R N ),L q(r N )){(τ τ ) l ( 2 S(λ)) λ Σ ϵ }) C(l =, 1, λ = γ + iτ) u(t) = L 1 [S(λ)(L[f](λ), L[λg](λ), L[g](λ))](t) is a solution to the problem: t u Div (µd(u) pi) = f, div u = g = div g in R N R e γt (u t, Λ 1/2 γ u, 2 u) Lp(R,L q(ω) C{ e γt (f, λg) Lp(R,L q) + e γt g Lp(R,H 1 q (R N )} ( γ >, 1 < p, q < ) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 26 / 6

Existence of R bounded solution operator in R N + λv v = in R N +, ( v/ x N ) xn = = g xn = with R N + = {x = (x 1,, x N ) R N x N > } Applying the partial Fourier transform with respect to tangential variable x = (x 1,, x N 1 ) yields that (λ + ξ 2 )F [v](ξ, x N ) 2 NF [v](ξ, x N ) = in x N >, ( N F[v])(ξ, ) = F [g](ξ, ) Let ω λ (ξ ) = λ + ξ 2 ((ξ = (ξ 1,, ξ N 1 )), and then by the inverse Fourier transform F 1, the solution formula is given by S 1 (λ)g = F 1[ e ω λ(ξ )x N F [g](ξ, )](x ) = = x N F 1 [e ω λ(ξ )(x N +y N ) F [g](ξ, y N )](x ) F 1 [ω λ (ξ )e ω λ(ξ )(x N +y N ) F [g](ξ, y N )](x ) F 1 [e ω λ(ξ )(x N +y N ) F [ N g](ξ, y N )](x ) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 27 / 6

Definition of multiplier class Let Ξ be a domain in C and let m(ξ, λ) (λ = γ + iτ Ξ) be a function defined for (ξ, λ) (R N 1 \ {}) Ξ Assume that τ m(ξ, λ) (λ = γ + iτ) exists and that m(ξ, λ) and τ m(ξ, λ) are bothis infinitely many differentiable functions with respect to ξ R N 1 \ {} for each λ Ξ (1) m(ξ, λ) is called a multiplier of order s with type 1 on Ξ if the estimates: (8) κ ξ ((τ τ ) l m(ξ, λ) C α ( λ 1/2 + ξ ) s κ (l =, 1) hold for any multi-index κ N N 1 and (ξ, λ) Ξ and (ξ, λ) Ξ with some constant C κ depending solely on κ and Ξ (2) m(ξ, λ) is called a multiplier of order s with type 2 on Ξ if the estimates: (9) κ ξ ((τ τ ) l m(ξ, λ) C κ ( λ 1/2 + ξ ) s ξ κ (l =, 1) hold for any multi-index κ N N 1 and (ξ, λ) Ξ with some constants C κ depending solely on κ and Ξ Let M s,i (Ξ) be the set of all multipliers of order s with type i on Ξ (i = 1, 2) ω(ξ, λ) M 1,1, ξ M 1,2 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 28 / 6

Lemma (Shibata and Shimizu, J Math Soc Japan 64(2) (212), 561 626) Let < ϑ < π/2 and 1 < q < Given l (ξ,, λ) M,1 (Σ ϑ ) and l 1 (ξ, λ) M,2 (Σ ϑ ), we define the operators L j (λ) (j = 1, 2, 3, 4) by [L 1 (λ)h](x) = F 1 [l (ξ, λ)λ 1/2 e ωλ(ξ )(x N +y ) N F[h](ξ, y N )](x ) dy N, [L 2 (λ)h](x) = F 1 [l 1 (ξ, λ) ξ e ωλ(ξ )(x N +y ) N F [h](ξ, y N )](x ) dy N, [L 3 (λ)h](x) = F 1 [l 1 (ξ, λ) ξ )(x e ωλ(ξ N +y ) N e ξ (x N +y N ) ω λ (ξ ) ξ F [h](ξ, y N )](x ) dy N, [L 4 (λ)h](x) = F 1 [l 1 (ξ, λ) ξ e ξ (x N +y ) N F [h](ξ, y N )](x ) dy N, Then, R L(Lq(R N + )({(τ τ ) l L i (λ) λ Σ ϵ,λ }) C (l =, 1, i = 1, 2, 3, 4) Theorem There exists an operator S 2 (λ) such that v = S 2 (λ)(f, λ 1/2 g, g) is a unique solution of the equations: (1) λv v = f in R N +, ( v/ x N ) xn = = g xn = for any (f, g) L q (R N + ) H 1 q (R N + ) and it satisfies the estimate: R L(Xq(R N 2 j + ),Wq (R N ) ({(τ τ ) l (λ j/2 x α S 2 (λ) λ Σ ϵ,λ }) C (l =, 1, j =, 1, 2) with X q (R N + ) = L q (R N + ) L q (R N + ) Hq 1 (R N + ) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 29 / 6

