u i t=0 = u i0 (x) 0, (1.2)

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

α & β spatial orbitals in

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

1 Complete Set of Grassmann States

Example Sheet 3 Solutions

Multi-dimensional Central Limit Theorem

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Every set of first-order formulas is equivalent to an independent set

Matrices and Determinants

Multi-dimensional Central Limit Theorem

A Class of Orthohomological Triangles

8.324 Relativistic Quantum Field Theory II

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Statistical Inference I Locally most powerful tests

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

C.S. 430 Assignment 6, Sample Solutions

Finite Field Problems: Solutions

ST5224: Advanced Statistical Theory II

2 Composition. Invertible Mappings

Section 8.3 Trigonometric Equations

EE512: Error Control Coding

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Congruence Classes of Invertible Matrices of Order 3 over F 2

Homework 3 Solutions

The Simply Typed Lambda Calculus

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

On a four-dimensional hyperbolic manifold with finite volume

The Pohozaev identity for the fractional Laplacian

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Uniform Convergence of Fourier Series Michael Taylor

4.6 Autoregressive Moving Average Model ARMA(1,1)

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

derivation of the Laplacian from rectangular to spherical coordinates

Fractional Colorings and Zykov Products of graphs

The challenges of non-stable predicates

Constant Elasticity of Substitution in Applied General Equilibrium

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Commutative Monoids in Intuitionistic Fuzzy Sets

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Math221: HW# 1 solutions

Reminders: linear functions

Second Order Partial Differential Equations

Lecture 2. Soundness and completeness of propositional logic

( y) Partial Differential Equations

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Areas and Lengths in Polar Coordinates

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

A General Note on δ-quasi Monotone and Increasing Sequence

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homework 8 Model Solution Section

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

A Note on Intuitionistic Fuzzy. Equivalence Relation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Strain gauge and rosettes

Homomorphism in Intuitionistic Fuzzy Automata

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

1 String with massive end-points

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Inverse trigonometric functions & General Solution of Trigonometric Equations

New bounds for spherical two-distance sets and equiangular lines

6.3 Forecasting ARMA processes

Heisenberg Uniqueness pairs

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Approximation of distance between locations on earth given by latitude and longitude

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

arxiv: v1 [math.ca] 6 Dec 2012

Bounding Nonsplitting Enumeration Degrees

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Tridiagonal matrices. Gérard MEURANT. October, 2008

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Solutions to Exercise Sheet 5

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Srednicki Chapter 55

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Generating Set of the Complete Semigroups of Binary Relations

LECTURE 4 : ARMA PROCESSES

Transcript:

Electronc Journal of Dfferental Euatons, Vol. 8 (8), No. 9, pp. 3. ISSN: 7-669. URL: http://ede.math.txstate.edu or http://ede.math.unt.edu NONEXISTENCE OF GLOBAL SOLUTIONS TO THE SYSTEM OF SEMILINEAR PARABOLIC EQUATIONS WITH BIHARMONIC OPERATOR AND SINGULAR POTENTIAL SHIRMAYIL BAGIROV Communcated by Ludmla S. Pulkna Abstract. In the doman Q R = {x : x > R} (, ) we consder the problem u t u C x u = x σ u, u t= = u (x), u t u C x u = x σ u, u t= = u (x), Z Z Z Z u ds dt, u ds dt, B R B R where σ R, >, C < ( n(n ) ), =,. Suffcent condton for the nonexstence of global solutons s obtaned.the proof s based on the method of test functons.. Introducton Let us ntroduce the followng notaton: x = (x,..., x n ) R n, n >, r = x = x x n, B R = {x; x < R}, B R = {x; x > R}, B R,R = {x; R < x < R }, Q R = B R (; ), Q R = B R (; ), B R = {x; x = R}, u = ( u x,..., u x n ), C, x,t (Q R ) s the set of functons that are four tmes contnuously dfferentable wth respect to x and contnuously dfferentable wth respect to t n Q R. In the doman Q R we consder the system of euatons wth the ntal condton u t u C x u = x σ u u t u C x u = x σ u, (.) u t= = u (x), (.) Mathematcs Subect Classfcaton. 35A, 35B33, 35K5, 35K9. Key words and phrases. System of semlnear parabolc euaton; bharmonc operator; global soluton; crtcal exponent; method of test functons. c 8 Texas State Unversty. Submtted November, 7. Publshed January 6, 8.

