If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Σχετικά έγγραφα
CRASH COURSE IN PRECALCULUS

Section 8.3 Trigonometric Equations

EE512: Error Control Coding

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Second Order RLC Filters

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Oscillatory integrals

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

Section 7.6 Double and Half Angle Formulas

Homework 8 Model Solution Section

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Quadratic Expressions

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Differentiation exercise show differential equation

Solutions to Exercise Sheet 5

MathCity.org Merging man and maths

2 Composition. Invertible Mappings

Matrices and Determinants

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Approximation of distance between locations on earth given by latitude and longitude

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Trigonometry 1.TRIGONOMETRIC RATIOS

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Quantitative Aptitude 1 Algebraic Identities Answers and Explanations

Problem Set 3: Solutions

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

PARTIAL NOTES for 6.1 Trigonometric Identities

derivation of the Laplacian from rectangular to spherical coordinates

Rectangular Polar Parametric

( ) 2 and compare to M.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Congruence Classes of Invertible Matrices of Order 3 over F 2

The Simply Typed Lambda Calculus

C.S. 430 Assignment 6, Sample Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 3 Solutions

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Trigonometric Formula Sheet

Strain gauge and rosettes

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Example Sheet 3 Solutions

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Fourier Transform. Fourier Transform

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solution to Review Problems for Midterm III

Finite Field Problems: Solutions

Second Order Partial Differential Equations

Answer sheet: Third Midterm for Math 2339

Concrete Mathematics Exercises from 30 September 2016

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

w o = R 1 p. (1) R = p =. = 1

1 String with massive end-points

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

If we restrict the domain of y = sin x to [ π 2, π 2

Reminders: linear functions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Finite difference method for 2-D heat equation

Parametrized Surfaces

Μηχανική Μάθηση Hypothesis Testing

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Uniform Convergence of Fourier Series Michael Taylor

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Every set of first-order formulas is equivalent to an independent set

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Srednicki Chapter 55

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Tridiagonal matrices. Gérard MEURANT. October, 2008

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

The Pohozaev identity for the fractional Laplacian

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ST5224: Advanced Statistical Theory II

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

Transcript:

etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to use the Lw of osines to solve n oblique tringle for the remining three prts, given: () Three sides () (b) Two sides nd their inluded ngle () Given ny tringle with sides of length, b, nd, the re of the tringle is re ss s bs, where s b. (Heron s Formul) Vobulry hek. osines.. Heron s re b os. Given: 7, b 0, 5 os b b sin b sin 49 00 5 70 0 sin.88 5 80 4.05.88.07 0.549.88 0.5599 4.05. Given: 8, b, 9 os b b sin sin 8 9 8 8 sin 99.59 9 80 6. 99.59 9.9 0.6667 99.59 0.8765 6.. Given: 0, b 5, 0 b b os 5 900 50 os 0 45.577 8.59 os b b 8.59 5 0 8.595 80 0 6..79 0.5907 6.

540 hpter 6 dditionl Topis in Trigonometry 4. Given: 05, 0, b 4.5 b b os 0 4.5 04.5 os 05 4.547.98 os b 0.0 4.5 0.0 80 05.7 5.7 0.987.7 5., b 4, 0 os b b sin b sin 96 400 4 4 sin 05.6 0 80 4.8 05.6.99 0.695 05.6 0.674 4.8 6. Given: 55, b 5, 7 os b b os b b 55 5 7 555 5 7 55 57 80.9 9.5 6.74 0.5578.9 0.77 9.5 7. Given: 75.4, b 5, 5 os b b sin b sin 4.5 50.9987 75.4 5 5 75.4 55 8. Given:.4, b 0.75,.5 os b b os b 80 86.68.8 6.50 0.68876 4.5 0.75.5.4 0.75.5.4.5 0.75.4.5 0.055 9.94 0.0579 86.68 0.84969.8 9. Given: sin b sin 5, b 4, 9 b b os 6 8 49os 5 47.97.6 4 sin 5.6 80 5.45.55 0.6.45 0. Given: 55, b, 0 b b os 0 0 os 55 74.585 8.64 sin b sin sin 55 8.66 80 6.5 55 08.47 0.846 6.5

