(M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicking the M II - Substituted Quercetin 2,3-Dioxygenase

Σχετικά έγγραφα
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Electronic Supplementary Information (ESI)

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

IV. ANHANG 179. Anhang 178

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Electronic Supplementary Information

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Table of Contents 1 Supplementary Data MCD

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Available online at shd.org.rs/jscs/

Supporting Information

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supplementary Material

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information. Experimental section

Supplementary information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Supporting Information

Supporting Information

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supporting information

SUPPORTING INFORMATION

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Supporting Information

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Electronic Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

The Free Internet Journal for Organic Chemistry

Divergent synthesis of various iminocyclitols from D-ribose

of the methanol-dimethylamine complex

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supplementary material

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

Electronic Supplementary Information

Supporting Information for

Supplementary Information

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information

Supporting Information. Experimental section

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supporting Information

Electronic Supplementary Information

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Fused Bis-Benzothiadiazoles as Electron Acceptors

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

SUPPORTING INFORMATION

L. Kaßner a, K. Nagel a, R. E. Grützner b, M. Korb c, T. Rüffer c, H. Lang c and S. Spange a

and Trimethylene Carbonate

Transcript:

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 215 Supplementary material Catalytic Dioxygenation of Flavonol by M II Complexes (M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicing the M II - Substituted Quercetin 2,3-Dioxygenase 1

Table of Contents X-ray Structure Determinations. Table Caption Table S1. Summary of X-ray data collection and refinement for the complex [(Fe III L) 2 (μ-o)(μ-oac)]cl 1H 2 O (2B). Table S2. Selected bond distances (Å) and bond angles ( ) for the complex [(Fe III L) 2 (μ-o)(μ-oac)]cl 1H 2 O (2B). Table S3. The solution FT-IR results of the complexes [M II L(OAc)] in ethanol. Table S4. The products analysis results of the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] in DMF. Table S5. Kinetic data for the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] and [(Fe III L) 2 (μ- O)(μ-OAc)]Cl (2B) in DMF. Figure Caption Figure S1. ESI-MS spectrum of the complexes. Insert: The molecular pea cluster of [M II L(OAc)]H + (M: Mn, Co, Ni, Cu) or [Fe III L(OAc)] + (Line: experiment, column: calculated). (a) [Mn II L(OAc)] (1), (b) [Fe II L(OAc)] (2), (c) [Co II L(OAc)] (3), (d) [Ni II L(OAc)] (4), (e) [Cu II L(OAc)] (5), (f) [Zn II L(OAc)] (6). Figure S2. The FT-IR spectra of the ethanol solution and solid sample of [Ni II L(OAc)] (4). (A) solvent ethanol, (B) solid sample of [Ni II L(OAc)], (C) ethanol solution of [Ni II L(OAc)]. Figure S3. The EPR spectra of [Co II L(OAc)] (3) (4 mm in.5 ml DMF) at 1 K. A: under N 2, B: in the presence of 1 eq. flah under N 2. Figure S4. Cyclic voltammograms of (a) [Fe II L(OAc)] (2), (b) [Co II L(OAc)] (3), (c) [Cu II L(OAc)] (5) and flavonol in the presence of 1 eq. (d) [Mn II L(OAc)] (1), (e) [Co II L(OAc)] (3), (f) [Ni II L(OAc)] (4), (g) [Cu II L(OAc)] (5) and (h) [Zn II L(OAc)] (6) in DMF. Figure S5. The HPLC-MS spectra of the reaction products of dioxygenation of flavonol catalyzed by [Co II L(OAc)] (3) at 7 C for 12 hrs. (a) HPLC spectra. MS spectra of (b) HObs (pos.): 26.1 (M + NH 4 ) +, (c) benzoic acid (neg.): 121.3 (M H), 181.1 (M + CH 3 COO), (d) salicylic acid (neg.): 137.2 (M H), (e) N,Ndimethylbenzamide (pos.): 15.2 (M + H) + and (f) 2-hydroxy-N,N-dimethylbenzamide (pos.): 166.2 (M + H) +. Figure S6. Detection of the production of CO during dioxygenation reaction of flavonol catalyzed by [Co II L(OAc)] (3) at 7 C. (a) Plot of the CO concentration vs. reaction time. (b) Plot of the integrated CO concentration vs. reaction time. Figure S7. 1 H NMR spectra of two main products of reaction of flavonol (2.5 1-2 M in 2 ml DMF) with O 2 catalyzed by [Co II L(OAc)] (3) (5% mol) at 1 C for 7 days after esterification by CH 3 OH in the presence of H 2 SO 4 at ambient temperature. (a) salicylic acid methyl ester (b) benzoic acid methyl ester. Figure S8. Eyring plot for the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] in DMF. Figure S9. Spectral changes accompanying the titration of the complex (a) 2B, (c) 1, (d) 2, (e) 3, (f) 4, (g) 5 and (h) 6 2

