Mellin transforms and asymptotics: Harmonic sums

Σχετικά έγγραφα
Partial Differential Equations in Biology The boundary element method. March 26, 2013

Example Sheet 3 Solutions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

D Alembert s Solution to the Wave Equation

2 Composition. Invertible Mappings

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Other Test Constructions: Likelihood Ratio & Bayes Tests

Trigonometric Formula Sheet

C.S. 430 Assignment 6, Sample Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

The Pohozaev identity for the fractional Laplacian

Reminders: linear functions

Chap. 6 Pushdown Automata

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Fractional Colorings and Zykov Products of graphs

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Statistical Inference I Locally most powerful tests

ST5224: Advanced Statistical Theory II

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Parametrized Surfaces

Homomorphism in Intuitionistic Fuzzy Automata

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

SPECIAL FUNCTIONS and POLYNOMIALS

The circle theorem and related theorems for Gauss-type quadrature rules

Uniform Convergence of Fourier Series Michael Taylor

Finite Field Problems: Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

F19MC2 Solutions 9 Complex Analysis

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Second Order Partial Differential Equations

Graded Refractive-Index

EE512: Error Control Coding

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Bounding Nonsplitting Enumeration Degrees

The Simply Typed Lambda Calculus

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

A Note on Intuitionistic Fuzzy. Equivalence Relation

Homework 8 Model Solution Section

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Math221: HW# 1 solutions

Local Approximation with Kernels

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Every set of first-order formulas is equivalent to an independent set

Abstract Storage Devices

Congruence Classes of Invertible Matrices of Order 3 over F 2

Lecture 13 - Root Space Decomposition II

Solutions to Exercise Sheet 5

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

6.3 Forecasting ARMA processes

Commutative Monoids in Intuitionistic Fuzzy Sets

4.6 Autoregressive Moving Average Model ARMA(1,1)

University College Cork: MA2008 Complex Numbers and Functions Exercises Prove:

The Jordan Form of Complex Tridiagonal Matrices

5. Choice under Uncertainty

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Second Order RLC Filters

12. Radon-Nikodym Theorem

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Distances in Sierpiński Triangle Graphs

Section 9.2 Polar Equations and Graphs

Solution Series 9. i=1 x i and i=1 x i.

( y) Partial Differential Equations

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Strukturalna poprawność argumentu.

PARTIAL NOTES for 6.1 Trigonometric Identities

Galatia SIL Keyboard Information

Generating Set of the Complete Semigroups of Binary Relations

An Inventory of Continuous Distributions

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Lecture 15 - Root System Axiomatics

On the Galois Group of Linear Difference-Differential Equations

Areas and Lengths in Polar Coordinates

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Section 8.3 Trigonometric Equations

On the k-bessel Functions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Tridiagonal matrices. Gérard MEURANT. October, 2008

CRASH COURSE IN PRECALCULUS

A Lambda Model Characterizing Computational Behaviours of Terms

Finite difference method for 2-D heat equation

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Transcript:

Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi miteinander verbindet. Reporter : Ilya Poov Saint-Peterburg State Univerity Faculty of Mathematic and Mechanic Hjalmar Mellin

Content Mellin tranform and it baic propertie Direct mapping Convere mapping Harmonic um 2

Robert Hjalmar Mellin Born: 854 in Limina, Northern Otrobothnia, Finland Died: 933 3

Some terminology Analytic function f( ) c c ( ) c ( ) 2 = + + 2 +L Meromorphic function Open trip ab, 4

Mellin tranform M[ f( x); ] f ( ) f( x) x dx f x x x = = u ( ) = O( ) v f( x) O( x ) x = + f ( ) exit in the trip u, v fundamental trip 5

Mellin tranform example f( x) = + x = O() + x x = O( x ) + x x + + x f dx () π = = + x inπ fundamental trip : u = v= u, v =, 6

Gamma function f( x) e x = e x = O() x x b e = O( x ) b> x + + x f e x dx () = =Γ() Γ () =Γ ( + ) fundamental trip : u = v= u, v =, + 7

Tranform of tep function [ ], x, H( x) =, x, + H( x) = O() x ( ) b H( x) = O( x ) b> x + + H( x) = H( x) x dx= x dx=,, + H( x) = H( x), H ( x) =,, 8

Baic propertie (/2) f x f ( ) ( ), ν x f x f ( ) ( ), f x ρ ρ ρα ρβ ρ > f(/ x) f ( ) β, α ρ ( ) f, f x f µ ( µ ) ( ) α, β µ ( ) f( x) f ( ) λ µ λ µ αβ + ν α ν β ν > 9

Baic propertie (2/2) f x f ( ) ( ), d f x x f d αβ ( )log ( ), αβ Θ Θ= f ( x) f ( ) α, β x dx d d f ( x ) ( ) f ( ) α +, β + dx x f() t dt f ( + )

