Impedance Matching. RF Electronics Spring, 2018 Robert R. Krchnavek Rowan University

Σχετικά έγγραφα
Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

EE512: Error Control Coding

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Instruction Execution Times

Approximation of distance between locations on earth given by latitude and longitude

2 Composition. Invertible Mappings

Section 8.2 Graphs of Polar Equations

Spherical Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Finite Field Problems: Solutions

Section 8.3 Trigonometric Equations

Reminders: linear functions

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Section 9.2 Polar Equations and Graphs

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Second Order RLC Filters

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Example Sheet 3 Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Calculating the propagation delay of coaxial cable

4.6 Autoregressive Moving Average Model ARMA(1,1)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Math 6 SL Probability Distributions Practice Test Mark Scheme

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 3 Solutions

EE101: Resonance in RLC circuits

D Alembert s Solution to the Wave Equation

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

derivation of the Laplacian from rectangular to spherical coordinates

( ) 2 and compare to M.

the total number of electrons passing through the lamp.

Numerical Analysis FMN011

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

6.003: Signals and Systems. Modulation


[1] P Q. Fig. 3.1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Homework 8 Model Solution Section

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Assalamu `alaikum wr. wb.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Forced Pendulum Numerical approach

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

C.S. 430 Assignment 6, Sample Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Solutions to Exercise Sheet 5

If we restrict the domain of y = sin x to [ π 2, π 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ST5224: Advanced Statistical Theory II

Trigonometric Formula Sheet

Section 7.6 Double and Half Angle Formulas

ALUMINUM ELECTROLYTIC CAPACITORS LKG

Multilayer Ceramic Chip Capacitors

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Capacitors - Capacitance, Charge and Potential Difference

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

Multilayer Ceramic Chip Capacitors

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Démographie spatiale/spatial Demography

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

TECNICAL BOOKLET ANTENNES amateur radio antennas

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

10.7 Performance of Second-Order System (Unit Step Response)

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

Statistical Inference I Locally most powerful tests

Matrices and Determinants

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Transcript:

Impedance Matching RF Electronics Spring, 8 Robert R. Krchnavek Rowan University

Objectives Be able to design an L-section matching network. Understand the importance of T and Pi matching networks. Understand distributed parameter matching networks. Be able to design biasing networks.

Matching Networks Matching networks are often used to achieve maximum power transfer. Matching networks are also used for minimizing noise influence. maximizing power handling capabilities. linearizing the frequency response. In general, matching networks simply provide impedance transformation.

L-Section Matching Networks Two-Component Networks C C C 2 C Z S L Z L Z S L Z L Z S C Z L Z S C 2 Z L L L L 2 L Z S L Z L Z S L 2 Z L Z C S Z Z C L S Z L Analytical solution Smith Chart solution

L-Section Matching Networks Z in Z T = R T + ȷX T Z in = R T ȷX T Z in =(Z A + ȷX L ) ȷX C Z A = R A + ȷX A Z M = R A ȷX A Z M = Z T ȷX C + ȷX L

L-Section Matching Networks Analytical method precise but slow. best used with the aid of a computer. Graphical method (Smith Chart) quick. not precise. yields a visual indication of the design space.

L-Section Matching Networks Analytical Solution Z T = R T + ȷX T =+ȷ25 Ω Z A = R A + ȷX A =25 ȷ Ω For maximum transfer of power, Z M = Z A

L-Section Matching Networks Analytical Solution Z M = Z T k!c +!L = Z A Z M =(R T + X T ) k!c +!L = R A X A = Z A Separate into real and imaginary parts and solve for L and C.

L-Section Matching Networks Smith Chart Solution Z T = R T + ȷX T =+ȷ25 Ω z T = Z T + ȷ25 = =+ȷ Z 0 Z A = R A + ȷX A =25 ȷ Ω z A = Z A 25 ȷ = = ȷ Z 0

L-Section Matching Networks Smith Chart Solution

L-Section Matching Networks Smith Chart Solution General Approach Find the normalized source and load impedance. Plot constant R and G circles that pass through zs. Use dashed lines or a unique color. Plot constant R and G circles that pass through zl*. Use solid lines or a different color. Find the intersection points between the dashed and solid lines. These are unique solutions to the matching problem. Find the normalized values of reactances and susceptances by tracing a path from zs to intersection point, to zl*. Determine actual values of L and C.