Construction of solution operator in Ω See: Y Shibata, Differential and Integral Equations 27 (3-4) (214), 313 368 λv Div (µd(u) K(u)I) = f in Ω (µd(u) K(u)I)n = g on Γ Let {φ i } i=1 be a partition of unity on Ω and let {ψ i } i=1 be some suitable sequence of C such that ψ i (x) = 1 on supp φ i Let T (λ)(f 1, F 2, F 3 ) = φ j S j (λ)[ψ j (F 1, F 2, F 3 )] j=1 with solution operators S j for the localized equations Let v = T (λ)(f, λ 1/2 h, h), and then λv Div (µd(v) K(u)I) = (f + U 1 (λ)(f, λ 1/2 h, h)) in Ω, (µd(v) K(v)I)n = h + U 2 (λ)(f, λ 1/2 h, h)) on Γ Let U(λ) = (U 1 (λ), λ 1/2 U 2 (λ), U 2 (λ)) (remainder term) and then, R L(Xq(Ω),Lq(Ω))({(τ τ ) l (λ j/2 2 j S(λ) λ Σ ϵ,λ }) C (l =, 1, j =, 1, 2) functions R L(Xq(Ω))({(τ τ ) l U(λ) λ Σ ϵ,λ }) Cλ 1/2 (l =, 1), with X q (Ω) = L q (Ω) L q (Ω) H 1 q (Ω) Choose λ > so large that (I + U(λ)) 1 (λ Σ ϵ,λ ) exists Let S(λ) = T (λ)(i + U(λ)) 1, and then v = S(λ)(ˆf, λ 1/2 ĥ, ĥ) is a unique solution of the equations: λv Div (µd(u) K(u)I) = f in Ω (µd(u) K(u)I)n = g on Γ and S(λ) satisfies the estimate: YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 3 / 6

Global well-posedness, bounded domain closed to ball (11) ( t v + (v )v) Div (µd(v) pi) =, div v = in <t<t Ω t (, t), (µd(v) pi)n t = σh(γ t )n t, V Γt = v n t on <t<t Γ t (, t), v t= = v, Ω t t= = Ω = Ω Let Ω be a reference domain and Γ its boundary Let B R = {x R N x < r} and S R = {x R N x = r} Assumption 1 Ω = B R = R N ω N /n, ω N = S 1 Assumption 2 x dx = Ω Assumption 3 Γ = {x = (R + ρ (Rω))ω ω S 1 } with given small function ρ defined on S R Γ t = {x = (R + ρ(rω, t))ω + ξ(t) ω S 1 } where ρ is a unknown function and ξ(t) is the barycenter point of the domain Ω t defined by ξ(t) = 1 x dx (unknown function) and assume that ξ() = Ω Ω t Let w(ξ, t) be the velocity field in the Lagrange coordinate, and then ξ (t) = d 1 xd dx = d 1 t (ξ + w(ξ, s) ds) dξ = 1 w dξ = 1 v dx dt Ω Ω t dt Ω Ω Ω Ω Ω Ω t YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 31 / 6

Let H(ξ, t) be a solution to the Dirichlet problem: (1 )H = in B R and H SR = R 1 ρ(, t) Hanzawa transform: x = e h (y, t) = y + H(y, t)y + ξ(t) for y B R (N 1)σ Let u(ξ, t) = v e h, q(ξ, t) = p e h R Ω t = {x = ξ + H(ξ, t)ξ + ξ(t) ξ B R }, Γ t = {x = (R + ρ(rω, t))ω ω S 1 } Moreover, (12) t u Div (µd(u) qi) = F (u, H) in B R (, T ), div u = F d (u, H) = div F d (u, H) in B R (, T ), Π [µd(u)n] = G (u, ρ) in S R (, T ), < µd(u)n, n > q σ Bh = g R 2 n (u, ρ) in S R (, T ), t ρ n P u = G kin (u, ρ) on S R (, T ), (u, ρ) t= = (u, ρ ) on B R S R Here, P u = u B R 1 B R u dy, n = ω S 1, B = (N 1) +, : Laplace-Beltrami operator on S 1 Π [d] = d < d, n > n YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 32 / 6

Theorem 2 < p <, N < q <, 2/p + N/q < 1, 1/p + (N + 1)/q < 1 Then, there exists a small number ϵ (, 1) such that for any initial data u B 2 2/p q,p (B R ) and ρ Bq,p 3 1/p 1/q (S R ) satisfying the following conditions: u 2 2/p B q,p (B + ρ R) 3 1/p 1/q B q,p (S ϵ, R) div u = f d (u, h ) = div f d (u, h ) in B R, Π [µd(u )ω] = g (u, h ) on S R, (v, p l ) Ω = (l = 1, M) where, {p l } M l=1 is the orthogonal base of the rigid space: R d = {u D(u) = } = {Ax + b A + A = }, Then, problem (3) with T = admits unique solutions u, q and ρ with u H 1 p((, ), L q (B R )) L p ((, ), H 2 q (B R )), q L p ((, ), H 1 q (B R )), ρ Hp((, 1 ), Wq 2 1/q (S R )) L p ((, ), Wq 3 1/q (S R )) e ηt u t Lp((, ),L q(b R)) + e ηt u Lp((, ),H 2 q (B R)) + e ηt q Lp((, ),L q(b R)) + e ηt t ρ Lp((, ),W 2 1/q q for some positive constants C and η independent of ϵ (S + eηt ρ R)) Lp((, ),W 3 1/q (S Cϵ R)) q YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 33 / 6