S. BAGIROV EJDE-8/9 and the condtons B R u dx dt, B R u dx dt, (.3) where n >, >, σ R, C < ( n(n ) ), u (x) C(B R ), u = ( u), u = n u x k k=, =,. We wll study the nonexstence of a global soluton of problem (.)-(.3). By a global soluton of problem (.)-(.3) we understand a par of functons (u, u ) such that u (x, t), u (x, t) C, x,t (Q R ) C3, x,t (B R (; )) C(B R [; )) and satsfy the system (.) at every pont of Q R, the ntal condton (.) and condtons (.3). The problems of nonexstence of global solutons for dfferental euatons and neualtes play a key role n theory and applcatons. Therefore, they have a constant attenton of mathematcans, and a great number of works were devoted to them [,, 3,, 9,, 3, 6,, ]. A survey of such results can be found n the monograph [7]. In the classcal paper [7], Futa consdered the followng ntal value problem u t = u u, (x, t) R n (, ), u t= = u (x), x R n, (.) and proved that postve global solutons of problem (.) do not exst for < < = n. If >, then there are postve global solutons for small u (x). The case = was nvestgated n [, ] and t was proved that n ths case there are no postve global solutons. Pnsky [9] showed the exstence and nonexstence of global solutons n R n (, ) to the euaton u t u = a(x)u, where > and a(x) behaves lke x σ wth σ > for large x. The results of Futa s work [7] aroused great nterest n the problem of the nonexstence of global solutons, and they were expanded n several drectons. For example, varous bounded and unbounded domans were consdered nstead of R n, as well as more general operators than the Laplace operator ncludng dfferent type nonlnear operators were consdered (for more comprehensve treatment of such problems, see [, 7, ] and references there n). Another may of extendng of Futa s result s to nvestgate a system of Futatype reacton-dffuson euatons, and ths s what we do here. For example, many authors have nvestgated the exstence and nonexstence of global and local solutons to the ntal value problem u t = α u t k x σ v, u t= = u (x) (.5) v t = α v t k x σ u, v t= = v (x). Escobedo and Herrero [5] consdered problem (.5) on R n (, ) wth α =,k =, σ =, >, >, =, and proved that f max(, ) n, then for any nontrval ntal functons there are no nonnegatve global solutons. Fla, Levne and Uda [6] consdered problem(.5) on R n (, ) wth α, α =, k =, σ =,, >, =, and studed the exstence of nonnegatve global and non-global solutons. In the case α =, k =, =,,

EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 3 Mochzuk and Huang [8] proved the exstence and nonexstence theorems for global solutons and studed asymptotc behavor of the global soluton of problem (.5) on R n (, ). Carst [8] consdered problem (.5) for k, σ R,, > on R n (, ), and nonexstence of global soluton s studed. Levne [5] studed nonnegatve solutons of the ntal boundary value problem for the system of euatons n (.5) for α =, k =, σ =, =, n doman D (, ), where D s a cone or the exteror of a bounded doman. In the present paper we consder a system of semlnear parabolc euatons wth bharmonc operator and sngular potental n the exteror doman Q R. Usng the technue of test functons worked out by Mtder and Pohozaev n [6],[7], we fnd a suffcent condton for nonexstence of global nontrval soluton.. Man result and ts proof The avod complcatons, we ntroduce the followng denotaton: D = ( (n ) C, λ ± n ) = ± D, µ = ( D λ ) λ, µ = ( D λ ) λ, α = λ σ n λ n β = λ σ n λ n θ = σ (σ ) θ = σ (σ ) Let us consder the functons, α = λ σ n λ n,, β = λ σ n λ n, λ n, λ n, =,. ξ (x) = µ x n λ µ x n λ x n λ, =,. It s easy to verfy that ξ (x) are the soluton of the euaton n R n \{} and for x =, u C x u = (.) ξ =, ξ r = D, ξ =, The man result of ths paper reads as follows. ( ξ ) r. (.) Theorem.. Assume that n >, β >, C < ( n(n ) ) and < β, max(θ, θ ), (, ) (α, β ) n case α >, (, ) (β, α ) n case α >, =,. Then there s no nontrval global soluton of (.)-(.3).

