Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Σχετικά έγγραφα
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2 Composition. Invertible Mappings

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE512: Error Control Coding

Second Order Partial Differential Equations

Section 8.3 Trigonometric Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Finite Field Problems: Solutions

Homework 8 Model Solution Section

The Simply Typed Lambda Calculus

4.6 Autoregressive Moving Average Model ARMA(1,1)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Matrices and Determinants

[1] P Q. Fig. 3.1

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Homework 3 Solutions

Solutions to Exercise Sheet 5

Every set of first-order formulas is equivalent to an independent set

Section 9.2 Polar Equations and Graphs

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Concrete Mathematics Exercises from 30 September 2016

Inverse trigonometric functions & General Solution of Trigonometric Equations

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

( ) 2 and compare to M.

Math221: HW# 1 solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Areas and Lengths in Polar Coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

TMA4115 Matematikk 3

ST5224: Advanced Statistical Theory II

D Alembert s Solution to the Wave Equation

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

( y) Partial Differential Equations

Srednicki Chapter 55

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

derivation of the Laplacian from rectangular to spherical coordinates

Uniform Convergence of Fourier Series Michael Taylor

Areas and Lengths in Polar Coordinates

Second Order RLC Filters

Forced Pendulum Numerical approach

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Variational Wavefunction for the Helium Atom

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Orbital angular momentum and the spherical harmonics

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Higher Derivative Gravity Theories

MA 342N Assignment 1 Due 24 February 2016

Numerical Analysis FMN011

Space-Time Symmetries

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

C.S. 430 Assignment 6, Sample Solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Fractional Colorings and Zykov Products of graphs

Approximation of distance between locations on earth given by latitude and longitude

PARTIAL NOTES for 6.1 Trigonometric Identities

the total number of electrons passing through the lamp.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Trigonometric Formula Sheet

Derivation of Optical-Bloch Equations

Reminders: linear functions

Lecture 34 Bootstrap confidence intervals

Differential equations

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

The challenges of non-stable predicates

CE 530 Molecular Simulation

Μηχανική Μάθηση Hypothesis Testing

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

1 String with massive end-points

Lecture 2. Soundness and completeness of propositional logic

6.3 Forecasting ARMA processes

Example of the Baum-Welch Algorithm

A Note on Intuitionistic Fuzzy. Equivalence Relation

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Math 6 SL Probability Distributions Practice Test Mark Scheme

Statistical Inference I Locally most powerful tests

5. Choice under Uncertainty

w o = R 1 p. (1) R = p =. = 1

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Congruence Classes of Invertible Matrices of Order 3 over F 2

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Section 7.6 Double and Half Angle Formulas

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Transcript:

Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts out with spin along B(t 0), (i.e., we start from one of the two eigenstates of H at t 0), we get initial condition ψ(0) χ + (0) (5.170) In the same time, we know that the state need to follow the tdependent Schrodinger s equation i ħ d ψ(t) H(t) ψ(t) (5.171) This differential equation and the initial condition mentioned above, uniquely determine ψ(t). If we find the solution, we will see that ψ(t) χ + (t) for t > 0, although we start from ψ(0) χ + (0). The Schrodinger s equation: i ħ d β(t) H(t) β(t) γ(t) γ(t) (5.17) i ħ d β(t) i ħ d γ(t) ħ ω 1 cos α α e +i ω t α e i ω t cos α β(t) γ(t) ħ ω 1 cos α β(t) + α e i ω t γ(t) α e +i ω t β(t) cos α γ(t) (5.173) Two differential equations: i ħ dβ(t) i ħ dγt) ħ ħ cos α β(t) + α e i ω t γ(t) α e +i ω t β(t) cos α γ(t) (5.174) The initial condition β(t 0) γ(t 0) χ+ (t 0) which means β(0) cos α γ(0) α cos α α (5.175) (5.176) With this initial condition and the Shrodinger s equation, we get one and only one solution where ψ(t) cos t i ω t cos α ei ω t/ cos t i +ω t α (5.177) ei ω t/ ω + ω 1 ω ω 1 cos α (5.178) 5.5.6. How did we find the solution? (not required) i ħ dβ(t) i ħ dγt) dβ(t) dγt) ħ ħ cos α β(t) + α e i ω t γ(t) α e +i ω t β(t) cos α γ(t) i cos α β(t) + α ei ω t γ(t) i α e+i ω t β(t) cos α γ(t) (5.179) (5.180) Define