Derivation of equations in B R x i x i = (1 + H)y i + ξ i (t), = (1 + H)(δ ij + 1 H y i ), y j 1 + H y j det(i + a b) = 1 + a b, (I + a b) 1 = I a b 1 + a b Thus, y x = (1 + H) 1 (δ ij y t = y x x t y i ( H/ y j ) 1 + H + y ( H) = I + Φ, J = det x y = (1 + H)N + (1 + H) N 1 y ( H) = 1 + J = (I + Φ)( H t + ξ (t)) ( ) x y = (1 + H)(I + H y) ( H = H 1 + H ) ( ) ( ) (t, x) (t, y) (t, y)) (t, x)) = 1 1 = x t x y y t y x ( ) 1 I N Thus, x = y + Φ y, t = t < (I + Φ)( H t + ξ (t)), y > (I + Φ) 1 [ t v + v x v µdiv x D(v] + y q = = t u Div (µd(u) qi) = F(u, H) in B R div x v = div u + N j,k=1 Φ kj u j y k (div v, φ) Ωt = (v, φ) Ωt = N N div x v = = (J(δ ji + Φ ji )u i ) = J(div u + y j i,j=1 i,j=1 N ( (J(δ ji + Φ ji )u i ), φ e h ) BR y j i,j=1 Φ ji u i y j ) = in Ω YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 34 / 6

Equations on the boundary x = (R + ρ(rω(u), t))ω(u) + ξ(t), n t = (1 + V 1 (ρ))ω V 1 (ρ) = 1 2 1 N 1 j=1 1 + V 1 (ρ) R + ρ N 1 (1 + τ(r + ρ) 2 i,j=1 Π Π t [D(v)n t ] = = Π (µd(u)n) = g (u, ρ) on S R S 1 ω = ω(u) (u = (u 1,, u N 1 ) U) local chart gij ρ ω, < n t, ω >= 1 + O(( ρ) 2 ) u i u j N 1 ij ρ ρ g ) 3/2 dτ u i u j i,j=1 ij ρ ρ g = O(( ρ) 2 u i u j N 1 ( ) Let n t = µ(ω + a l τ l ), τ l = ω, and use n t = 1, n t x = (j = 1,, N 1) u l u j l=1 V N =< x t, n t >=< ρ t ω + ξ (t), n t >= ρ t + 1 u(1 + J ) dy +, B R B R ( Thus, V N = u n reads ρ t u 1 ) u dy n = k in (u, ρ) on S R B R B R d = Π Π t d = & < d, n >=, Π t d = d < d, n t > n t, Π d = d < d, n > n µd(v) pi)n t σh(γ t )n t = = Π Π t [D(v)n t ] = & < µd(v)n t, n > p < n t, n > σ < H(Γ)n t, n >= YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 35 / 6

N 1 < H(Γ t )n t, n >=< Γt x, n >, Γt f = gt 1 i,j=1 ( g t g ij f ) t u i u j g tij = x u i x u j = ((R + ρ)τ i + ρ u i ) ((R + ρ)τ j + ρ u j ) = (R + ρ) 2 g ij + ρ u i ρ u j, G t = (R + ρ) 2 G(I + (R + ρ) 2 (G 1 ρ) ( ρ)), det G t = (R + ρ) 2N det G(1 + (R + ρ) 2 (G 1 ρ) ( ρ)), G 1 t = (R + ρ) 2 (G 1 ρ) ( ρ) (I (R + ρ) 2 + (G 1 ρ) ( ρ) )G 1 g t = (R + ρ) N g + O(( ρ) 2 ), G 1 t = (R + ρ) 2 G 1 + O(( ρ) 2 ) Using ω ω/ u j =, we have < H(Γ t )n t, ω >=< Γt x, ω > = N 1 i,j=1 g ij t (R + ρ) < 2 N 1 ω, ω > + Γt ρ = (R + ρ) 1 u i u j i,j=1 2 ω g ij <, ω > + 1 u i u j R 2 ρ + O(( ρ) 2 ) < ω,ω>= (N 1) 1 R + ρ = 1 R ρ R 2 + ρ 2 (R + ρ)r 2, thus, < H(Γ t)n t, ω >= N 1 R + N 1 R 2 ρ + 1 R 2 ρ < (µd(v) pi)n t H(Γ t )n, n >=< µd(u)n, n > q < n t, n > + N 1 R N 1 R 2 ρ 1 R 2 ρ + = Since < n t, n > 1 = 1 + O(( ρ) 2 ), dividing the formula by < n t, n >, we have < µd(u)n, n > (q N 1 R ) σ R 2 Bρ = g N(u, ρ) on Γ YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 36 / 6

