i = 1, 2,..., n Answer (ex. 1) (a) An algebraic expression for the transformation can be formed from the product of transformation 1 0 x 0 1 x 1

Σχετικά έγγραφα
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

2 Composition. Invertible Mappings

EE512: Error Control Coding

Reminders: linear functions

Example Sheet 3 Solutions

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Areas and Lengths in Polar Coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

Section 9.2 Polar Equations and Graphs

Section 7.6 Double and Half Angle Formulas

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Matrices and Determinants

Solutions to Exercise Sheet 5

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Numerical Analysis FMN011

derivation of the Laplacian from rectangular to spherical coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ST5224: Advanced Statistical Theory II

TMA4115 Matematikk 3

Homework 3 Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

( ) 2 and compare to M.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Notes on the Open Economy

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Homework 8 Model Solution Section

C.S. 430 Assignment 6, Sample Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

PARTIAL NOTES for 6.1 Trigonometric Identities

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Instruction Execution Times

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Strain gauge and rosettes

CRASH COURSE IN PRECALCULUS

Math221: HW# 1 solutions

Answer sheet: Third Midterm for Math 2339

Lecture 2. Soundness and completeness of propositional logic

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Solution to Review Problems for Midterm III

Concrete Mathematics Exercises from 30 September 2016

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Approximation of distance between locations on earth given by latitude and longitude

Problem Set 3: Solutions

w o = R 1 p. (1) R = p =. = 1

Tridiagonal matrices. Gérard MEURANT. October, 2008

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

6.3 Forecasting ARMA processes

Other Test Constructions: Likelihood Ratio & Bayes Tests

The challenges of non-stable predicates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

If we restrict the domain of y = sin x to [ π 2, π 2

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Space-Time Symmetries

Solution Series 9. i=1 x i and i=1 x i.

Spherical Coordinates

Math 6 SL Probability Distributions Practice Test Mark Scheme

Congruence Classes of Invertible Matrices of Order 3 over F 2

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Parametrized Surfaces

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Trigonometry 1.TRIGONOMETRIC RATIOS

Variational Wavefunction for the Helium Atom

Finite Field Problems: Solutions

Forced Pendulum Numerical approach

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Second Order Partial Differential Equations

Trigonometric Formula Sheet

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

D Alembert s Solution to the Wave Equation

Partial Trace and Partial Transpose

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Statistical Inference I Locally most powerful tests

Srednicki Chapter 55

Differentiation exercise show differential equation

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Μηχανική Μάθηση Hypothesis Testing

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

New bounds for spherical two-distance sets and equiangular lines

Transcript:

Homework 2 Ex. 1 Let u = [u 1, u 2, 1] T and v = [v 1, v 2, 1] T denote the homogeneous coordinates of points in planes P and Q, respectively. Matching point pairs are related by a projection matrix H as v i = Hu i, i = 1, 2,..., n (a) A transform from P to Q in the form of a translation by (x 0, x 1 ) then a rotation by θ then a scaling by (s 0, s 1 ) is described by the matrix 0.951623 0.443749 6.97686 H = 0.401487 0.860992 2.29753 0 0 1 Determine the values of (x 0, x 1, s 0, s 1, θ). (b) A transform from P to Q in the form of a translation by (x 0, x 1 ) then a scaling by (s 0, s 1 ) then a rotation by θ is described by the matrix 0.951623 0.401487 6.76555 H = 0.443749 0.860992 2.08622 0 0 1 Determine the values of (x 0, x 1, s 0, s 1, θ) for this order transformations. Answer (ex. 1) (a) An algebraic expression for the transformation can be formed from the product of transformation matrices. H = SRT = s 0 0 0 cos θ sin θ 0 0 s 1 0 sin θ cos θ 0 1 0 x 0 0 1 x 1 = s 0 cos θ s 0 sin θ s 0 x 0 cos θ + s 0 x 1 sin θ s 1 sin θ s 1 cos θ s 1 x 1 cos θ s 1 x 0 sin θ 0 0 1 0 0 1 0 0 1 0 0 1 Therefore s 0 = ( H 2 1,1 + H 2 1,2) 1/2 = ( 0.951623 2 + 0.401487 2) 1/2 = 1.05 s 1 = ( H 2 2,1 + H 2 2,2) 1/2 = ( 0.401487 2 + 0.860992 2) 1/2 = 0.95 x 0 = H 1,3 cos θ/s 0 H 2,3 sin θ/s 1 = 5 x 1 = H 1,3 sin θ/s 0 + H 2,3 cos θ/s 1 = 5 θ = arctan(h 1,2, H 1,1 ) 180/π = 25 (b) A similar algebraic expansion for this order of transformation is cos θ sin θ 0 H = RST = sin θ cos θ 0 s 0 0 0 0 s 1 0 1 0 x 0 0 1 x 1 = s 0 cos θ s 1 sin θ s 0 x 0 cos θ + s 1 x 1 sin θ s 0 sin θ s 1 cos θ s 1 x 1 cos θ s 0 x 0 sin θ 0 0 1 0 0 1 0 0 1 0 0 1 The parameters can be found by operations similar to those in (a). The results are the same numerical values given in the solution of (a). Ex. 2 Matching pairs of points from P and Q are given by the columns of the arrays U and V below. 21.630 28.280 31.870 46.150 28.230 36.530 24.540 31.940 U = 59.260 62.040 65.310 36.440 50.510 60.200 37.740 57.080 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 17.536 23.468 26.280 46.697 25.960 31.992 25.144 28.163 V = 52.587 56.753 60.691 36.368 45.732 56.870 32.699 52.848 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(a) Find a matrix H that maps points from P to Q. (b) Assume that the mapping is a translation, a scaling, and a rotation in that order. Find the parameters of the individual transformations. Answer (ex. 2) (a) The relationship is of the form V = HU. Use singular value decomposition (SVD) to find orthogonal matrices Q and R and a diagonal matrix D such that U = QDR T Then (by definition of an orthogonal matrix, QQ T = I and R T R = I). Hence, V = H ( QDR T ) VR = HQDR T R = HQD VRD 1 = HQ VRD 1 Q T = H VU = H where U = RD 1 Q T is the pseudo-inverse of U. We can find the SVD of U by using the SVDC routine in IDL or with a similar tool in other languages. The call is SVDC,U,W,Q,R. For the given matrix, 0.494630 0.868995 0.013726 0.000000 0.000000 0.000000 0.000000 Q = 0.868960 0.494774 0.010402 0.000000 0.000000 0.000000 0.000000 0.000000 = [ A 0 ] 0.015831 0.006782 0.999852 0.000000 0.000000 0.000000 0.000000 0.000000 where A is a square orthogonal matrix, which implies that AA T = A T A = I. 176.969620 0 0 0 0 0 0 0 0 25.849873 0 0 0 0 0 0 0 0 0.347170 0 0 0 0 0 D = diag(w) = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 The square matrix S contains the non-zero singular values on its diagonal. [ ] S 0 0 0 0.351525 0.406854 0.249213 0.805477 0.000000 0.000000 0.000000 0.000000 0.383762 0.236511 0.097002 0.256932 0.442195 0.329696 0.518618 0.384923 0.409852 0.178415 0.336917 0.164745 0.155032 0.322509 0.713437 0.149986 R = 0.308007 0.854216 0.036460 0.308334 0.032379 0.256078 0.039941 0.104058 0.327007 0.017505 0.250450 0.229042 0.817219 0.004531 0.320200 0.084731 0.397786 0.076047 0.368045 0.021316 0.078106 0.823297 0.025273 0.124559 0.253990 0.102870 0.778969 0.299897 0.303097 0.182773 0.317916 0.042801 0.369637 0.018537 0.093088 0.141878 0.116474 0.102318 0.127321 0.891058 We can now write U = [ A 0 ] [ ] [ ] S 0 R T a = ASR T 0 0 a where R = [R a R b ] partitions R into a part R a that has the same number of columns as S and a part R b that we don t actually care about. We can now write R T b V = HU = ASR T a H = VR a S 1 A T = VU

where we now have another expression for U. We would not have to do this partitioning, but it is instructive to see how the pseudo-inverse works. 0.351525 0.406854 0.249213 0.383762 0.236511 0.097002 0.409852 0.178415 0.336917 R a = 0.308007 0.854216 0.036460 0.327007 0.017505 0.250450 0.397786 0.076047 0.368045 0.253990 0.102870 0.778969 0.369637 0.018537 0.093088 0.494630 0.868995 0.013726 0.005651 0.000000 A = 0.868960 0.494774 0.010402 S 1 = 0.000000 0.038685 0.000000 0.015831 0.006782 0.999852 0.000000 0.000000 2.880430 0.984108 0.220440 9.313249 H = VR a S 1 A T = 0.227215 0.954889 8.914172 0.000000 0.000000 1.000000 (b) The H matrix has the same form as Problem (1b). The solution is s 0 = H1,1 2 + H2 2,1 = 1.01 s 1 H1,2 2 + H2 2,2 = 0.98 θ = arctan(h 2,1, H 1,1 ) = 13 x 0 = (H 1,3 cos θ H 2,3 sin θ)/s 0 = 7.0 x 1 = (H 1,3 sin θ + H 2,3 cos θ)/s 1 = 11.0 Ex. 3 Images LWIR087c.png, MWIR087c.png, SWIR087c.png are provided in the images directory http://www.cis.rit.edu/class/simg782/images (a) Find a transformation matrix H 1 that maps the MW image to the LW image. (b) Find a transformation H 2 that maps the SW image to the LW image. (c) Construct two greyscale images by mapping the MW and SW images. (d) Construct an RGB image by building an array that has the mapped SW, the mapped MW and the original LW as array layers. This is a raw image array that can be displayed with IDL or other tools. Answer (ex. 3) The IDL script below does the calculations. Point matches were constructed in ENVI and saved as text files. The SWIR image was rotated 180 before the matching points were located. The image files that were produced are shown below.