8 Phys460.nb β(t) f (t) ei ω t/ (5.181) and γ(t) g(t) e i ω t/ ei ω t/ e i ω t/ i cos α f (t) ei ω t/ + α e i ω t g(t) e i ω t/ i α e+i ω t f (t) e i ω t/ cos α g(t) e i ω t/ (5.18) (5.183) So we have e i ω t/ i ω f (t) ei ω t/ i (cos α f (t) + α g(t) ) ei ω t/ e i ω t/ + i ω g(t) ei ω t/ i ( α f (t) cos α g(t) ) ei ω t/ (5.184) i ω + i ω f (t) i g(t) i (cos α f (t) + α g(t) ) i ( α f (t) cos α g(t) ) i cos α f (t) i α g(t) α f (t) + i cos α g(t) (5.185) i i cos αω f (t) i α g(t) α f (t) + i cos αω g(t) (5.186) For these differential equations, all terms are proportional to f or g (or their derivative) and all the coefficients are constants, independent of time t. For this structures, the solution must be exponential functions of t f (t) A ei ω' t g(t) B e i ω' t i ω' A ei ω' t i i ω' B e i ω' t i α A ei ω' t + i ω' A cos αω cos αω A ω' B α B cos αω α A + B A e i ω' t i α B ei ω' t cos αω (5.187) B e i ω' t (5.188) Now we convert the differential equations to algebra equations. This equation is actually an eigenvalue problem for a matrix cos αω α α cos αω A B ω' A B where ω' is the eigenvalue for the matrix M cos αω α α cos αω The eigenvalues for of a matrix is the solution of equation det(ω' I M) 0 det ω' + cos αω There are two eigenvalues α cos αω α ω' ω' + ω 1 cos α ω, while A is the eigenvector B ω' ω 1 cos α ω (5.189) (5.190) ω 1 α 0 (5.191) ω' ± ± ω 1 α + ω 1 cos α ω ± ω + ω 1 ω 1 ω cos α (5.19) We can define ω + ω 1 ω 1 ω cos α (5.193) so the eigenvalues are ω' ± ± (5.194)

Phys460.nb 83 For ω + ' /, the eigenvector satisfies cos αω α α cos αω A B + A B (5.195) The solution is A+ B + α cos αω α ω cos α (5.196) For ω ' /, the eigenvector is A B α ω cos α+ (5.197) So any solution of the Schrodinger equation is ψ(t) X e i t A + ei ω t/ + Y e i B + e i ω t/ t A ei ω t/ B e i ω t/ (5.198) Ug the initial condition ψ(0) X A + B + + Y A B (X + Y) (X + Y) α ω cos α (X Y) cos α α (5.199) We know that X + Y cos α ω 1 α cos α ω 1 α cos α 1 ω 1 α (5.00) X Y (X + Y) ω ω 1 cos α So we find that X + ω ω 1 ω 1 α α ω ω 1 cos α ω 1 α ω 1 α ω 1 α ω ω 1 cos α + α ω 1 α ω ω 1 ω 1 α (5.01) (5.0) Y ω + ω 1 ω 1 α (5.03) So we have ψ(t) + ω ω 1 ω 1 α e i t α ei ω t/ ω cos α e i ω t/ + ω + ω 1 ω 1 α e i t α ei ω t/ ω cos α+ e i ω t/ +ω + cosα+ (1cos α)ω (1+cos α) 4 α cos t + i (ω ω 1) t α ei ω t/ α cos t + i ω t cos α ei ω t/ (1cos α) cos t + i +ω + α e i t + ω cosα (1cos α)+ω (1+cos α) 4 α cos αω (1+cos α) α cos t + i ω t cos α ei ω t/ (1cos α) cos t + i (1cosα)ω (1cos α) α α t ei ω t/ t ei ω t/ e i t e i ω t/ (5.04)