Decay estimate for the linearized equations (13) t u Div (µd(u) pi) = f Note that (x i e j x j e i ) n SR = div u = f div = div f div t h n P u = d in B R (, ), in B R (, ), on S R (, ), (µd(u) pi)n σ Bhn = g on S r 2 R (, ), (u, h) t= = (u, h ) on B R S R B = N 1 +, : Laplace-Beltrami operator of S 1, D(u) = u + u, P u = (u 1 u dx) ω(ω = x/ x S 1 ) B R B r is an eigen-value of of order 1 with eigen-function 1 (N 1) is the first eigen-value of of order N with eigen-functions ω i = x i / x (i = 1,, N) Let φ i (i = 1,, N + 1) be the orthonormal basis of the linear hull [1, ω 1,, ω N ] with respect to the L 2 inner product on S N 1 D(u) = u + u = u = Ax + b where A : anti-symmetric matrix: b: N vector R d = {u D(u) = } = {e i, x i e j x j e i i, j = 1,, N}, e i = (,, ith 1,, ) Let p l (l = 1,, M) be the orthonormal basis of R d with respect to the L 2 inner product on B R YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 37 / 6

Decay theorem Theorem Let 1 < p, q < and T > If initial data u Bq,p 2(1 1/p) (B R ), h Bq,p 3 1/p (B R ),and right hand-sides f L p((, T ), L q(b R ) N )), f div L p((, T ), H 1 q (B R )), f div H 1 p((, T ), L q(b R ) N ), d L p((, T ), H 2 q (B R )), g H 1 p((, T ), W 1 q (B R )) L p((, T ), H 1 q (B R ) N ) satisfying the compatibility conditions: (14) div u = div f div t= in B R,, µd(u )n < D(u )n, n > n) = (g < gn, n > n) t= on S R then problem (13) admits a unique solution (u, p, h) with possessing the estimate: u L p((, T ), H 2 q (B R ) N ) H 1 p((, T ), L q(b R ) N ), p L p((, T ), H 1 q (B R )), h L p((, T ), Wq 3 1/q (B R )) Hp((, 1 T ), Wq 2 1/q (B R )) e ηs s(u, h) Lp((,t),Lq(BR) W 2 1/q q C{ u B 2(1 1/p) q,p with some positive constants C and η (SR)) + eηs (u, h) Lp((,t),H q 2 (BR) W 3 1/q (SR)) (BR) + h B 3 1/p (BR) + eηs f Lp((,t),Lq(BR)) q,p + e ηs (f div, g) Lp((,t),H q 1 (BR)) + e ηs s(f div, g) Lp((,t),W q 1 (BR)) + eηs ( sf div, f div ) Lp((,t),Lq(BR)) M ( t ) 1/p N ( + (e ηs (u(, s), p l ) BR ) p t ) 1/p ds + (e ηs (h(, s), φ l ) SR ) p ds l=1 l=1 q YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 38 / 6

Proof of Global well-posedness A bootstrap argument is used to continue the local in time solution to (, ) Let (u, h) be solutions of the nonlinear problem defined on time interval (, T ) Let E(u, h) T = e ηs s (u, h) Lp((,T ),L q(b R ) Wq 2 1/q (S R )) + eηs (u, h) Lp((,T ),Hq 2 (B R ) Wq 3 1/q (S R )) Then, by the linear estimate E(u, h) T C{ u 2(1 1/p) B q,p (B R ) + h 3 1/p B q,p (B R ) + E(u, h)2 T M ( t ) 1/p N ( + (e ηs (u(, s), p l ) BR ) p t 1/p ds + (e ηs (h(, s), φ l ) SR ) ds) p l=1 If E(u, h) T C{ u B 2(1 1/p) q,p local solutions are prolonged beyond T provided that u B 2(1 1/p) q,p small enough Thus, the point is to prove that l=1 (B R ) + h 3 1/p B q,p (B R ) + E(u, h)2 T } is obtained, then the (B R ) + h 3 1/p B (B R ) is q,p M ( t ) 1/p N ( (e ηs (u(, s), p l ) BR ) p t 1/p ds + (e ηs (h(, s), φ l ) SR ) ds) p CE(u, h) 2 T l=1 l=1 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 39 / 6

Conservation of Mass and Momentum We move from Lagrangian to Eulerian ξ to obtain v p l dx = (l = 1,, M) In fact, N Ωt Conservation of Momentum d v dx = (v t + v v) dξ = (Div S(v) p) dx = (S(v) pi)n t dσ = Γt x dσ = dt Ωt Ω Ωt Γt Γt v dx = v dx = from the assumtion Ωt Ω Conservation of Angular Momentum d i v j x j v i ) dx = dt Ωt(x d t t [ξ i + u i dx)v j (ξ j + u j ds)v i ]J dξ dt Ω = [(u i u j u j u i ) + x i (v jt + v v j ) x j (v it + v v i )]J dξ Ω N = [x i (v jt + v v j ) x j (v it + v v i )]J dξ = [x i k (µd jk δ jk p) x j k (µd k δ ik p)] dx Ωt Ωt k=1 k=1 N = [x i ν k (µd jk δ jk p) x j ν k (µd ik δ ik p)] dσ [(µd ji δ ji p) (µd ij δ ij p)] dx Γt k 1 k 1 Ωt = σ (x i Γt x j x j Γt x i ) dσ = σ t [x i t x j t x j t x i ] dσ = Γt Γt Thus, (x i v j x j v i ) dx = (ξ i v j ξ j v i ) dξ = In particular, Ωt Ω YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 4 / 6