S. BAGIROV EJDE-8/9 Proof. For smplcty we take R =. Assume that (u (x, t), u (x, t)) s a nontrval soluton of (.)-(.3). Let us consder the followng two functons:, for x ρ, ϕ(x) = ( x ρ )κ, for ρ x ρ, for x ρ,, for t, T ρ (t) = ( ρ t) γ, for t, for t, where κ, γ are large postve, and κ s such number that for x = ρ, ϕ = ϕ r = ϕ r = 3 ϕ =. (.3) r3 We multply the frst euaton by ψ (x, t) = T ρ (t)ξ (x)ϕ(x), the second by ψ (x, t) = T ρ (t)ξ (x)ϕ(x) and ntegrate over. After ntegraton by parts, we obtan the followng relatons = x σ u T ρ (t)ξ (x)ϕ(x) dx dt B,ρ u ξ ϕ dt ρ dt dx dt u T ρ (ξ ϕ) dx dt C x u T ρ ξ ϕ dx dt u (x)ξ (x)ϕ(x)dx B [ ( u ) (ξ ϕ) T ρ (t)dt ξ ϕds u ds B,ρ ν B,ρ ν u ν (ξ ] ϕ)ds u ν (ξ ϕ)ds, B,ρ (.) where ν s a unt vector of external normal to B, ρ,, =,,. In order not to be repeated, n what follows, we wll take nto account that, =,, and n all expressons wll wrte the same constant C, but n fact, n each expresson C ndcates dfferent constants. Usng (.), (.3), we estmate the ntegrals n suare brackets n (.). B,ρ B,ρ (ξ ϕ) u ds = ν ( u ) ξ ϕds =, ν = = x = x = x = (ξ ϕ) u ds ν u ( ξ r ϕ ξ ϕ r )ds ξ u ds, r

EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 5 Snce B,ρ u ν (ξ ϕ)ds = u B,ρ B B,ρ u ν ( ξ ϕ ( ξ, ϕ) ξ ϕ)ds u = x = r ξ ds =, ν ( (ξ ϕ))ds = x = = u (x)ξ (x)ϕ(x)dx, x = and u ν ( ξ ϕ)ds ( ξ ) u ds. r T ρ (t)dt, takng nto account that ξ s the soluton of n (.) and usng the above estmates, from (.) we obtan x σ u T ρ (t)ξ (x)ϕ(x) dx dt = n k,m= ρ u ξ ϕ dt ρ dt u ξ ϕ dt ρ dt dx dt dx dt u T ρ C (ξ ϕ) dx dt Q x u T ρ ξ ϕ dx dt u T ρ ϕ( ξ C x ξ ) dx dt u T ρ [( ( ξ ), ϕ) ( ξ, ( ϕ)) ξ ϕ ξ x k x m B u ξ ϕ dt ρ dt ϕ ] dx dt x k x m ρ dx dt u T ρ H (ξ, ϕ) dx dt, B ρ,ρ where H (ξ, ϕ) denotes the expresson n the suare brackets,.e. H (ξ, ϕ) = ( ( ξ ), ϕ) ( ξ, ( ϕ)) ξ ϕ n ξ ϕ. x k x m x k x m k,m= (.5) (.6) Usng the Holder s neualty, we estmate the rght-hand sde of (.5). We can wrte: x σ u T ρ ξ ϕ dx dt ( ( B ) / x σ u T ρ ξ ϕ dx dt B dtρ dt ξ ϕ T ρ x σ( ) ξ ) / dx dt

6 S. BAGIROV EJDE-8/9 ( x σ u T ρ ξ ϕ dx dt B ρ,ρ ( H (ξ, ϕ) Bρ,ρ Tρ ) / dx dt x σ( ) ξ ϕ ) / where =. Let us denote the second ntegral n the frst addend above by I, and the second ntegral n the second addend by J. If we wrte separately, then from (.6) we obtan the followng: x σ u T ρ ξ ϕ dx dt ( ( (.7) /[ x σ u / T ρ ξ ϕ dx dt) I ] J /, x σ u T ρ ξ ϕ dx dt /[ x σ u / ρξ ϕ dx dt) I J Usng (.6), from these neualtes we obtan x σ u T ρ ξ ϕ dx dt [( B x σ u T ρ ξ ϕ dx dt) /I / ( x σ u T ρ ξ ϕ dx dt B ρ,ρ x σ u T ρ ξ ϕ dx dt [( B ) /J / x σ u T ρ ξ ϕ dx dt) /I /, ]. (.8) ] /[ / I ] J /, ( ] x σ u T ρ ξ ϕ dx dt) / J /[ / I ] J /. B ρ,ρ Substtutng (.8) n (.7) and (.7) n (.8), we obtan x σ u T ρ ξ ϕ dx dt ( ( ) x σ u [ / T ρ ξ ϕ dx dt I ][ J / / I ] J / /, x σ u T ρ ξ ϕ dx dt ) x σ u [ / T ρ ξ ϕ dx dt I ][ J / / I ] J / /. (.9) (.)

EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 7 Hence x σ u T ρ ξ ϕ dx dt ] [ I / J [ / ] I J /, x σ u T ρ ξ ϕ dx dt Makng the substtutons [ ] I / J / [ ] I / J /. t = τ, r = ρs, x = ρy, T (τ) = Tρ ( τ), ξ (y) = ξ (ρy), ϕ(y) = ϕ(ρy), (.) (.) (.3) we estmate the rght-hand sdes of (.) and (.). Frst, we estmate the ntegrals I, =,. where I = ρ ρ dt ρ dt ρ dt ξ B T ρ dt T ρ Cρ ( ) Cρ / Ĩ ( T ) B ϕ dx dt x σ( ) ξ ξ dt dx B x σ( ) ξ Ĩ ( T ) = d T e dτ T dτ B ξ x σ( ) ξ d T e dτ dτ. T ξ x σ( ) ξ dx, dx (.) Snce for x = n the last ntegral (.) there s a sngularty, then we estmate t separately. B ρ = = ξ dx x σ( ) ξ ρ (µ r n λ µ r n λ r n λ ) r n r σ( ) (µ r n λ µ r n λ r n λ ) r λ λ ( ) σ( n ) n (µ µ r λ r λ λ ) dr. (µ µ r λ r λ λ ) dr (.5)

8 S. BAGIROV EJDE-8/9 Usng the L Hoptal s rule, we obtan µ µ lm r λ r λ λ r µ µ r λ r λ λ λ = lm µ r λ (λ r λ µ r λ (λ λ )r λ λ λ )r λ λ = λ D λ λ λ λ D λ λ λ Then there exsts r > such that for r < r, = D D. D < µ µ r λ r λ λ D µ µ r λ r λ λ < D D. So, for r < r, µ µ r λ r λ λ < ( D )( µ µ ) D r λ r λ λ. On the other hand, for r r, µ µ r λ r λ λ µ µ r λ r λ λ C(r ). Takng nto account the above two relatons, from (.5) we obtan where B ξ x σ( ) ξ dx C ρ ρ r λ λ ( ) σ( n ) dr (λ = C r λ n σ ( )) dr η ρ, for η > C ln(ρ), for η =, forη <, η = λ λ σ n ( ). Usng (.6), from (.) we obtan Ĩ ( T (η )ρ ), for η > I C ln(ρ)ρ /, for η = ρ /, for η <. To estmate J, =,, we estmate each addend of H (ξ, ϕ) separately. ( ( ξ ), ϕ) 3 ξ r 3 n ξ r r n ξ ϕ r r r Cr n 3 λ ϕ, r (.6) (.7)

EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 9 ξ ϕ ξ r n ξ ϕ r r r n ϕ r r Cr n λ ϕ r n ϕ, r r ( ξ ( ϕ)) Cr n λ 3 ϕ r 3 n ϕ r r n ϕ, r r n ξ ϕ x x x x,= n,= n,= ( ξ x x r r ) ( ϕ x r ξ x x r r ξ r (δ x r ) r x x r 3 ) ϕ x x r r ϕ (δ r r x x ) r 3 ( C ξ r )( r ξ r ϕ r ) r ϕ r Cr n ( λ ϕ r ) r ϕ r. Now, takng nto account these relatons and (.3), we estmate J, =, : J = ρ ρ H (ξ, ϕ) Bρ,ρ Tρ dx dt x σ( ) ξ ϕ T ρ dt H (ξ, ϕ) Bρ,ρ dx x σ( ) ξ ϕ n ( Cρ λ ) σ( n ) ( λ )( )n ( d3 eϕ ds d eϕ 3 ds d eϕ ds ) s σ( ) ϕ Cρ ( )λ λ ( ) σ( n ) J ( ϕ) (η = Cρ ) J ( ϕ), ds (.8) where J ( ϕ) denotes the last ntegral. Usng the estmates (.7),(.8), we estmate the rght-hand sdes of (.), (.). It s known that for large κ and γ, the ntegrals Ĩ( T ), J ( ϕ) are bounded [7]. Dependng on the sgn of η, =,, we consder varous varants. I. α >, α >. Ths s euvalent to λ λ σ > and λ λ σ >. (.9) Subect to relaton (.9), we consder the followng cases. (a) η, η or α, α. Then, takng nto account (.7), (.8), from (.), (.) we obtan x σ u T ρ ξ ϕ dx dt

