Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Σχετικά έγγραφα
Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

[1] P Q. Fig. 3.1

2 Composition. Invertible Mappings

Hartree-Fock Theory. Solving electronic structure problem on computers

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Section 8.3 Trigonometric Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Finite Field Problems: Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

derivation of the Laplacian from rectangular to spherical coordinates

Homework 3 Solutions

EE512: Error Control Coding

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Approximation of distance between locations on earth given by latitude and longitude

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The Simply Typed Lambda Calculus

the total number of electrons passing through the lamp.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

PARTIAL NOTES for 6.1 Trigonometric Identities

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Example Sheet 3 Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Srednicki Chapter 55

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Matrices and Determinants

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Math 6 SL Probability Distributions Practice Test Mark Scheme

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Section 8.2 Graphs of Polar Equations

Solutions to Exercise Sheet 5

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

CE 530 Molecular Simulation

Instruction Execution Times

( ) 2 and compare to M.

Derivation of Optical-Bloch Equations

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

The challenges of non-stable predicates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 9.2 Polar Equations and Graphs

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

CRASH COURSE IN PRECALCULUS

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Differential equations

Fractional Colorings and Zykov Products of graphs

TMA4115 Matematikk 3

Variational Wavefunction for the Helium Atom

ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΜΟΡΙΑΚΗ ΔΟΜΗ KAI ΥΒΡΙΔΙΣΜΟΙ ΤΡΟΧΙΑΚΩΝ. Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης

Areas and Lengths in Polar Coordinates

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Areas and Lengths in Polar Coordinates

Solar Neutrinos: Fluxes

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ. ιπλωµατική Εργασία. της ΘΕΟ ΟΣΟΠΟΥΛΟΥ ΕΛΕΝΗΣ ΜΣ:5411

Συστήματα Διαχείρισης Βάσεων Δεδομένων

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

Galatia SIL Keyboard Information

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Section 7.6 Double and Half Angle Formulas

C.S. 430 Assignment 6, Sample Solutions

Lecture 2. Soundness and completeness of propositional logic

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Partial Trace and Partial Transpose

Every set of first-order formulas is equivalent to an independent set

Problem Set 3: Solutions

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Analytical Expression for Hessian

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS

14 Lesson 2: The Omega Verb - Present Tense

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Strain gauge and rosettes

What happens when two or more waves overlap in a certain region of space at the same time?

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Reminders: linear functions

Concrete Mathematics Exercises from 30 September 2016

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Second Order Partial Differential Equations

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

ST5224: Advanced Statistical Theory II

(C) 2010 Pearson Education, Inc. All rights reserved.

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE

Transcript:

Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py) + Ψ 2 pz sp (Ψ 2 s + Ψ 2 px) + Ψ 2 py + Ψ 2 pz

0.5 0.5 arboxylate anion Resonance hybrid A common situation, and the one many resonance contributing structures describe, occurs when three 2p orbitals combine on adjacent atoms. A good example is the carboxylate anion. When three adjacent 2p orbitals interact (we add the three 2p orbital wave functions ), three new molecular orbitals are produced; a low energy bonding pi- way, a non- bonding orbital and an antibonding orbital as shown below. This pattern of three molecular orbitals is generally the same whenever three 2p orbitals interact even if there are different atoms involved, for example the enolate ion or allyl cation. There are four electrons in the pi system of the carboxylate anion, (you can see this by looking at either of the contributing structures; two electrons from the pi bond and two from the third lone pair on the negatively charge atom). Note the non- bonding orbital contains the electron density of two electrons that are paired, do NT think of it as having one upaired electron on each atom. I know, weird, but remember it is best to think of bonding electrons as waves, not particles. Note the electron density on only the atoms of the non- bonding orbital explains why the negative charge is localized on the atoms in the carboxylate anion. 0.5 0.5 arboxylate anion Resonance hybrid Antibonding orbital Non- bonding orbital π- way orbital

Methane Molecular rbital Theory approach to bonding: Just add the individual orbital wave Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz Valence Bond Theory approach to bonding: ybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz )

Ethane Molecular rbital Theory approach to bonding: Just add the individual orbital wave Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz Valence Bond Theory approach to bonding: ybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz ) + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz )

Ethene (Ethylene) Molecular rbital Theory approach to bonding: Just add the individual orbital wave Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz Valence Bond Theory approach to bonding: ybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py ) + Ψ 2pz + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py ) + Ψ 2pz

Ethyne (Acetylene) Molecular rbital Theory approach to bonding: Just add the individual orbital wave Ψ 1s + Ψ 1s + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz Valence Bond Theory approach to bonding: ybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave Ψ 1s + Ψ 1s + Ψ 1s + (Ψ 2s + Ψ 2px ) + Ψ 2py + Ψ 2pz + Ψ 1s + (Ψ 2s + Ψ 2px ) + Ψ 2py + Ψ 2pz

ontributing structures 0.5 0.5 arboxylate anion Resonance hybrid Molecular rbital Theory approach to bonding: Just add the individual orbital wave Ψ 1s + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz Valence Bond Theory approach to bonding: ybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave Ψ 1s + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py ) + Ψ 2pz + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py ) + Ψ 2pz + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py ) + Ψ 2pz Sigma (σ) bonding - overlap of hybridized orbitals π-way bonding - overlap of 3 adjacent unhybridized 2p orbitals Ψ 2pz + Ψ 2pz + Ψ 2pz Antibonding Non-bonding Bonding

Minor Major ontributing structures 0.8 Enolate anion Molecular rbital Theory approach to bonding: Just add the individual orbital wave Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz + Ψ 1s + Ψ 2s + Ψ 2px + Ψ 2py + Ψ 2pz Valence Bond Theory approach to bonding: ybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave Sigma (σ) bonding - overlap of hybridized orbitals 0.2 π-way bonding - overlap of 3 adjacent unhybridized 2p orbitals Resonance hybrid Ψ 1s + Ψ 1s + Ψ 1s + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py ) + Ψ 2pz + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py ) + Ψ 2pz + Ψ 1s + (Ψ 2s + Ψ 2px + Ψ 2py ) + Ψ 2pz Ψ 2pz + Ψ 2pz + Ψ 2pz Antibonding Non-bonding Bonding