Orthogonal condition for the velocity field x = ξ + H(ξ, t)ξ + ξ(t), so that = v dx = uj dξ = u dξ + u(1 J) dξ Ω t B R B R B R = u dξ = u(j 1) dξ B R B R = (x i v j x j v i ) dx = [(ξ i + H(ξ, t)ξ i )u j (ξ j + H(ξ, t)ξ j )u i ]J dξ Ω t B R = (ξ i u j ξ j u i ) dξ = (ξ i u j ξ j u i )(J 1) dξ H(ξ i u j ξ j u i )J dξ B R B R B R Thus, h(, t) L (SR ) 1 = ( t (e ηs (u(, s), p l ) BR ) p ds) 1/p C e η u Lp((,T ),H 2 q (B R )) e ηs h Lp((,T ),W 3 1/q q (S R )) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 41 / 6

Orthogonal condition for height function Ω t = {x = ξ + H(ξ, t)ξ + ξ(t) ξ B R }, Γ t = {x = Rω + h(rω, t)ω + ξ(t) ω S 1 } R+h(Rω,t) Conservation of Mass Ω t = Ω = B R = RN N ω N = dx = dω s N 1 ds Ωt ω =1 = 1 N (R + h(rω)) N dω = B R + R N 1 h(rω, t) dω + NC k R N k h(rω, t) k dω N ω =1 ω =1 k=2 ω =1 N = h(ω, t) dω = NC k R k+1 h(ω, t) k dω ω =R k=2 ω =R Conservation of Momentum d x dx = d t (ξ + u(ξ, s) ds) dξ = u(ξ, t) dξ = v dx = dt dt Ωt Ω Ω Ωt ξ(t) = 1 x dx = x dx Ω ξ(t) = (x ξ(t)) dx ( Ω = Ω t = dx) Ω Ωt Ωt Ωt Ωt h(rω,t)+r = (x i ξ i (t)) dx = dω (sω i )s N 1 ds = 1 ω i (R + h(rω, t)) N+1 dω Ωt ω =1 N + 1 ω =1 = RN+1 N+1 ω i dω + R N N+1C k R N+1 k ω i h(rω, t) dω + ω i R N+1 k h(rω, t) k dω N + 1 ω =1 ω =1 N + 1 = k=2 ω =1 N+1 N+1C k R 1 k = ξ i h(ξ, t) dω ξ = ξ i h(ξ, t) k dσ ξ ξ =R N + 1 k=2 ξ =R ( t ) 1/p Thus, (e ηs (h(, s), φ l ) SR ) p ds C e ηs h 2 Lp((,T ),Wq 3 1/q (SR)) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 42 / 6

Idea of Proof of Decay Theorem (1) u t Au = f in Ω (, T ), Bu Γ = g, u t= = u To obtain the decay estimate of problem (1), first we consider the shifted equation: v t + λ v Av = f in Ω (, T ), Bv Γ = g, v t= = u with λ >> 1 e γt ( t v, 2 v) Lp((,T ),Lq(Ω)) C(u, f, g) ( 2 v = { x α v α 2}) Let u = v + w, and then w satisfies the equation: w t Aw = λ v in Ω (, T ), Bw Γ =, w t= = Let {T (t)} t be a C semigroup associated with problem (1) t By Duhamel principle w(t) = λ T (t s)v(s) ds Let N = {u Au =, Bu Γ = } = {b 1,, b M }, and then T (t)f Lq(Ω) Ce γt f Lq(Ω) with some positive constants γ and C provided that f N t M Let w(t) = λ T (t s)(v(s) (v(s), b j )b j ) ds, and then, e γt w Lp((,T ),Lq(Ω)) C(u, f, g) j=1 M Moreover, w satisfies w t A w = λ (v (v, b j )b j ) in Ω (, T ), B w Γ =, w t= = j=1 M t N { w = w + (v(s), b j ) dsb j, thus, e γt T 1/p w Lp((,T ),Lq(Ω)) C(u, f, g) + C e pγs (v(s), b j ) ds} p j=1 j=1 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 43 / 6

Uniqueness Uniqueness derives the exponential stability of semi-group (2) Div (µd(w) pi) =, div w = in B R, n P w =, (µd(w) pi)n σ R 2 Bρn = on S R = (Div (µd(w) pi), w) Ω = ((µd(w) pi)n, w) Γ + µ 2 D(w) 2 L 2(Ω) = σ R 2 (Bρ, n w) Γ + µ 2 D(w) 2 L 2(Ω) n w = n P w + 1 w dx n = 1 w dx n B R B R B R B R σ N Thus, R 2 (Bρ, n w) σ 1 Γ = R 2 w j dx(bρ, ω j ) Γ = B R B R j=1 Thus, D(u) = Thus, p = in Ω p + σ Bρ = on Γ p is a constant R2 σ(n 1) Recalling that B = N 1 +, ρ = ω i and p =, or ρ = 1 and p = R 2 Thus, if w and p satisfy the null condition (w, p l ) Ω = (l = 1,, M), (ρ, φ i ) Γ = (i = 1,, N + 1), then w =, p =, ρ = (Uniqueness) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 44 / 6