S. BAGIROV EJDE-8/9 where Cρ ()[ f Ĩ / f (ρ) = J ] / [ f {, f η < ln(ρ), f η =. When we pass to lmt as ρ, we obtan x σ u T ρ ξ ϕ dx dt. Ĩ J ], Hence u, u. (b) Now let η >, η > or > α, > α. Agan usng (.7), (.8), from (.), (.) we obtan x σ u T ρ ξ ϕ dx dt Assume that Snce Cρ [ Ĩ ((η )η )[ I / ( T ) J ( T ) ]. ( T ) J / ( T ) ] (.) mn{ (η ) η, (η ) η } <. (.) (η ) η = λ λ σ n ( ) λ λ σ n ( ) = ( )θ, then we can wrte (.) as max(θ, θ ) >. For defnteness, we assume (η ) η <. Then for =, from (.) we obtan x σ u T ρ ξ ϕ dx dt Cρ ((η )η )[ Ĩ J / Passng to the lmt as ρ, we obtan x σ u ξ dx dt. ] [ Ĩ / J ] /. Hence u. Then from the second euaton of the system t follows that u. Smlarly, for (η ) η <, we obtan u, u. Now let mn{ (η ) η, (η ) η } = or the same max(θ, θ ) =. For example, take (η ) η =. Then from (.) t follows x σ u T ρ ξ dx dt C.

EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS From the propertes of the ntegral, t follows that ρ Then from (.9), by (.) and (.3) we obtan x σ u T ρ ξ ϕ dx dt So, agan [( B ( B x σ u ξ dx dt, (.) B ρ,ρ x σ u ξ dx dt. (.3) B x σ u ξ dx dt) /I / /J ] x σ u / ξ dx dt) /[ / I ] J / Cρ ( (η )η ) [( ( B ρ,ρ x σ u ξ dx dt B ) / x σ u ξ dx dt) Ĩ / J / x σ u ξ dx dt. ] /[Ĩ/ J ] /. Hence u and respectvely u. If (η ) η =, then n the same way, we obtan u, u. (c) Let us consder the case when η, η. At frst, let η, η. As n the prevous cases, from (.), (.) we obtan x σ u ξ dx dt Cρ ( ()η)[ f / Ĩ / J ] / [ Ĩ / J ] /. If η < ( ), then passng to lmt as ρ, from (.) we have x σ u ξ dx dt. (.) Hence u and from the second euaton of the system t follows u. Note that f η <, then for η = ( ), f rom (.) we obtan x σ u ξ dx dt < C. As n the prevous case, we can show agan that u, u. Note that the condton η <, η ( ) s euvalent to the condton < < α, α β,

S. BAGIROV EJDE-8/9 and the condton η =, η ( ) to the condton = α, α < β. Now let η, η. Then smlar to the prevous case we obtan that for η <, η ( ) and for η =, η < ( ), u, u. The same condton η <, η ( ) s euvalent to the condton < α, α β, and the condton η =, η < ( ) to the condton = α, α < β. II. α, α >. Herewth, the cases η, η > and η >, η > should be consdered. For η, η > as n the prevous cases, we obtan u, u f η <, η ( ) and η =, η < ( ). From the neualty η ( ) t follows that < β. Snce β = λ σ n λ n, ths case has meanng for λ σ 8 > λ. Now let η >, η >. Then smlar to case (b), we obtan that u, u f > α, > α, max{θ, θ }. III. α >, α. Herewth, t s necessary to consder the case when η >, η and η >, η >. For η >, η, u, u f < α, < β and = α, < < β, and n the case η >, η >, for > α, < < β, max{θ, θ }. Obvously, ths case has meanng for β > or for λ σ 8 > λ. IV. α, α. Here t s necessary to consder the only case when η >, η >. Then u, u, f < < β, < < β and max{θ, θ }. Obvously, ths set s not empty f λ σ 8 > λ, λ σ 8 > λ. Ths completely proves the theorem. Note that remans open the cases = α, = β and = β, = α. References [] D. Andreucc, M. A. Herrero, J. J. L. Velazuez; Louvlle theorems and blow up behavor n semlnear reacton dffuson systems, Ann. Inst. Henr Poncarce, Anal. Non Lnneare, (997), -53. [] Sh. G. Bagyrov; On the exstence of a postve soluton of a nonlnear second-order parabolc euaton wth tme-perodc coeffcents, Dfferentsal nye Uravnenya, 7, Vol. 3, No., pp. 56565. [3] M. F. Bdaut-Veron, S. Pohozaev; Nonexstence results and estmates for some nonlnear ellptc problems, Anal. Math., 8 (), -9. [] K. Deng, H. A. Levne; The role of crtcal exponents n blow-up theorems: the seuel, J. Math. Anal. Appl., 3 (), no., 856. [5] M. Escobedo, M. A. Herrero; Boundedness and blow up for a semlnear reactondffuson system, J. Dfferental Euatons, 89 (99), 76-.

EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 3 [6] M. Fla, A. Levne, Y. A. Uda; Futa-type global exstence-global nonexstence theorem for a system of reacton dffuson euatons wth dfferng dffusvtes, Math. Methods Appl. Sc., 7 (99), 87-835. [7] H. Futa; On the blowng-up of solutons of the Cauchy problem for u t = u u α, J. Fac. Sc. Unv, Tokyo, Sect. I, 3 (966), 9-. [8] Gabrella Carst, Exstence and nonexstence of global solutons of degenerate and sngular parabolc system, Abstr. Appl. Anal., 5 (), no., 65-8 [9] B. Gdas, J. Spruck; Global and local behavor of postve solutons of lnear ellptc euatons, Comm. Pare. Appl. Math.vol 3,pages 55-598,yr 98 [] K. Hayakawa; On nonexstence of global solutons of some sem-lnear parabolc euatons, Proc. Japan. Acad., 9 (973), 53-55. [] K. Kobayash, T. Saro, H. Tanaka; On the blowng up problem of sem lnear heat euatons, J. Math. Soc. Japan, 9 (977), 7- [] A. A. Kon kov; On solutons of uas-lnear ellptc neualtes contanng terms wth lowerorder dervatves, Nonlnear Anal., 9 (3), pages -3. [3] G. G. Laptev; On nonexstence of solutons of a class of sngular semlnear dfferental neualtes, Tr. MIAN, 3 (), 3-35. [] H. A. Levne; The role of crtcal exponents n blowup theorems, SIAM Revew, 3 (99), no., 6-88. [5] H. A. Levne; A Futa type global exstence global nonexstence theorem for a weakly coupled system of reacton-dffuson euatons, Zet. Ang. Math.Phys., (99), 8-3. [6] E. Mtder, S. I. Pohozaev; Absence of postve solutons for uas-lnear ellptc problems on R N, Proc. Steklov Inst. Math., 7 (999), 86-6 (n Russan). [7] E. Mtder, S. I. Pohozaev; A pror estmatons and no solutons of nonlnear partal euatons and neualtes, Proc. of V. A. Steklov Mathematcs Insttute of NAS, 3 (), 9-3. [8] K. Mochzuk, Q. Huang; Exstence and behavor of solutons for a weakly coupled system of reacton-dffuson euatons, Methods Appl. Anal., 5 (998), 9-. [9] R. G. Pnsky; Exstence and nonexstence of global solutons for u t u = a(x)u n R d, Jour. Dff. Euatons, 33 (997), 5-77. [] A. A. Samarsk, V. A. Galaktonov, S. P. Kurdyumov, A. P. Mkhaylov; Blowup of solutons n problems for uaslnear parabolc euatons, Nauka Pub., Moscow, 987. (In Russan). [] J. Serrn, H. Zou; Nonexstence of postve solutons of Lane-Emden system, Dff. Integr. Euat., 9 (996), pages 635-653. [] Y. Uda; The crtcal exponent for a weakly coupled system of the generalzed Futa type reacton-dffuson euatons, Z. Angew. Math. Phys., 6 (995), no. 3, 366383. Shrmayl Bagrov Insttute of Mathematcs and Mechancs of NAS of Azerbaan, Baku, Azerbaan E-mal address: sh bagrov@yahoo.com