6. Dispersion relation of surface plasmons on dielectric-metal boundaries

Σχετικά έγγραφα
Drude Model for dielectric constant of metals.

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)


Solar Neutrinos: Fluxes

Graded Refractive-Index

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

6.4 Superposition of Linear Plane Progressive Waves

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

ST5224: Advanced Statistical Theory II

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Second Order RLC Filters

Homework 8 Model Solution Section

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Part 4 RAYLEIGH AND LAMB WAVES

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Capacitors - Capacitance, Charge and Potential Difference

C.S. 430 Assignment 6, Sample Solutions

Matrices and Determinants

What happens when two or more waves overlap in a certain region of space at the same time?

Note: Please use the actual date you accessed this material in your citation.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

the total number of electrons passing through the lamp.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Calculating the propagation delay of coaxial cable

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Spherical Coordinates

Lecture 21: Scattering and FGR

Example Sheet 3 Solutions

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

[1] P Q. Fig. 3.1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Space-Time Symmetries

Homework 3 Solutions

Strain gauge and rosettes

The Simply Typed Lambda Calculus

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Section 8.3 Trigonometric Equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Dr. D. Dinev, Department of Structural Mechanics, UACEG

DuPont Suva 95 Refrigerant

Areas and Lengths in Polar Coordinates

( y) Partial Differential Equations

DuPont Suva 95 Refrigerant

Inverse trigonometric functions & General Solution of Trigonometric Equations

4.4 Superposition of Linear Plane Progressive Waves

Approximation of distance between locations on earth given by latitude and longitude

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Local Approximation with Kernels

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Parametrized Surfaces

Διαμόρφωση υποστρωμάτων στη μικροκαι νανο-κλίμακα για την δημιουργία πρωτεϊνικών μικροσυστοιχιών

Areas and Lengths in Polar Coordinates

F19MC2 Solutions 9 Complex Analysis

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Differential equations

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Chapter 5-Old. Kelvin-Helmholtz Instability

EE101: Resonance in RLC circuits

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Chapter 9 Ginzburg-Landau theory

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

D Alembert s Solution to the Wave Equation

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

From the finite to the transfinite: Λµ-terms and streams

Lifting Entry (continued)

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Numerical Analysis FMN011

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Global energy use: Decoupling or convergence?

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Example 1: THE ELECTRIC DIPOLE

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

TP A.20 The effect of spin, speed, and cut angle on draw shots

The ε-pseudospectrum of a Matrix

Section 9.2 Polar Equations and Graphs

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Derivation of Optical-Bloch Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Part III - Pricing A Down-And-Out Call Option

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

4.6 Autoregressive Moving Average Model ARMA(1,1)

Supporting Information

Three coupled amplitudes for the πη, K K and πη channels without data

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

derivation of the Laplacian from rectangular to spherical coordinates

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Transcript:

6. Disersion relation of surface lasons on ielectric-etal bounaries

Surface lasons (Gary Wieerrecht, Purue University) Definitions: collective ecitation of the free electrons in a etal Can be ecite by light: hoton-electron couling (olariton) Thin etal fils or etal nanoarticles Boun to the interface (eonentially ecaying along the noral) Longituinal surface wave in etal fils Proagates along the interface anywhere fro a few icrons to several illieters (long range lason) or can be etreely confine in nanostructures (localize lason) Note: SP is a TM wave!

Local fiel intensity eens on wavelength (sall roagation constant, ) (large roagation constant, )

Plasa oscillation ensity fluctuation of free electrons - - - - Bul lasons Plasons in the bul oscillate at eterine by the free electron ensity an effective ass Surface lason olaritons Plasons confine to surfaces that can interact with light to for roagating surface lason olaritons (SPP) Localize lasons Confineent effects result in resonant SPP oes in nanoarticles s rue c Ne 0 rue article 1 3 Ne 0

Disersion relation for bul lasons Bul lasons Disersion relation: ( )

surface lason laritons Disersion relation for surface lason olaritons Let s solve the curl equations for TE & TM oes with bounary conitions ji Hi i 0iE i Ei(, y, z) Ei( z) e : i ( z > 0) & i ( z < 0) ji Ei iμ0h i Hi(, y, z) Hi( z) e TE oe TM oe E ( z) (0, E,0), H ( z) ( H,0, H ) i yi i i zi E H y (0) E (0) y (0) H (0) E ( z) ( E,0, E ), H ( z) (0, H,0) i i zi i yi H E y (0) H (0) y (0) E (0)

TE oes : Ei( z) (0, Eyi,0) H ( z) ( H,0, H ) i i zi surface lason laritons H H H H i E i E i H i E z z E E zi yi Eyi Ei iμ0hi iμ0hi iμ0hi y z z i zi i i 0 i i 0 i yi i zi 0 i yi E E y yi i μ0 zi i H i E i yi iμ H 0 zi E yi ( 0 i i) Eyi 0 z We want wave solutions roagating in -irection, but confine to the interface with evanescent ecay in z-irection. Curl equation [ ] ji ± zi z E ( z) Ae e : ( i ), ( i ); Re > 0 yi i zi E z yi zi i ± z z iμ0hi Hi ( z) ± iai e e μ0 Bounary con. E (0) E (0) & H (0) H (0) y y A A & A ( ) 0 z z A A 0 No surface oes eist for TE olarization!