Free boundary problem in an exterior domain Ω R N (N 3): exterior domain, Ω = R N \ O (O bounded domain), Ω t : time evolution of Ω, Γ: boundary of Ω, Γ t : boundary of Ω t (15) t v + (v v) Div (µd(v) πi) =, div v = in <t<t Ω t (, t), (νd(v) πi)n t =, V t = n t v on <t<t Γ t (, t), Ω t t= = Ω, v t= = v, in Ω φ C (R N ): φ = 1 for x B R and φ(x) = for x B2R, c where R N \ Ω = O B R/2 B L = {x R N x < L} u : the velocity field in the Lagrange coordinate x = ξ + φ(ξ) x = ξ + φ(ξ) t T u(ξ, s) ds u(ξ, s) ds φ(ξ) t (Modified Lagrange transformation) T u(ξ, s) ds YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 45 / 6

New equations (16) t u J 1 Div S(u, p) = F (u, p), in Ω (, T ), div u = G(u) = G(u) in Ω (, T ), S(u, p)n = H(u) on Γ (, T ), v t= = v, in Ω J 1 Div S(u, p) and div u are linear operators derived from Div (µd(v) qi) and div v by the change of variable: x = ξ + φ(ξ) F (u, p) : nonlinear term consisting of V ( and V 2 ( T G(u) = V 3 ( t T T u(ξ, s) ds u ds) u, V 1 ( t t t t YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 46 / 6 T u ds)( T 2 u ds) u u ds) p with some polyonials V, V 1 and V 2 with V () = V 2 () = T u ds) u, G(u) = V4 ( T t t u ds)u, with some polyonials V 3 and V 4 with V 3 () = V 4 () = H(u) = V 5 ( T u ds) u with some polyonials V 5 with V 5 () =

Thoerem Let N 3 and let q 1 and q 2 be exponents such that N < q 2 < and 1/q 1 = 1/q 2 + 1/N and q 1 > 2 Let b, p and p = p/(p 1) be numbers satisfying the conditions: (17) N > b > 1 ( N ) q 1 p, b p > 1, q 1 ( N + 1 p 2q 2 2) < 1, bp > 1, for any T > with some C > independent of ϵ (b N 2q 2 ) p > 1, b > N 2q 1, (b N 2q 2 ) p > 1, N q 2 + 2 p < 1 Then, there exists an ϵ > such that u 2(1 1/p) B + u Lq1 ϵ, then q 2,p /2 problem (16) admits a unique solution u with possessing the estimate: T T + + u L p ((, ), W 2 q 2 (Ω) N ) W 1 p ((, ), L q2 (Ω) N ) ((1 + t) b u(, s) W 1 (Ω)) p ds T ((1 + s) (b N ) 2q 1 u(, s) W 1 q1 (Ω)) p ds + ( sup (1 + s) N 2q 1 u(, s) q1 ) p <s<t ((1 + s) (b N 2q 2 ) ( u(, s) W 2 q2 (Ω) + t u(, s) Lq2 (Ω))) p ds Cϵ p YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 47 / 6

To explain how to obtain the decay of solutions, we write the equations symbolically as follows: u t Au = f, Bu Γ = g, u t= = u time -shifted equations have the exponential stability: u = v + w, so that v t + λ v Av = f Bv Γ = g, v t= = u w t Aw = λ v Bw Γ =, w t= = YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 48 / 6

Let {T (t)} t be semi-group associated with the equations: u t Au = Bu Γ =, u t= = g Then, by the Duhamel principle, the solution u of the equations: u t Au = f Bu Γ =, u t= = is written by u(t) = L q -L p estimate: t T (t s)f(s) ds, T (t)u Lp Ct N 2 ( 1 q 1 p ) u Lq, T (t)u Lp Ct N 2 ( 1 q 1 p ) 1 2 u Lq for any t 1 with 1 < q p and 1 < q < Remark Non-slip condition case: T (t)u Lp Ct N 2 ( 1 q 1 p ) u Lq, T (t)u Lp Ct min( N 2 ( 1 q 1 p ) 1 2, N 2q ) u Lq for any t 1 with 1 < q p and 1 < q < YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 49 / 6

Assume that T + ((1 + s) b f(, s) q1 /2) p ds + T Then, we have T ((1 + s) b f(, s) q2 ) p ds ((1 + s) N 2q 1 f(, s) q3 ) p ds = M < (1/q 3 = 1/q 1 + 1/q 2 ) T ((1 + t) b u(, s) W 1 ) p ds + + ( sup + <t<t T T (1 + t) N 2q 1 u(, t) W 1 q1 ) p ((1 + s) (b N 2q 1 ) u(, s) W 1 q1 ) p ds {(1 + s) (b N 2q 2 ) ( u(, s) W 2 q2 + t u(, s) Lq2 )} p ds CM YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 5 / 6