Zeta function ( ) M λ f( µ x); = λ µ f ( ) e gx e e e e x λ =, µ =, f( x) = e x x 2x 3x ( ) = = + + +... x x g () = + + + L M e ; ζ () () = Γ 2 3, +

Some Mellin tranform 2 e e x e x x 2 Γ (), + Γ ( ), 2 2 ( ) Γ, + x e ζ () Γ (), + x e π, + x inπ π log( + x), inπ H( x) < x<, + α ( )! x (log x) H( x) α, + + ( + α)

Theorem Inverion Let f( x) be integrable with fundamential trip α, β. Let α < c< β and f ( c+ i t) i integrable, then the equality 2π i c+ i c i f x d = f x () () hold almot everywhere. 3

Laurent expanion φ() = c ( ) c r + r Pole of order r if r> Analytic in if r Example : 2 2 2 = + 2+ 3( + ) + L ( = ) ( + ) + = + + L ( = ) ( + ) 4

Definition Singular element A ingular element of φ( ) at i an initial um of Laurent expanion truncated at term of O() or maller : φ() = = + L = + 2+ 3( + ) + L ( + ) + 2 2.e. at = :, + 2 2, K.e. at = :, + 2, + 2 + 3( + ), + + + K 5

Definition 2 2 Singular expanion Let φ( ) be meromorfic in Ω with including all the pole of φ( ) in Ω. A ingular expanion of φ( ) in Ω i a formal um of ingular element of φ( ) at all point of Notation : φ( ) ^ E ( Ω) ^ 2, 2 2 ( + ) + + + 2 = = = 6

Singular expanion of gamma Γ () =Γ ( + ) = function Γ ( + m+ ) Γ () = ( + )( + 2) L( + m) Thu Γ ( ) ha pole at the point = m with m Γ() Γ() ^ m ( ) m! + m + ( )! + pole of gamma function 7

Theorem 2 Direct mapping (/3) Let ( ) have a tranform f x f trip αβ,. ξ γ f( x) = c x (log x) + O( x ) x ( ξ, ) A, γ < ξ α Then f ξ, ( ) with nonempty fundamental ( ) i continuable to a meromorphic function in the trip γ, β where it admit the ingular expanion ( )! () ( γ, β ) f ^ cξ, ( ξ, ) A + ( + ξ ) + 8

Direct mapping (2/3) f x f ( ) ( ) α Order at : O( x ) Leftmot boundary of f.. at R ( ) = α β Order at + : O( x ) Rightmot boundary of f.. at R ( ) = β γ Expanion till O( x ) at Meromorphic continuation till R( ) γ δ Expanion till O( x ) at + Meromorphic continuation till R( ) δ 9

Direct mapping (3/3) f x f ( ) ( ) a ( )! Term x (log x) at Pole with.e. ( + a ) a Term x (log x) at + Pole with.e. a Term x at Pole with.e. a Term x log x at Pole with.e. + ( )! ( + a) + a ( + a) + 2 2

Example x x ( ) f( x) = e = x+ + L = x + O x 2! 3! j! 2 3 M j x j M+ () =Γ(),, + f x j= f M M j f ^ M j= j= ( ) ( ) i meromorphically continuable to, + ( ) (), + j! + j finally Γ() ^ + j ( ) j! + j 2 pole of gamma function

x x j = Example x e f( x) =, f ( ) =Γ( ) ζ ( ), + x e x + j e x = Bj +, B =, B =, L e ( j+ )! 2 + j + ^ Γ() ζ () Γ() ^ + j = j = B j ( ) ( j+ )! + j j! + j Bm + ζ() ^, ζ()=, ζ( m) = 2 m+ reult: ζ ( ) i meromorphic in with the only pole at = 22

+ f( x) = = ( ) + x + / x + / x x + n= f x n= + = ( ) n π () =,, inπ x Example 2 x n n x n ( ) ( ) ^,, (continuation to the left of the f..) + n + n f n= ( ) ( ),, + (continuation to the right of the f..) n + n f ^ n= π ( ) () ^ ( ) inπ x + n n f n 23

Example 3 (nonexplicit tranform) 7 39 5473 f x = = x + x x + x + x x coh x 4 96 576 6452 f 2 4 6 8 ( ) O( ) f f ( ) ha a fundamental trip, + 7 39 5473 () ^ + +, + 4 + 2 96 + 4 576 + 6 6452 + 8 7 39 5473 () ^ + + + L 4 + 2 96 + 4 576 + 6 6452 + 8 24

Convere mapping (/3) Theorem 3 Let ( ) C(, + ) have a tranform ( ) with nonempty fundamental trip αβ,. Let f ( ) be meromorphically continuable to, with a finite number of pole there, and be analytic on R ( ) = γ. Let f ( L f x f ( r ) γβ ) = O with r> when + in γβ,. 25