L-Section Matching Networks Smith Chart Solution Specific Example Find the normalized source and load impedance. z T = Z T Z 0 = + ȷ25 =+ȷ z A = Z A Z 0 = 25 ȷ = ȷ

L-Section Matching Networks Smith Chart Solution Specific Example Plot constant R and G circles that pass through z S. Use dashed lines or a unique color. More specifically, if the first component is a shunt component, plot a constant G circle. If it is a series component, plot a constant R circle. For this example, z S is z T.

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 3 7 0 0 9 8 9 8 70 ± 80-70 0.04 6 7 > WAVELENGTHS TOWARD GENERATOR > < WAVELENGTHS TOWARD LOAD < 7 60-60 90-90 6 0.04 85-85 0.05 5-80 -80 5 0.05 40 75-75 0.06-40 0.06 4 70-70 0.07 3 0.07 3-30 30 0.08 2 65-65 2 0.08-60 -60 0.09 0.09 - INDUCTIVE REACTANCE COMPONENT (+jx/zo),orcapacitivesusceptance(+jb/yo) 4 55-55 9 0-0 - 2 8 RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) EACTANCE COMPONENT (-jx/zo), ORINDUCTIVE SUSCEPTANCE(-jB Yo) VE R CAPA C IT I 9 8 2 90-90 45-45 3 7-80 4 6 80 40-40 4 6 5 5 5 5 70-35 -70 35 6 4 4 6 60-30 -60 30 7 3 3 7 25-25 8 2-8 2 9 40 - -40 9 5-5 30-30 9 - ANGLE OF TRANSMISS ON COEFFICIENT IN DEGREES - 9 8 2 ANGLE OF REFLECTION COEFF CIENT IN DEGREES 2 3 7 3 8 4 6 5 5 6 4 7 SWR dbs RTN. LOSS [db] RFL. COEFF, P RFL. COEFF, E or I 040 40 30 5 5 4 3 2.5 8 2 6 5 4 RADIALLY SCALED PARAMETERS 3. 5 0 2 3 4 5 6 7 8 9 2 4 30 0 0 0.05 2 0.0 TOWARD LOAD > 7 5 4 < TOWARD GENERATOR 2..3 2 3 4 5 3.5 2 3 4 5 6 5 0 0..3.5.7.9 2 2.5 3 4 5 0 9 5 0 CENTER..3.5.7.9 2 ATTEN. [db] S.W. LOSS COEFF RFL. LOSS [db] S.W. PEAK (CONST. P) TRANSM. COEFF, P TRANSM. COEFF, E or I ORIGIN

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 3 7 0 0 9 8 9 8 70 ± 80-70 0.04 6 7 > WAVELENGTHS TOWARD GENERATOR > < WAVELENGTHS TOWARD LOAD < 7 60-60 90-90 6 0.04 85-85 0.05 5-80 -80 5 0.05 40 75-75 0.06-40 0.06 4 70-70 0.07 3 0.07 3-30 30 0.08 2 65-65 2 0.08-60 -60 0.09 0.09 - INDUCTIVE REACTANCE COMPONENT (+jx/zo),orcapacitivesusceptance(+jb/yo) 4 55-55 9 0-0 - 2 8 RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) EACTANCE COMPONENT (-jx/zo), ORINDUCTIVE SUSCEPTANCE(-jB Yo) VE R CAPA C IT I 9 8 2 90-90 45-45 3 7-80 4 6 80 40-40 4 6 5 5 5 5 70-35 -70 35 6 4 4 6 60-30 -60 30 7 3 3 7 25-25 8 2-8 2 9 40 - -40 9 5-5 30-30 9 - ANGLE OF TRANSMISS ON COEFFICIENT IN DEGREES - 9 8 2 ANGLE OF REFLECTION COEFF CIENT IN DEGREES 2 3 7 3 8 4 6 5 5 6 4 7 SWR dbs RTN. LOSS [db] RFL. COEFF, P RFL. COEFF, E or I 040 40 30 5 5 4 3 2.5 8 2 6 5 4 RADIALLY SCALED PARAMETERS 3. 5 0 2 3 4 5 6 7 8 9 2 4 30 0 0 0.05 2 0.0 TOWARD LOAD > 7 5 4 < TOWARD GENERATOR 2..3 2 3 4 5 3.5 2 3 4 5 6 5 0 0..3.5.7.9 2 2.5 3 4 5 0 9 5 0 CENTER..3.5.7.9 2 ATTEN. [db] S.W. LOSS COEFF RFL. LOSS [db] S.W. PEAK (CONST. P) TRANSM. COEFF, P TRANSM. COEFF, E or I ORIGIN