L p -L q decay estimate = i u(t) C C + C + C C + C + C t t/2 t 1 t/2 t t 1 t/2 t 1 t/2 t t 1 i T (t s)f(s) ds (t s) N 2 ( 2 1 q 1 ) i 2 f(s) q1 /2 ds (t s) N 2 ( 2 1 q 1 ) i 2 f(s) q1 /2 ds (t s) ( N + i 2q 2 2 +ϵ) f(s) q2 ds (t s) ( N q 1 + i 2 ) f(s) q1 /2 ds (t s) ( N q 1 + i 2 ) f(s) q1 /2 ds (t s) ( N + i 2q 2 2 +ϵ) f(s) q2 ds (i =, 1) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 51 / 6

v (t) = thus here t/2 (t s) ( N q 1 + i 2 ) f(, s) q1/2 ds ( ) (t/2) N ( + i t/2 ) 1/p ( t/2 q 1 2 (1 + s) bp ds ((1 + s) b f(, s) q1/2) p ds t ( N q 1 + i 2 T 2 ) 2( N q 1 + i 2 ) (bp 1) 1/p M T ( (t b v (t)) p dt C t N + )p i q 1 2 b dt M 2 ( N + i ) ( N ) q 1 2 b p b p > 1 q 1 ) 1/p thus T 2 (t b v (t)) p dt CM YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 52 / 6

v 1 (t) = thus t 1 t/2 (t s) ( ( t 1 ( (t s) t/2 ( t 1 ( (t s) T T t/2 N q + i 1 2 N q + i 1 2 N q + i 1 2 ) f(, s) q1/2 ds ) ) 1/p ds ) f(, s) p q 1/2 ds ) 1/p ( N (v 1 (t)t b ) p dt + i ) p/p q 1 2 1 2 ( t 1 ( (t s) t/2 change the integration order N q + i 1 2 ) ) (s b f(, s) q1/2) p ds dt ( N + i ) p/p T 1 q 1 2 1 (s b f(, s) q1/2) p( 2s ( N q 1 + i 2 1 ) pm 1 s+1 ( ) (t s) N q + i 1 2 ) dt ds YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 53 / 6

v 2 (t) = t t b v 2 (t) C t 1 t ( (t s) N + i 2q 2 2 ) f(, +ϵ s) q2 ds t 1 t 1 ( (t s) N + i 2q 2 2 )(1 +ϵ + s) b f(, s) q2 ds ( t ( ) C (t s) N + i 2q 2 2 +ϵ ds ( t t 1 ) 1/p ( (t s) N + i 2q 2 2 )((1 +ϵ + s) b f(, s) q2 ) p ds ) 1/p Thus, T 2 (t b v 2 (t)) p dt (1 N i ) p/p T 2q 2 2 ϵ ((1 + s) b f(, s) q2 ) p( s+1 ( (t s) N ) ) + i 2q 2 2 +ϵ) dt ds (1 N i ) p T 2q 2 2 ϵ ((1 + s) b f(, s) q2 ) p ds ( 1 N 2q 2 i 2 ϵ ) pm 1 1 s YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 54 / 6

estimate of nonlinear terms (1 + t) b u(, t) u(, t) q1/2 u(, t) q1 u(, t) q1 (1 + t) b N 2q 1 u(, t) W 1 q (1 + t) N 2q 1 u(, t) W 1 q1 T φ 2 u(, t) ((1 + t) b u(, t) u(, t) q1/2) p ds CM 2 T φ 2 u q1/2 t u(, s) ds q1/2 C 2 u(, t) q2 ( T t u(, s) ds t ) 1/p (1 + s) bp ds ( T ((1 + s) b u(, s) W 1 ) p ds t T ) 1/p ( supp φ is compact) T ((1 + t) b φ 2 u(, t) u(, s) ds q1/2) p ds CM 2 t YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 55 / 6

L p -L q -decay estimate (18) t u J 1 Div S(u, p) =, div u = in Ω (, ), S(u, p)n = on Γ (, ), u t= = u in Ω Let R > be a fixed number such that R N \ Ω B R/2 Let A = A(x) = (a ij ) be the inverse matrix of x/ y with x = y + with some small positive number σ and some index r (N, ) k=1 T φ(y)u(y, s) ds N u i u j N J(x) = det( x/ y), Dij (u) = (a kj + a ki ), Sij (u, p) = Ja jk ( x j x D ik (u) δ ik p), k div u = N j,k=1 Ja kj u j x k a jk = a jk (x) = δ jk + b jk (x) and J(x) = 1 + J (x) Assumption(a) : b ij (x) =, J (x) = for x 2R, (b ij, J ) L (Ω) + (b ij, J ) Lr(Ω) σ k=1 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 56 / 6