Mapped MWIR image Rotated and mapped SWIR image LW (Red) and MW (Green) overlaid LW (Red) and SW (Blue) overlaid Overlaid images LWIR (Red), MWIR (green), SWIR (Blue)

Program Listing ;Open LWIR to MWIR matching points from an ENVI ground control points table, LWIR to MWIR matching points from file L2Mpoints.txt pname= L2Mpoints.txt openr,1,pname ;Read and 5 header lines s= for k=0,4 do begin & readf,1,s &,s & end,format= (3x,3(A3,4x),A3,3x,2(A4,3x),2(A2,5x),A3),$ [ LWx, LWy, MWx, MWy, L2Mx, L2My, Rx, Ry, R ] np=10 pts=fltarr(9,np) readf,1,pts,pts,format= (9(f6.2,1x)) close,1 ;Construct the matrix of LWIR points. ;Note: The y-coordinates from ENVI are from top ;so we need to subtract from nrows to make them ;measure from the bottom. P=transpose([pts[0:1,*],replicate(1.,1,np)]) P[*,1]=510-P[*,1], Matrix P,P,format= (10(f6.2,1x)) Q=transpose([pts[2:3,*],replicate(1.,1,np)]) Q[*,1]=510-Q[*,1], Matrix Q,Q,format= (10(f6.2,1x)) ;Print the projective transform matrix that ;projects backwards from P to Q so we can find ;the LWIR pixel locations in the MWIR image. H=Q##Pseudo_inverse(P), Projective transform matrix, H1,H,format= (3(f8.4,1x)) ;Get the images LWIR=read_image( LWIR087c.png ) MWIR=read_image( MWIR087c.png ) sz=size(lwir,/dim) ;Construct a coordinate array for the pixels coordinate_grid,x2,y2,sz[0],sz[1] ;Project from Q to P. The array W contains the ;(X2,Y2) coordinates as columns in homogeneous form W=[[X2[*]],[Y2[*]],[replicate(1,sz[0]*sz[1])]]

;Z contains the projected coordinates in homogeneous form Z=H##W ;Find the coordinate values that fall within the image k=where(z[*,0] GE 0 AND Z[*,0] LT sz[0] AND Z[*,1] GE 0 AND Z[*,1] LT sz[1]) ;Set up an array to hold the projection A=bytarr(sz[0],sz[1]) ;Find the values in the MWIR grid and associate them ;with the LWIR image. A[k]=MWIR[Z[k,0],Z[k,1]] ;Set up a color array to hold the results B=bytarr(3,640,510) B[0,*,*]=LWIR ;original LWIR array B[1,*,*]=A ;Projected MWIR array write_png, M2L.png,B disp_image,a,xpos=0,ypos=0,title= Mapped MWIR disp_image,b,true=1,xpos=640,ypos=0,title= MWIR (G) projected to LWIR (R) ;======================================================== ;Match SWIR to LWIR Section ;========================================================, Matching SWIR to LWIR ;Open LWIR to SWIR matching points from an ENVI ground control points table pname= L2Spoints.txt openr,1,pname ;Read and 5 header lines s= for k=0,4 do begin & readf,1,s &,s & end,format= (3x,3(A3,4x),A3,3x,2(A4,3x),2(A2,5x),A3),$ [ LWx, LWy, SWx, SWy, L2Sx, L2Sy, Rx, Ry, R ] np=10 pts=fltarr(9,np) readf,1,pts,pts,format= (9(f6.2,1x)) close,1 ;Construct the matrix of LWIR points. ;Note: The y-coordinates from ENVI are from top ;so we need to subtract from nrows to make them ;measure from the bottom. P1=transpose([pts[0:1,*],replicate(1.,1,np)]) P1[*,1]=510-P1[*,1], Matrix P1,P1,format= (10(f6.2,1x))