84 Phys460.nb cos t + i ω t cos α ei ω t/ cos t i +ω t 1cos α e i ω t/ α cos t i ω t cos α ei ω t/ cos t i +ω t α ei ω t/ Exactly the same as the solution that we shown above ψ(t) cos t i ω t cos α ei ω t/ cos t i +ω t α (5.05) ei ω t/ 5.5.7. Probability for the system to change to another state For H(t) at time t, the two eigenstates are χ + cos α e i ω t α (5.06) and χ α e i ω t cos α (5.07) We start from state χ + at t 0. The probability to find the system in χ at a later time t is P χ ψ(t) α cos t cos t i ω 1 ω i ω 1 ω e i ω t cos α cos t i ω t cos α ei ω t/ cos t i +ω t cos α ei ω t/ t cos α α ei ω t/ cos t cos t + i ω 1 + ω t t i ω t α cos α 4 ω t α cos α ω t α cos α ω t [(α)] ω α t i ω 1 + ω α cos α t α cos α ei ω t/ (5.08) Although we start from χ at t 0, at time t, there is a nonzero probability for the system to become χ +. Although we start from spin parallel to B at t 0, at time t, there is a nonzero probability for the system to become antiparallel to B. This phenomenon (system start from a quantum state and ends at a different quantum state, by applying a tdependent H) is called a quantum tunneling. The probability to find the system in χ + is P + χ + ψ(t) (5.09) This is the probably for the system to remain in the same state (E ). It requires no calculation to show that P + 1 P, because the total probability must be 1. This is indeed the case

Phys460.nb 85 P + χ + ψ(t) cos α cos t cos t cos t cos t cos t t cos 1 t i ω 1 ω i ω 1 ω i ω 1 t i ω 1 t t + i ω cos α ω 1 + ω cos α ω 1 1 1 ω cos α ω 1 e i ω t α α cos ei ω t/ + cos t + cos t t α cos + i ω t α cos + i ω t cos α t t + ω cos α ω 1 t t 1 (ω cos α ω 1 ) t cos t i ω t cos α ei ω t/ cos t i +ω t cos α ei ω t/ i ω 1 + ω α i ω 1 + ω t t α α ei ω t/ Because ω + ω 1 ω ω 1 cos α P + 1 ω (ω cos α) t (ω α) 1 t 1 ω α t 1 P (5.11) 5.6. Adiabatic theorem If we rotate the B field very slowly (ω << ω 1 ), the probability for quantum tunneling vanishes P ω α t ω α ω + ω 1 ω ω 1 cos α t (5.1) which vanishes when ω 0. In other words, if we changes H really slowly, the system will remain in the same quantum state. If we start from the ground state, the system will always in the ground state. If we start from the nth excited state, it will remain in the nth excited states. etc. Very slowly in physics is called adiabatically. Conclusion: for adiabatic procedures (i.e., changing H really slowly), the system will remain in the same quantum state. Comments: (1) The rigorous proof can be found in the textbook, which utilize timedependent perturbation theory () How slow is slow? Assume that we start from state n. The energy difference between this state and other states is ΔE E n E m. For the smallest ΔE, we define a time scale τ ħ/δe. Slow here means that when we change the Hamiltonian, any change need to take much longer than then τ. In the example above, we need to require the rate of change ω to be much slower than 1 τ ΔE ħ. For that example, ΔE ħ ω 1, so it means that ω << ω 1