Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Σχετικά έγγραφα
Lecture 15 - Root System Axiomatics

Lecture 13 - Root Space Decomposition II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lecture 10 - Representation Theory III: Theory of Weights

3.2 Simple Roots and Weyl Group

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Example Sheet 3 Solutions

Congruence Classes of Invertible Matrices of Order 3 over F 2

EE512: Error Control Coding

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Reminders: linear functions

Finite Field Problems: Solutions

Every set of first-order formulas is equivalent to an independent set

Cyclic or elementary abelian Covers of K 4

5. Choice under Uncertainty

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

From root systems to Dynkin diagrams

C.S. 430 Assignment 6, Sample Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Fractional Colorings and Zykov Products of graphs

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Partial Differential Equations in Biology The boundary element method. March 26, 2013

New bounds for spherical two-distance sets and equiangular lines

Homomorphism of Intuitionistic Fuzzy Groups

2 Composition. Invertible Mappings

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Other Test Constructions: Likelihood Ratio & Bayes Tests

Trigonometric Formula Sheet

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ST5224: Advanced Statistical Theory II

Homomorphism in Intuitionistic Fuzzy Automata

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Parametrized Surfaces

If we restrict the domain of y = sin x to [ π 2, π 2

On the Galois Group of Linear Difference-Differential Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Numerical Analysis FMN011

Chap. 6 Pushdown Automata

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Uniform Convergence of Fourier Series Michael Taylor

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

w o = R 1 p. (1) R = p =. = 1

Generating Set of the Complete Semigroups of Binary Relations

Units and the Unit Conjecture

A Lambda Model Characterizing Computational Behaviours of Terms

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

12. Radon-Nikodym Theorem

Tridiagonal matrices. Gérard MEURANT. October, 2008

Intuitionistic Fuzzy Ideals of Near Rings

Inverse trigonometric functions & General Solution of Trigonometric Equations

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

On a four-dimensional hyperbolic manifold with finite volume

Lecture Notes Introduction to Cluster Algebra

Homework 8 Model Solution Section

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Statistical Inference I Locally most powerful tests

Chapter 3: Ordinal Numbers

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

SOME PROPERTIES OF FUZZY REAL NUMBERS

Commutative Monoids in Intuitionistic Fuzzy Sets

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The challenges of non-stable predicates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

An Inventory of Continuous Distributions

Areas and Lengths in Polar Coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

6.3 Forecasting ARMA processes

Mellin transforms and asymptotics: Harmonic sums

Section 8.3 Trigonometric Equations

Matrices and Determinants

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

A Note on Intuitionistic Fuzzy. Equivalence Relation

de Rham Theorem May 10, 2016

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Divergence for log concave functions

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

The Simply Typed Lambda Calculus

CRASH COURSE IN PRECALCULUS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

A CLASSIFICATION OF SUBSYSTEMS OF A ROOT SYSTEM

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

From the finite to the transfinite: Λµ-terms and streams

Elements of Information Theory

Strukturalna poprawność argumentu.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Distances in Sierpiński Triangle Graphs

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Transcript:

Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015

Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero vectors in Euclidean space V s.t. (R1) Φ Rα = {α, α} for all α Φ (R2) s α(φ) = Φ for all α Φ, where s α : v v 2(v,α) α is the reflection along α (α,α) (R3) 2(α,β) (α,α) Z for all α, β Φ. Φ is called irreducible if for all α, β Φ there are m N, α = α 1,..., α m, α m+1 = β Φ s.t. m i=1 (α i, α i+1 ) 0. Remark Φ irreducible root system, then there is a basis = {α 1,..., α n} Φ V s.t. for all α Φ there are a 1,..., a n Z 0 with α = a 1 α 1 +... + a nα n or α = a 1 α 1... a nα n positive root negative root Φ + := Φ + ( ) denotes the set of all positive roots.! α = c i α i Φ + (the highest root) with maximal height n i=1 c i N.