Q1=transpose([pts[2:3,*],replicate(1.,1,np)]) Q1[*,1]=510-Q1[*,1], Matrix Q1,Q1,format= (10(f6.2,1x)) ;Print the projective transform matrix that ;projects backwards from P to Q so we can find ;the LWIR pixel locations in the MWIR image. H2=Q1##Pseudo_inverse(P1), Projective transform matrix, H2,H2,format= (3(f8.4,1x)) SWIR=read_image( SWIR087cr.png ) ;Project from Q to P. The array W contains the ;(X2,Y2) coordinates as columns in homogeneous form W=[[X2[*]],[Y2[*]],[replicate(1,sz[0]*sz[1])]] ;Z1 contains the projected coordinates in homogeneous form Z=H2##W ;Find the coordinate values that fall within the image k=where(z[*,0] GE 0 AND Z[*,0] LT sz[0] AND Z[*,1] GE 0 AND Z[*,1] LT sz[1]) ;Set up an array to hold the projection A1=bytarr(sz[0],sz[1]) ;Find the values in the MWIR grid and associate them ;with the LWIR image. A1[k]=SWIR[Z[k,0],Z[k,1]] ;Set up a color array to hold the results B2=bytarr(3,640,510) B2[0,*,*]=LWIR ;original LWIR array B2[2,*,*]=A1 ;Projected SWIR array write_png, S2L.png,B2 disp_image,a1,xpos=0,ypos=520,title= Mapped SWIR disp_image,b2,true=1,xpos=640,ypos=520,title= SWIR(B) projected to LWIR(R) B2[1,*,*]=A ;Projected MWIR array disp_image,b2,true=1,xpos=320,ypos=255,title= SWIR (B), MWIR (G), projected to LWIR (R) write_png, SML087.png,B2

Program Output LWIR to MWIR matching points from file L2Mpoints.txt ; ENVI Ground Control Points Table ; ENVI Image to Image GCP Table ; Base (x,y), Warp (x,y), Predict (x,y), Error (x,y), RMS Error ; Total RMS Error: 0.797829 ; LWx LWy MWx MWy L2Mx L2My Rx Ry R 64.33 46.67 40.33 51.17 40.78 51.27 0.45 0.10 0.46 491.17 340.83 473.00 344.25 473.18 344.08 0.18-0.17 0.25 253.33 470.17 235.25 476.75 235.20 476.65-0.05-0.10 0.11 36.83 324.33 15.17 331.83 15.85 331.84 0.68 0.01 0.68 64.33 46.67 40.33 51.17 40.78 51.27 0.45 0.10 0.46 288.67 67.83 267.83 71.67 266.59 71.24-1.24-0.43 1.31 604.17 77.17 583.33 78.50 583.97 78.65 0.64 0.15 0.66 577.00 266.50 558.00 268.67 558.73 268.70 0.73 0.03 0.73 326.17 235.83 307.67 240.00 306.06 240.04-1.61 0.04 1.61 358.17 348.33 339.67 352.67 339.44 352.92-0.23 0.25 0.34 Matrix P 64.33 491.17 253.33 36.83 64.33 288.67 604.17 577.00 326.17 358.17 463.33 169.17 39.83 185.67 463.33 442.17 432.83 243.50 274.17 161.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Matrix Q 40.33 473.00 235.25 15.17 40.33 267.83 583.33 558.00 307.67 339.67 458.83 165.75 33.25 178.17 458.83 438.33 431.50 241.33 270.00 157.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Projective transform matrix, H1 1.0059-0.0103-19.1916 0.0077 1.0070-8.5930 0.0000-0.0000 1.0000 Matching SWIR to LWIR ; ENVI Ground Control Points Table ; ENVI Image to Image GCP Table ; Base (x,y), Warp (x,y), Predict (x,y), Error (x,y), RMS Error ; Total RMS Error: 0.963595 ; LWx LWy SWx SWy L2Sx L2Sy Rx Ry R 283.25 330.75 260.75 380.00 260.05 380.32-0.70 0.32 0.77 274.00 450.50 252.00 500.75 251.89 501.35-0.11 0.60 0.61 604.25 86.50 582.25 131.00 582.21 131.36-0.04 0.36 0.36 350.75 235.25 328.75 283.00 327.35 283.26-1.40 0.26 1.42 120.25 60.25 92.00 108.50 92.51 108.32 0.51-0.18 0.54 490.75 342.00 470.50 390.25 470.00 389.40-0.50-0.85 0.99 598.00 247.00 575.75 292.50 577.50 292.73 1.75 0.23 1.77 158.50 181.50 132.25 230.25 132.40 230.70 0.15 0.45 0.48 483.75 80.25 460.75 126.50 460.30 125.94-0.45-0.56 0.72 97.75 415.25 72.50 468.50 73.30 467.87 0.80-0.63 1.02

Matrix P1 283.25 274.00 604.25 350.75 120.25 490.75 598.00 158.50 483.75 97.75 179.25 59.50 423.50 274.75 449.75 168.00 263.00 328.50 429.75 94.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Matrix Q1 260.75 252.00 582.25 328.75 92.00 470.50 575.75 132.25 460.75 72.50 130.00 9.25 379.00 227.00 401.50 119.75 217.50 279.75 383.50 41.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Projective transform matrix, H2 1.0113-0.0100-24.5975 0.0089 1.0096-53.8679-0.0000 0.0000 1.0000