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 3 7 0 0 9 8 9 8 70 ± 80-70 0.04 6 7 > WAVELENGTHS TOWARD GENERATOR > < WAVELENGTHS TOWARD LOAD < 7 60-60 90-90 6 0.04 85-85 0.05 5-80 -80 5 0.05 40 75-75 0.06-40 0.06 4 70-70 0.07 3 0.07 3-30 30 0.08 2 65-65 2 0.08-60 -60 0.09 0.09 - INDUCTIVE REACTANCE COMPONENT (+jx/zo),orcapacitivesusceptance(+jb/yo) 4 55-55 9 0-0 - 2 8 RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) EACTANCE COMPONENT (-jx/zo), ORINDUCTIVE SUSCEPTANCE(-jB Yo) VE R CAPA C IT I 9 8 2 90-90 45-45 3 7-80 4 6 80 40-40 4 6 5 5 5 5 70-35 -70 35 6 4 4 6 60-30 -60 30 7 3 3 7 25-25 8 2-8 2 9 40 - -40 9 5-5 30-30 9 - ANGLE OF TRANSMISS ON COEFFICIENT IN DEGREES - 9 8 2 ANGLE OF REFLECTION COEFF CIENT IN DEGREES 2 3 7 3 8 4 6 5 5 6 4 7 SWR dbs RTN. LOSS [db] RFL. COEFF, P RFL. COEFF, E or I 040 40 30 5 5 4 3 2.5 8 2 6 5 4 RADIALLY SCALED PARAMETERS 3. 5 0 2 3 4 5 6 7 8 9 2 4 30 0 0 0.05 2 0.0 TOWARD LOAD > 7 5 4 < TOWARD GENERATOR 2..3 2 3 4 5 3.5 2 3 4 5 6 5 0 0..3.5.7.9 2 2.5 3 4 5 0 9 5 0 CENTER..3.5.7.9 2 ATTEN. [db] S.W. LOSS COEFF RFL. LOSS [db] S.W. PEAK (CONST. P) TRANSM. COEFF, P TRANSM. COEFF, E or I ORIGIN

L-Section Matching Networks Smith Chart Solution Specific Example Plot constant R and G circles that pass through z L *. Use solid lines or a different color. More specifically, if the component near the load is a series element, plot a constant R circle. In this example, z L * is z A *.

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 3 7 0 0 9 8 9 8 70 ± 80-70 0.04 6 7 > WAVELENGTHS TOWARD GENERATOR > < WAVELENGTHS TOWARD LOAD < 7 60-60 90-90 6 0.04 85-85 0.05 5-80 -80 5 0.05 40 75-75 0.06-40 0.06 4 70-70 0.07 3 0.07 3-30 30 0.08 2 65-65 2 0.08-60 -60 0.09 0.09 - INDUCTIVE REACTANCE COMPONENT (+jx/zo),orcapacitivesusceptance(+jb/yo) 4 55-55 9 0-0 - 2 8 RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) EACTANCE COMPONENT (-jx/zo), ORINDUCTIVE SUSCEPTANCE(-jB Yo) VE R CAPA C IT I 9 8 2 90-90 45-45 3 7-80 4 6 80 40-40 4 6 5 5 5 5 70-35 -70 35 6 4 4 6 60-30 -60 30 7 3 3 7 25-25 8 2-8 2 9 40 - -40 9 5-5 30-30 9 - ANGLE OF TRANSMISS ON COEFFICIENT IN DEGREES - 9 8 2 ANGLE OF REFLECTION COEFF CIENT IN DEGREES 2 3 7 3 8 4 6 5 5 6 4 7 SWR dbs RTN. LOSS [db] RFL. COEFF, P RFL. COEFF, E or I 040 40 30 5 5 4 3 2.5 8 2 6 5 4 RADIALLY SCALED PARAMETERS 3. 5 0 2 3 4 5 6 7 8 9 2 4 30 0 0 0.05 2 0.0 TOWARD LOAD > 7 5 4 < TOWARD GENERATOR 2..3 2 3 4 5 3.5 2 3 4 5 6 5 0 0..3.5.7.9 2 2.5 3 4 5 0 9 5 0 CENTER..3.5.7.9 2 ATTEN. [db] S.W. LOSS COEFF RFL. LOSS [db] S.W. PEAK (CONST. P) TRANSM. COEFF, P TRANSM. COEFF, E or I ORIGIN

L-Section Matching Networks Smith Chart Solution Specific Example Find the intersection points between the dashed and solid lines. These are unique solutions to the matching problem.