Convere mapping (2/3) Theorem 3 (continue) L f x ^ dξ, γ, β ( ξ ) If ( ) ( ξ, ) A, γ < ξ β Then an aymptotic expanion of f( x) at i f x d ( ) x x x ξ γ ( ) = ξ, (log ) + O( ) ( ξ, ) A ( )! 26

Convere mapping (3/3) f () f() x Pole at ξ Term in aymptotic expanion left of f.. expanion at right of f. expanion at + Simple pole ξ left: x at ξ ξ right: x at + ξ Multiple pole Logarifmic factor ( ) ξ left: x (log x) at + ( ξ )! ( ) ξ right: x (log x) at + + ( ξ )! x ξ 27

j= ν /2+ i ν /2 i Example 4 Γ() Γ( ν ) φ( ) =, analytic in trip, ν Γ( ν ) + j ( ) Γ ( ν + j ) φ( ) ^, ν j! Γ ( ν ) + j f( x) = φ( ) x d - original function 2π i ( ) Γ ( ν + j ) f x x x x j! Γ( ν ) M j j M+ 2 ( ) = + O( ) j= ν f ( x) = ( + x) ha theame expanion at ν M f( x) = ( + x) + ϖ( x), where ϖ( x) = O( x ) M > 28

n= n= Example 5 π φ() =Γ( ) inπ, + n φ() ^ () n! + n, + n n f( x) ( ) n! x - the expanion i only aymptotic! M n n M+ 2 ( ) = ( )! + O( ) f x n x x x n= In fact f( x) = + t e + xt dt 29

Definition 3 Harmonic um Gx ( ) = λ g( µ x) harmonic um λ j j j amplitude µ j frequencie Λ( ) = λµ The Dirichlet erie j [ ] µ = µ M g( x); g ( ) G =Λ g () () () j j (eparation property) 3

Harmonic um formula The Mellin tranform of the harmonic um Gx ( ) = λ g( µ x) i defined in the interection of the the fundamental trip of g( x) and the domain of abolute convergence of the Dirichlet erie Λ ( ) = λµ (which i of the form R ( ) >σ for ome real σ ) G =Λ( g a () ) () a 3

Example 6 + + x/ x hx ( ) =,,, gx ( ) x = λ = µ = = = + = + x/ + x hn ( ) = Hn = + + + L + 2 3 n + + + () λµ ζ( ) = = Λ = = = π h () =Λ () g () = ζ ( ), inπ ζ() = + γ + L, ζ( ) = + γ + γ ζ ( ) h () ^ 2 ( ), + = ( ) B Hn log n+ γ + log n+ γ + + + L 4 n 2n 2n 2n 32

Example 7 + x x lx ( ) = logγ( x+ ) γ x= log + 2, n= n n < + > λ n =, µ n =, gx ( ) = x log( + x) n + + n= n= Λ( ) = λµ = n = ζ( ) π () =Λ( ) () = ζ ( ), 2, inπ l g γ log 2 π + n ( ) ζ ( n) l () ^ + + + 2 2 ( + ) ( + ) 2 n= n ( + n) + B2 n lx ( ) = log( x!) γx= xlog x ( γ) x log x+ log 2π + n 2 2 n(2n ) x + x x 2n ( π ) log( x!) = log x e 2 x + n= B 2 n(2n ) x 2n Simple pole in poitive integer Double pole in and - n= 2 33

n= Example 8 + nx e + n w Lw( x) = (polylogarithm Liw( z) = z n ) w= w n= n 34,, ( ) x λ n = µ w = n g x = e n Λ( = + L = + Γ( + L ) ζ( ), ( ) ζ( ) ), ζ ( n) ( ) H! + ( )! ( + ) + + n () ^ () + + 2 n= n n n, + + ( ) nζ ( n) n ( )! n= n! n L ( x) = x [ log x+ H ] + ( ) x + π nζ ( n) 2 L2( x) = + ( ) x x n! n= n

Example 9 35 modified theta function 2 2 + nx e Θ ( x) =, λ =, µ = n, g( x) = e w w n w n n= n n Θ () = Γ ζ ( + ), + 2 2 double pole at = and imple pole at = 2m γ Θ () ^ + 2 + + + L 2 2 + 2 24 + 4 γ 2 4 Θ ( x) = logx+ + x + x + L x 2 2 24 Θ () = π M Γ ζ ( ) Θ = + O( x ) x 2 2 2 x 2 x 2

= Example x Dx ( ) = de ( ), λ = d ( ), µ =, gx ( ) = e d ( ) Λ( ) = = = ( ) + + λµ 2 ζ = = 2 D =Γ( ζ D + () ) () () ^ + 2 γ ζ ( 2 ) + + 2 ( ) 4 = 2+! + 2+ + 2 ζ ( 2 ) Dx ( ) ( logx+ γ )+ x x 4 2! ( ) = ( + ) 2 + x 36

The end 37