(1. 1 4 M except 2B.5 1 4 M) by flavonol under N 2. Inset: Absorbance changes at max vs. eq. of flah, (b) ESI-MS spectrum of the titration solution of 2B. Figure S1. The UV-vis spectra of the complexes [M II L(OAc)] (.1 mm) (red) and in the presence of equivalent amount of flavonol (blac) (a) [Mn II L(OAc)] (1), (b) [Fe II L(OAc)] (2), (c) [Co II L(OAc)] (3), (d) [Ni II L(OAc)] (4), (e) [Cu II L(OAc)] (5), (f) [Zn II L(OAc)] (6) (g) ESI-MS spectrum of the solution of [Co II L(OAc)] + 1 eq. flah after exposure to O 2. Inset: The pea cluster of [M II L(fla)]H + (M: Mn, Ni, Cu) or [M III L(fla)] + (M: Fe, Co) (Line: experiment, column: calculated). 3

X-ray Structure Determinations Intensity data were measured at 293(2) K on a Bruer SMART APEX II CCD area detector system. Data reduction and unit cell refinement were performed with Smart-CCD software [1]. The structures were solved by direct methods using SHELXS-97 and were refined by full-matrix least squares methods using SHELXL-97. [2] For 2A, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. Since the disordered H 2 O solvent molecules could not be unambiguously modeled, the Platon Squeeze option was utilized to process the data. [3] Squeeze indicates 2 solvent regions in the cell corresponding to about 94 electrons/cell or approximately 4.5 H 2 O molecules per formula. For 2B, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. DELU limits were used for two C atoms from the ligands. Since the disordered H 2 O solvent molecules could not be unambiguously modeled, the Platon Squeeze option was utilized to process the data. [3] Squeeze indicates 8 solvent regions in the cell corresponding to about 788 electrons/cell or approximately 1 H 2 O molecules per formula. For 3A, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. Since the disordered H 2 O solvent molecules could not be unambiguously modeled, the Platon Squeeze option was utilized to process the data. [3] Squeeze indicates 2 solvent regions in the cell corresponding to about 84 electrons/cell or approximately 4 H 2 O molecules per formula. For 4A, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. The hydrogen atom attached to coordinated MeOH was located from the difference Fourier map and refined with restrained O-H distance. Since the disordered H 2 O solvent molecules could not be unambiguously modeled, the Platon Squeeze option was utilized to process the data. [3] Squeeze indicates 4 solvent regions in the cell corresponding to about 68 electrons/cell or approximately 3.5 H 2 O molecules per formula. For 5, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. All hydrogen atoms attached to oxygen atoms were located from the difference Fourier map and refined with restrained O-H and H H distances. Reference: [1] XSCANS (Version 2.1), Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1994. [2] G. M. Sheldric, SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Göttingen: Göttingen, (Germany), 1997. [3] SQUEEZE (handling of disordered solvents in structure refinement). A. L. Spe. J. Appl. Crystallogr. 23, 36, 7. 4

Table S1. Summary of X-ray data collection and refinement for the complex [(Fe III L) 2 (μ-o)(μ-oac)]cl 1H 2 O (2B). empirical formula C 44 H 43 ClFe 2 N 6 O 9 crystal habit bloc M r 946.99 Crystal color brown crystal system tetragonal crystal size (mm 3 ).2.15.1 space group I4(1)cd μ /mm -1.684 a /Å 16.545(5) 2θ max /deg 5. b/ Å 16.545(5) completeness to θ (%) 99.6 c /Å 36.72(2) reflections collected 26254 α /deg 9 independent reflections 4245 β /deg 9 R int.733 γ /deg 9 R1 a /wr2 b [I>2sigma(I)].757/.1976 V /Å 3 152(8) R1 a /wr2 b (all data).136/.215 Z 8 goodness-of-fit ( F 2 ).995 D x / g cm -3 1.251 T /K 296(2) a R1 = F o - F c / F o. b wr2 = [ w (F o2 - F c2 ) 2 / w(f o2 ) 2 ] 1/2 5