L p -L q Decay estimate where q = q/(q 1) Theorem J q (Ω) = {u L q (Ω) N (u, φ) Ω = for any u Ĵp(Ω) and j =, 1, 2 with 1 < p < for any φ Ĥ1 q, (Ω)}, Let N < r < and 1 < q r Then, there exists a σ > such that if assumption (a) holds, then there exists a C analytic semi-group {T (t)} t associated with problem (18) such that for any u Ĵq(Ω) N, u = T (t)u is a unique solution of problem (18) with some pressure term p L p ((, T ), H 1 q (Ω) + Ĥ1 q (Ω)) possessing the estimates: (19) j T (t)u Lq(Ω) C p,q t j 2 N 2 provided that 1 < p q with p Moreover, ( 1 p 1 q ) u Lp(Ω) for any t 1, u Ĵ(Ω) and j =, 1, (2) sup t j/2 j T (t)u Lp(Ω) C p u L p (Ω) <t<2 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 57 / 6

Resolvent problem (21) { λu J 1 Div S(u, p) =, div u = in Ω, S(u, p)n = on Γ Let and then, we have Theorem Σ ϵ = {λ C \ {} arg λ < π ϵ}, Σ ϵ,λ = {λ Σ ϵ λ > λ }, Let N < r <, 1 < q r and < ϵ < π/2 Then, there exist σ >, λ > and a family op operators S(λ) Hol (Σ ϵ,λ, H 2 q (Ω) N ) such that if assumption (a) holds, then for any λ Σ ϵ,λ, f L q (Ω) N, u = S(λ)f is a unique solution of problem (21) with some pressure term p H 1 q (Ω) + Ĥ1 q (Ω) possessing the estimate: (22) (λs(λ)f, λ 1/2 S(λ)f, 2 S(λ)f) Lq(Ω) C q,ϵ,λ f Lq(Ω) with some constant C q,ϵ,λ dependng solely on q, ϵ and λ Moreover, for any p with N < p <, S(λ) Hol (Σ ϵ, L(L p (Ω) N, H 1 (Ω) N ) with (23) (λs(λ)f, λ 1/2 S(λ)f L (Ω) C p,ϵ λ N 2p f Lq(Ω) (λ Σ ϵ ), and for any 1 < q <, S(λ) Hol (Σ ϵ, L(L q (Ω) N, H 1 q (Ω) N ) with (24) (λs(λ)f, λ 1/2 S(λ)f) Lq(Ω) C q,ϵ f Lq(Ω) (λ Σ ϵ ) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 58 / 6

Note that J 1 Div S(u, p) = Div S(u, p) and div u = div u for x 2R Let L q, (Ω) N = {f L q (Ω) N f(x) = for x 4R} First, assuming f L q, (Ω) N, we consider λu J 1 Div S(u, p) = f, div u = in Ω, S(u, p)n Γ = Let R (λ)f = F 1 ξ [ P (ξ)ˆf(ξ) ] [ ξ ˆf(ξ) ] λ + ξ 2, Πf = F 1 ξ ξ 2 (P (ξ) = (δ ij ξ i ξ j ξ 2 )) Let v = T f and q = Qf be solutions: J 1 Div S(v, q) = f, div v = in Ω, S(v, q)n Γ =, v S5R = Let φ C (R N ) such that φ(x) = 1 for x 2R and φ(x) = for x 3R, and set Φ(λ)f = (1 φ)r (λ)f + φr 1 f + B[( φ) (R (λ)f T f)], Ψf = (1 φ)π f + φπ 1 f Then, u = Φ(λ)f and p = Ψf satisfy λu J 1 Div S(u, p) = f + S(λ)f, div u = in Ω, S(u, p)n Γ = There exists a σ > such that (I + S(λ)) 1 L(L q, (Ω)) exists YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 59 / 6

For general f L q (Ω) N λr (λ)f J 1 Div S(R (λ)f, Πf) = f + R 1 (λ)f, div R (λ)f = g(λ)f in Ω), S(R (λ)f, Πf)n Γ = h(λ)f Let v 1 and q 1 be solutions of the equations: λv 1 J 1 Div S(v 1, q 1 ) = R 1 (λ)f, div v1 = g(λ)f in Ω 5R, S(v 1, q 1 )n Γ = h(λ)f v S5R = R 1 (λ)f, g(λ)f, h(λ)f behaves like λ 1/2 near λ = Let v 2 = R (λ)f + φv 1 B[( φ) v 1 ] and q 2 = Π b ff q 1, and then λv 2 J 1 Div S(v 2, q 2 ) = R 2 (λ)f, div v2 = in Ω, S(v2, q 2 )n Γ = And then, v 2 = Φ(λ)(I + R(λ)) 1 R 2 (λ)f, q 2 = Ψ(I + R ( λ)) 1 R 2 f Thus, we see that v 2 H 1 (Ω) C λ 1 2 + N 2q f Lq(Ω) for N < q <, l v 2 Lq(Ω) C λ 1+ l 2 f Lq(Ω) (l =, 1) for 1 < q < near λ = with arg λ π ϵ ( < ϵ < π/2) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, 216 6 / 6