etion 6. Lw of osines 54. Given: sin sin b 0 5, 40, 0 b os 600 900 400os 0 5 40.868 b.87 0 sin 0 5 0.464 7.66 7 40.87 80 0 5 7 40 4 45. Given: sin sin b 75 0, 6., 9.5 b os 6. 9.5 6.9.5 os 75 0 6. sin 75 0 0.604 7., or 7 6 9.94 80 75 0 7 6 67 4 98.866 b 9.94. Given: 5 40,, b os os 5 40 4.888 b 56.94 80 5 40 54 0 7 0 4. Given: 5 5, 6.5, b.5 b b os 6.5.5 6.5.5 os 5 5 7.756 4. os b b.5 4.8 6.5.54.8 80 5 5 57.04 7.7 or 7 4 0.908 57.04 or 57 5. 4, 4 9, b 7 9 b b os 4 9 7 9 4 9 7 os 4 0.968 0.54 9 sin sin 49 sin 4 0.5448 80 4.8 0.0 0.5564.80 6. Given: 0, 8, b 4 b b os 8 4 8 os 0 0.897 0.9 4 os b b 4 0.9 8 4 0.9 80.65 0 5.5 0.960.65 7. d 5 8 58os 45.45 d 5.69 60 45 70 5 5 8 58os 5 45.5685.07 5 45 8 φ d 8 5

54 hpter 6 dditionl Topis in Trigonometry 8. 5 0 5 9. 5 d 0 φ 4 0 d 0 5 5 5 55 os 0 75 5.0 60 0 60 d 5 5 55 os 60 975 d. 4 os 0 4 0 04.8º 60.8 68. d 0 4 04 os 68. d.86 0. os 40 60 80 4060 4 60 04.5 75.5 04.5 40 60 4060 os 75.5 998 40 φ 60 80 40 6. 60. os.5 5 0.55 os 0 5.5 05 z 80 8.8 u 80 z 97.8 0.75 4.4 0.565 55.77 55 b.5 0.50os 97.8 87.4967 b 6.96 β δ φ 0 b u b z 0.5.5 β x os.5 6.96 0.56.96 0.8 5.80 4.4 5.80 77. 60 60 77. 0.8. os 5 7.5 5 57.5 69.5 80 0.488 7.5 5 7.55 os 0.488 5.8 z 80 40.975 os 5 5.8 7.5 55.8 7.775 z 68.7 80 4.78. µ z 5 ω 5 7.5 β 7.5 5 5

etion 6. Lw of osines 54. 5, b 7, 0 s b 4., b 5, 9 s 5 9 8 re ss s bs 64 6.5 re 869 54 5. b.5, b 0., 9 s 0.85 re ss s bs 0.858.50.65.85 0.4 6. Given: s 75.4, b 5, 5 75.4 5 5 89.7 re ss s bs 89.74.7.77.7 50. 7. b., b 8.46, 5.05 s 7.95 re ss s bs 7.955.5959.455.865 5. 8. Given: s.05, b 0.75,.45.05 0.75.45.5 re ss s bs.50.075.750.675 0.6 9. os 700 700 000 5.9 700700 ering: 90 5.9 N 7. E os 700 000 700 700000 00. 700 m N 000 m E ering: 90 6.9 6. E 700 m 0. Distne from Frnklin to Rosemount: d 80 648 80648 os7 57.8 miles ering from Frnklin to Rosemount: N 75 E os 57.8 80 648 57.880 9.0 0.9456 ering from Frnklin to Rosemont: N 56.0 E N E 75 80 miles Frnklin Rosemount 648 miles enterville. b 0 50 050os 05 b 7. meters 75 0 m 05 50 m b

544 hpter 6 dditionl Topis in Trigonometry.. 76 9 650 575 5 75 os 5 76 9 576 os 5 9 76 59 0.608 5.9 0.750 4. The lrgest ngle is ross from the lrgest side. os 650 575 75 650575 os 7. 4. os 4.5 7. 0.6047 5. 80 5 67 60 b b os 6 48 6480.5 87 4. mi 48 mi 6 mi 5 60 67 N E 6. The ngles t the bse of the tower re 96 nd 84. The longer guy wire is given by: The shorter guy wire g g 75 00 7500 os 96 7,9.9 g. feet g is given by: g 75 00 7500 os 84 4,057. g 8.6 feet 7. () (b) Denver os 7 78 5 778 58.4 ering: N 58.4 os 5 78 7 578 8.5 ering: 8.5 Nigr Flls 7 5 φ Orlndo N 78 E 8. 59.7 6 miles 7.8. 65, b 6, 68 os 65 68 6 6568 7. os 6 68 65 668. 65 miles 7. 68 miles N E 0.955 0.974 () ering of Minnepolis () from Phoenix () N 90 7.. E N 59.7 E (b) ering of lbny () from Phoenix () N 90 7. E N 7.8 E