surface lason laritons TM oes : Ei( z) ( Ei,0, Ezi) H ( z) (0, H,0) i yi ( izih yi,0, iih yi ) ( i iei,0, i iezi ) zi H yi E i i z z H H y y E E E E z H H y y H z H y y z z

TM oes : surface lason laritons For any EM wave: i zi, where c SP Disersion Relation c

TM oes : surface lason laritons -irection: z-irection: i" c zi i For a boun SP oe: zi ust be iaginary: < 0 c 1/ i " i zi zi izi ± c 1/ zi ± i ± i > i i c c c ust be real: < 0 for z < 0 - for z > 0 So, <

( ) ( ) ( ) ( ) ( ) 1 " 4 " 1 " " 1 " 4 1 " ) ( ) ( e e e e c c ( ) ( ) ", e where 1/ " i c etals, in ost of an, 0, " >> > <, ( ) " 3/ " 1/ c c " i surface lason laritons

surface lason laritons Proagation length The length after which the intensity ecreases to 1/e : 3/ " " 1 " 1 1 i ( ), where c 1 ( 1) L

Plot of the isersion relation : For ieal free-electrons 1 ) ( c Plot of the ielectric constants: Plot of the isersion relation: s 1,, When ) (1 ) ( s c surface lason laritons

Surface lason isersion relation: surface lason laritons c 1/ zi i c 1/ c c Raiative oes ( > 0) real real z Quasi-boun oes ( < < 0) iaginary real z 1 z Dielectric: Metal: " Boun oes ( < ) real iaginary z Re

Disersion relation for bul an surface lasons surface lason laritons c 1/ τ τ 1 i 1 3 3 τ τ τ Cut-off frequency of SP When 1, 1 s 1

Ag/air, Ag/glass surface lason laritons τ " τ i B i 3 3 1 τ τ τ

For noble etals : J&C easure constants Silver(Ag) isersion 5 4 SP Ag/air light line air SP Ag/glass light line glass 300 E [ev] 3 600 λ [n] Gol(Au) isersion 1 0 10 0 30 40 50 60 5 SP Au/air light line air 4 [u -1 ] 0.1 1 10 100 L [u] 900 100 1500 300 E [ev] 3 SP Au/glass light line glass 600 λ [n] Coer(Cu) isersion 1 0 5 10 15 0 5 30 35 40 [u -1 ] 5 0.1 1 10 100 L [u] 900 100 1500 4 SP Cu/air light line air 300 SP Cu/glass E [ev] 3 light line glass 600 λ [n] 1 0 10 0 30 40 50 60 [u -1 ] 0.1 1 10 100 L [u] 900 100 1500

surface lason laritons X-ray wavelengths at otical frequencies Very sall SP wavelength λ vac 360 n SiO Ag

Penetration eth surface lason laritons 1 At large ( 1 ), z i. Strong concentration near the surface in both eia. E ± ie ( air : i, etal :- i) At low ( 1 >> 1), Ez i 1 E in air : Larger E z coonent Ez 1 i E in etal : 1 z Saller E z coonent Goooo waveguie!

surface lason laritons

Another reresentation of SP isersion relation surface lason laritons ν ( ) " / c

Generalization : Surface Electric Polaritons an Surface Magnetic Polaritons : Energy quanta of surface localize oscillation of electric or agnetic ioles in coherent anner Surface Electric Polariton (SEP) E Surface Magnetic Polariton (SMP) H q -q q -q N S N S Couling to TM olarize EM wave Couling to TE olarize EM wave Coon Features - Non-raiative oes scale own of control eleents - Saller grou velocity than light couling to SP - Enhanceent of fiel an surface hoton DOS

Generalization : Surface Electric Polaritons an Surface Magnetic Polaritons Disersion Relation & Decay Constants ( "/, "/ ) { For μ μ << (1,1), β ( μ μ ) " ", μ μ 1 1 1 SEP 0 O 1 ( μ μ ) " μ" γ γ γ SEP i O,, i 1 1 SEP,1 SEP,, 0 1 μ 1 J. Yoon, et al., Ot E 005.

In Suary Perittivity of a etal ( ) 1 i 1 / γ γ γ Disersion relations SPP c 1/

Tye-A : low Tye-A - Low frequency region (IR) - Wea fiel-confineent H. Won, APL 88, 011110 (006). - Most of energy is guie in cla - Low roagation loss cla sensitive alications SPP waveguies alications

Tye-B : ile Tye-B - Visible-light frequency region - Couling of localize fiel an roagation fiel Nano-hole - Moerate fiel enhanceent Sensors, islay alications Etraorinary transission of light

Tye-C : high Ag (0n) -GaN (0n, 10n) Tye-C Λ QW n-gan - UV frequency region - Strong fiel confineent - Very-low grou velocity Nano-focusing, Nano-lithograhy SP-enhance LEDs Light eission QW SE Rate : 1 1 R f i ρ( ) τ ( ) E 0 Electric fiel strength of half hoton (vacuu fluctuation) Photon DOS (Density of States)

Iortance of unerstaning the isersion relation : Broaban slow an subwavelength light in air

Iortance of unerstaning the isersion relation : Negative grou velocity < 0 SiO 0 1 SiO Si 3 N 4 SiO Si 3 N 4 Al Re 1 Si3N 4