The irreducible crystallographic root systems A n B n C n D n E 6 E 7 E 8 F 4 α1 α2 α n 1 αn α1 α2 α n 1 αn α1 α2 α n 1 αn αn α1 α2 α n 2 α6 α1 α2 α 3 α4 α5 α n 1 α7 α1 α2 α 3 α4 α5 α6 α8 α1 α2 α3 α4 α 5 α6 α7 α1 α2 α3 α4 G 2 α1 α2

Example a1 a2 = {α 1, α 2 } Φ + = {α 1, 2α 1 + α 2, α 1 + α 2, α 2 } Φ = Φ + Φ + order of s α1 s α2 is 4 s α1, s α2 = D 8 a1 H(a2) H(a1) a2

Finite Weyl groups Definition Let Φ be crystallographic root system. Then W (Φ) := s α : α Φ is called the Weyl group of Φ. Remark Assume that Φ is irreducible. W (Φ) = s α : α The Dynkin diagram encodes a presentation of W (Φ) W (Φ) acts irreducibly on V. F 4 α1 α2 α3 α4 W (F 4 ) = s 1, s 2, s 3, s 4 s 2 i, (s is j ) 2 ( i j > 1), (s 1 s 2 ) 3, (s 2 s 3 ) 4, (s 3 s 4 ) 3 Φ A n B n/c n D n E 6 E 7 E 8 Φ n(n + 1) 2n 2 2n(n 1) 72 126 240 W (Φ) (n + 1)! 2 n n! 2 n 1 n! 2 7 3 4 5 2 10 3 4 5 7 2 14 3 5 5 2 7 W (Φ) S n+1 C 2 S n (C n 1 2 ) : S n S 4 (3) : 2 C 2 S 6 (2) 2.O + 8 (2) : 2

Affine Weyl groups a1 s2 s1 H(a2) 2a1+a2 H(2a1+a2,1) s3 H(a1) a2 2a1+a2 a1 a2 affine Weyl group <s1,s2,s3> <s1,s2,s3 s1^2,s2^2,s3^2 (s1s2)^4,(s1s3)^4,(s2s3)^2 > Definition H α,k := {v V (v, α) = k} (affine hyperplane) α := 2 α the coroot of α Φ (α,α) s α,k : V V, v v ((v, α) k)α the reflection in the affine hyperplane H α,k

Affine Weyl groups Remark α = 2 (α,α) α, s α,k : v v ((v, α) k)α, H α,k := {v V (v, α) = k} (α ) = α (α, α) = 2, α = α if (α, α) = 2 H α,k = H α,0 + k 2 α s α,k fixes H α,k pointwise and sends 0 to kα, so it is the reflection in the affine hyperplane H α,k. Definition Let Φ be an irreducible crystallographic root system. Φ := {α α Φ} the dual root system L(Φ) := Φ Z the root lattice, L(Φ) # = {v V (v, α) Z for all α Φ} L(Φ ) # =: L(Φ) the weight lattice Proposition The affine Weyl group of Φ W a(φ) := s α,k α Φ, k Z = L(Φ ) : W (Φ) is the semidirect product of W (Φ) with the translation subgroup L(Φ ).

Proof: W a (Φ) = L(Φ ) : W (Φ) s α,k : v v ((v, α) k)α with α = 2 (α,α) α, (α, α ) = 2. W (Φ) = s α,0 α Φ W a(φ). s α,0 s α,1 = t(α ) because both map v V to (v (v, α)α )s α,1 = v (v, α)α ((v, α) (v, α) (α, α ) 1)α = v + α }{{} =2 So L(Φ ) = t(α ) α Φ W a(φ). L(Φ ) W (Φ) = {1}. L(Φ ) is normalized by W (Φ) because and W (Φ)(Φ ) = Φ. s α,k = s α,0 t(kα ) L(Φ ) : W (Φ). s α,0 t(v)s α,0 = t(s α,0 (v))

Affine Weyl groups a1 a2

Root lattice, weight lattice root lattice L(Φ) ( = α 1, α ) 2 1 1. 1 2 a1 a2 L(Φ ( ) = 2α ) 1, α 2 4 2. 2 2 weight lattice L(Φ) = α 1, 1 2 α 2

Alcoves Definition H := {H α,k α Φ, k Z} V := V H H H A connected component of V is called an alcove. A := {v V 0 < (v, α) < 1 for all α Φ + } the standard alcove. S := {s α,0 α } {s α,1 } the reflections in the faces of the standard alcove. Theorem Φ irreducible crystallographic root system. A is a simplex. W a(φ) = S. W a(φ) acts simply transitively on the set of alcoves. A is a fundamental domain for the action of W a(φ) on V.