etion 6. Lw of osines 545 9. d 60.5 90 60.590 os 45 4059.857 d 6.7 ft T d P F 90 60.5 45 H 40. d 0 40 040 os 8 0.9 feet 4. 5 0 50os 4 4. miles 4. 0 0 00 os 4..8 miles R 8 0 64 4.8 ft PQ 6 0 56 89 9.4 ft tn P 0 Q Q 6 P 8 Q 5 44. () (b) x x os 46.75 0 49.5 x x os x os ± os 446.75 x os 9 os 87 7.5 x.5 x os () 0 0 0 (d) Mximum: 8.5 inhes 45. d 0 7 07 os ros 0 7 d 60 s 60 07 60 r 45 d (inhes) 9 0 4 5 6 (degrees) 60.9 69.5 88.0 98. 09.6.9 9.8 s (inhes) 0.88 0.8 8.99 8.8 7.48 6.55 5.7 46. x 40 0 0 0 x 0 sin 0 sin 0 x 0 sin 0 sin 0.95 feet 47. 00 b 500 600 s 00 500 600 650 re 6504505050 46,87.5 squre feet

546 hpter 6 dditionl Topis in Trigonometry 48. re 7000 sin 70 49. 6577.8 squre meters (The re of the prllelogrm is the sum of the res of two tringles.) s 50 840 0 5 re 55 505 8405 0 0,674 squre yrds ost 0,674 4840 000 $8,6.6 50. re ss s bs s b 490 860 50 446.0 ft 8.669 re 4560 ft re 8.669 re$00re $6,40.7 850 re 85060990500 446.0 ft 5. Flse. The verge of the three sides of tringle is b b, not s. 5. Flse. To solve n tringle, the Lw of ines is needed. 5. Flse. If 0, b 6, nd 5, then by the Lw of osines, we would hve: os 6 5 0 65.5 > This is not possible. In generl, if the sum of ny two sides is less thn the third side, then they nnot form tringle. Here 0 5 is less thn 6. 54. () orking with OD, we hve This implies tht R. os ine we know tht sin b sin sin, we n omplete the proof by showing tht os The solution of the system 80 is R sin. 90. β os β R O Therefore: os90 D R os R. sin. (b) y Heron s Formul, the re of the tringle is re ss s bs. e n lso find the re by dividing the re into six tringles nd using the ft tht the re is the bse times the height. Using the figure s given, we hve re xr xr yr yr zr zr Therefore: rx y z rs. x rs ss s bs r s s bs. s x z r z y y

etion 6. Lw of osines 547 55. 5, b 55, 7 () re of tringle: s 5 55 7 76 (b) re of irumsribed irle: re 7654 570.60 () re of insribed irle: r s s bs s 54 76 re r 77.09 7.5 (see #54 os 5 55 7 555 R 4.7 sin re R 5909. 0.5578.9 (see #54) 56. Given: s 00 ft, b 50 ft, 5 ft 00 50 5 87.5 Rdius of the insribed irle: r s s bs (see #54) s 87.57.56.5 64.5 ft 87.5 irumferene of n insribed irle: r 64.5 405. ft 57. b os b b b 58. b os b b b b b b b b b b b 4 b b b 4 b b 4 b b b b b 4 b b b b 59. rsin 60. ros 0 6. rtn 6. rtn rtn 6. rsin 64. ros ros 6 5 6 rsin x, 65. Let then 66. Let u ros x sin x x nd x os u x x. 9x se 4x. 4x tnros x tn u u 9x x x

548 hpter 6 dditionl Topis in Trigonometry rtnx, 67. Let then tn x x ot x. nd x 68. Let u rsin x sin u x. x os rsin x os u 4 x u 4 ( x ) 69. 5 5 x, x 5 sin 5 5 5 sin 5 5 sin 5 5 os os se os s is undefined. 70. x os, < 4 x 4 sin sin sin os se os s sin 4 os 4 4 os 4 os < 7. x 9, x se se 9 9se tn tn se tn 7. x 6 tn, < < 6 x 6 6 tn 6 6 tn 6 tn 6 se 6 se ot tn se s ot os sin sin 4 4 sin ± 4 ± s sin ± ± ±