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 3 7 0 0 9 8 9 8 70 ± 80-70 0.04 6 7 > WAVELENGTHS TOWARD GENERATOR > < WAVELENGTHS TOWARD LOAD < 7 60-60 90-90 6 0.04 85-85 0.05 5-80 -80 5 0.05 40 75-75 0.06-40 0.06 4 70-70 0.07 3 0.07 3-30 30 0.08 2 65-65 2 0.08-60 -60 0.09 0.09 - INDUCTIVE REACTANCE COMPONENT (+jx/zo),orcapacitivesusceptance(+jb/yo) 4 55-55 9 0-0 - 2 8 RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) EACTANCE COMPONENT (-jx/zo), ORINDUCTIVE SUSCEPTANCE(-jB Yo) VE R CAPA C IT I 9 8 2 90-90 45-45 3 7-80 4 6 80 40-40 4 6 5 5 5 5 70-35 -70 35 6 4 4 6 60-30 -60 30 7 3 3 7 25-25 8 2-8 2 9 40 - -40 9 5-5 30-30 9 - ANGLE OF TRANSMISS ON COEFFICIENT IN DEGREES - 9 8 2 ANGLE OF REFLECTION COEFF CIENT IN DEGREES 2 3 7 3 8 4 6 5 5 6 4 7 SWR dbs RTN. LOSS [db] RFL. COEFF, P RFL. COEFF, E or I 040 40 30 5 5 4 3 2.5 8 2 6 5 4 RADIALLY SCALED PARAMETERS 3. 5 0 2 3 4 5 6 7 8 9 2 4 30 0 0 0.05 2 0.0 TOWARD LOAD > 7 5 4 < TOWARD GENERATOR 2..3 2 3 4 5 3.5 2 3 4 5 6 5 0 0..3.5.7.9 2 2.5 3 4 5 0 9 5 0 CENTER..3.5.7.9 2 ATTEN. [db] S.W. LOSS COEFF RFL. LOSS [db] S.W. PEAK (CONST. P) TRANSM. COEFF, P TRANSM. COEFF, E or I ORIGIN

Forbidden Regions, Frequency Response, and Q Not every matching condition will allow all 8 L- type matching networks. Although the L-type matching network is matched at one frequency, the frequency response of the different networks varies. The loaded Q for each matching network will also, in general, vary.

Forbidden Regions ZS = Z0 = Ω

T and Pi Matching Networks T and Pi matching networks have an additional element compared to an L matching network. The additional element allows more control over the Q of the network. Can be used to control the bandwidth of the matching network.

Microstrip Matching Networks At higher frequencies, distributed element networks are used to achieve matching. Single-stub and double-stub matching networks. Mid-GHz range one often uses transmission lines + discrete capacitors.

Mixed Design Matching Network Convert a load impedance of Z L =30+j Ω to an input impedance of Z in =60+j80 Ω Assume a characteristic impedance for the transmission lines of Ω. Smith Chart solution -> normalize everything to Ω. Traversing the length of the series transmission line elements results in a rotation on the Smith Chart on a constant radius circle.

Mixed Design Matching Network Convert a load impedance of Z L =30+j Ω to an input impedance of Z in =60+j80 Ω Completed design: In general, these networks are very sensitive to precise placement of the discrete capacitor.

Fully Distributed-Element Matching Networks Single-stub tuning. See undergraduate notes for Engineering Electromagnetics. Also see textbook. Easily done on a Smith Chart. When a tunable matching network is required, double-stub tuning has an advantage over singlestub tuning because only the length of the stub and not its position needs to be varied.

Summary Impedance matching is necessary to maximize transfer of power from one stage to the next in an RF system. Two-component L-section matching has up to 8 different configurations. However, not all 8 are available in any given matching problem. The different L-type have different frequency response. T or Pi matching networks have an additional degree of freedom to control bandwidth of the matching network. At higher frequencies, matching may include C and X- lines. At still higher frequencies, X-lines with stubs.