The standard alcove is a fundamental domain a1 a2

Presentation of W a (Φ) in standard generators S a1 s2 s1 H(a2) 2a1+a2 H(2a1+a2,1) s3 H(a1) a2 2a1+a2 a1 a2 affine Weyl group <s1,s2,s3> <s1,s2,s3 s1^2,s2^2,s3^2 (s1s2)^4,(s1s3)^4,(s2s3)^2 >

The length function Definition Any w W a(φ) is a product of elements in S. We put l(w) := min{r s 1,..., s r S ; w = s 1 s 2 s r} the length of w and call any expression w = s 1 s l(w) a reduced word for w. Definition For w W a(φ) let L(w) := {H H H separates A and A w} and n(w) := L(w).

Words of minimal length s2 s3 s1 s1(s1s2s1)(s1s2s3s2s1)(s1s2s3s1s3s2s1)(s1s2s3s1s3s1s3s2s1)... =s2s1s3s1s3s2s1

Words of minimal length s2 s3 s1 w = s3s2s1s3s1s2s1 = s2s1s3s1s2s3s1

Separating hyperplanes s2 s3 s1 w = s3s2s1s3s1s2s1 = s2s1s3s1s2s3s1 L(w) contains 7 hyperplanes length of reduced word of w = 7

The length function Definition Any w W a(φ) is a product of elements in S. We put l(w) := min{r s 1,..., s r S ; w = s 1 s 2 s r} the length of w and call any expression w = s 1 s l(w) a reduced word for w. Definition For w W a(φ) let L(w) := {H H H separates A and A w} and n(w) := L(w). Theorem Let w = s 1 s l(w) and H i := H si = {v V vs i = v}. Then In particular n(w) = l(w). L(w) = {H 1, H 2 s 1, H 3 s 2 s 1,..., H l(w) s l(w) 1 s 2 s 1 }.

Coweights modulo coroots and diagram automorphisms W a(φ) = L(Φ ) : W (Φ) L(Φ ) coroot lattice L(Φ) # = {v V (v, α) Z for all α Φ} coweight lattice L(Φ ) L(Φ) # Ŵ a(φ) := L(Φ) # : W (Φ) acts on the set of alcoves. W a(φ) acts simply transitively on the set of alcoves. So Ŵa(Φ) = Wa(Φ) : Ω where Ω = Stab Ŵ a(φ) (A ). Ω = Ŵa(Φ)/Wa(Φ) = L(Φ) # /L(Φ ) acts faithfully on the simplex A. Ω acts as diagram automorphisms on the extended Dynkin diagram. Φ A n B n C n D 2n D 2n+1 E 6 E 7 E 8 F 4 G 2 Ω C n+1 C 2 C 2 C 2 C 2 C 4 C 3 C 2 1 1 1

Ŵ a (Φ) a1 a2

The order of the finite Weyl group 2a1 a2 Wa=L(Phi^):W(Phi) => W(Phi) = 8

The order of the finite Weyl group Φ irreducible crystallographic root system. W a(φ) = L(Φ ) : W (Φ) A is a fundamental domain for the action of W a(φ). P ( ) := { n i=1 λ iα i 0 < λ i < 1} is a fundamental domain for L(Φ ). L(Φ ) is a normal subgroup of W a(φ) with W a(φ)/l(φ ) = W (Φ). Theorem P ( ) is the union of W (Φ) alcoves. (up to a set of measure 0). Write the highest root α = n i=1 c iα i. Then So W (Φ) = n! Ω c 1 c n. vol(p ( ))/ vol(a ) = n! Ω c 1 c n.

The order of the finite Weyl group W (Φ) = n! Ω c 1 c n. Φ c 1,..., c n Ω W (Φ) W (Φ) A n 1, 1,..., 1 n + 1 (n + 1)! S n+1 B n 1, 2,..., 2 2 2 n n! C 2 S n C n 2,..., 2, 1 2 2 n n! C 2 S n D n 1, 2,..., 2, 1, 1 4 2 n 1 n! C n 1 2 : S n E 6 1, 2, 2, 3, 2, 1 3 2 7 3 4 5 S 4 (3) : 2 E 7 2, 2, 3, 4, 3, 2, 1 2 2 10 3 4 5 7 C 2 S 6 (2) E 8 2, 3, 4, 6, 5, 4, 3, 2 1 2 14 3 5 5 2 7 2.O + 8 (2).2 F 4 2, 3, 4, 2 1 2 7 3 2 1152 G 2 3, 2 1 2 2 3 D 12