Table S2. Selected bond distances (Å) and bond angles ( ) for the complex [(Fe III L) 2 (μ-o)(μ-oac)]cl 1H 2 O (2B). bond distances (Å) bond angles ( ) Fe-N(1) 2.33(6) O(1)-Fe-O(5) 13.12(16) Fe-N(2) 2.122(8) O(1)-Fe-O(4) 94.6(2) Fe-N(3) 2.177(6) O(1)-Fe-N(1) 87.2(2) Fe-O(1) 1.985(5) O(1)-Fe-N(2) 87.3(3) Fe-O(4) 2.39(7) O(1)-Fe-N(3) 159.9(2) Fe-O(5) 1.84(3) O(5)-Fe-N(1) 167.81(18) O(5)-Fe-N(2) 96.8(3) O(5)-Fe-N(3) 96.94(18) O(5)-Fe-O(4) 98.5(3) O(4)-Fe-N(1) 87.(2) O(4)-Fe-N(2) 163.7(3) O(4)-Fe-N(3) 83.9(3) N(1)-Fe-N(2) 76.9(3) N(1)-Fe-N(3) 72.7(2) N(2)-Fe-N(3) 88.8(3) 6

Table S3. The solution FT-IR results of the complexes [M II L(OAc)] in ethanol. [Mn II L(OAc)] [Fe II L(OAc)] [Co II L(OAc)] [Ni II L(OAc)] [Cu II L(OAc)] [Zn II L(OAc)] (1) (2) (3) (4) (5) (6) COO of L : as (CO 2 ) (cm 1 ) 1594 1594 16 165 169 165 s (CO 2 ) (cm 1 ) 1413 1394 145 1417 149 1391 (cm 1 ) 181 2 195 188 2 214 OAc : as (CO 2 ) (cm 1 ) 1557 1557 1549 1558 1576 1583 s (CO 2 ) (cm 1 ) 1413 1413 142 142 1379 144 (cm 1 ) 144 144 147 156 197 143 7

Table S4. The products analysis results of the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] (5 mol %) in DMF for 12 hrs. T Yield (%) Conv TON Conv. Catalyst ( C) HObs Benzoic Salicilic N,N-dimethyl 2-Hydroxy-N,N-. (%) rate acid acid benzamide dimethyl (h 1 ) benzamide [Mn II L(OAc)] (1) 1 82.4 81.3 82.4 16.5 1.37 [Fe II L(OAc)] (2) 7 67.2 56. 8.4 67.2 13.4 1.12 [Co II L(OAc)] (3) 7 27.2 25.4 55.1 23.4 82.3 16.5 1.37 [Ni II L(OAc)] (4) 7 13.5 3.5 55.7 36.8 7.5 8.8 16.2 1.35 [Cu II L(OAc)] (5) 1 8.5 78.2 8.5 16.1 1.34 [Zn II L(OAc)] (6) 1 16.7 48.8 65.4 16.7 9.4 91.5 18.3 1.5 8

Table S5. Kinetic data for the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] and [(Fe III L) 2 (μ- O)(μ-OAc)]Cl (2B) in DMF. [Mn II L(OAc)] (1) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Mn II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 4 M -2 s -1 ) 1 1 3.18 1.2 1..58 1.79 ±.7 2 1 3.18.99 2. 1. 1.59 ±.5 3 1 3.18.97 3. 1.45 1.57 ±.4 4 1 3.18 1. 4. 2.4 1.6 ±.6 5 1 3.96 1. 3. 1.91 1.61 ±.5 6 1 4.75 1. 3. 2.37 1.66 ±.3 (1 4 M -2 s -1 ) 1.65 ±.12 7 1 3.18.79 3. 1.22 1.62 ±.9 8 1 3.18 1.32 3. 2.19 1.74 ±.7 9 85 3.63.99 1..33.92 ±.5 1 9 3.49 1.1 1..39 1.11 ±.7 11 95 3.33 1. 1..47 1.41 ±.4 [Fe II L(OAc)] (2) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Fe II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 4 M -2 s -1 ) 1 7 4.2.89 1..21.58 ±.1 2 7 4.2.89 2..4.55 ±.8 3 7 4.2.91 3..62.56 ±.7 4 7 4.2.89 4..8.56 ±.4 5 7 4.87.9 3..72.55 ±.8 6 7 5.72.89 3..81.53 ±.4 (1 4 M -2 s -1 ).55 ±.2 7 7 4.2.65 3..45.57 ±.5 8 7 4.2 1.1 3..69.52 ±.5 9 75 3.9.87 3..84.83 ±.6 1 9 3.49.87 3. 1.13 1.24 ±.5 11 95 3.33.89 3. 1.42 1.6 ±.4 9

[Co II L(OAc)] (3) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Co II L(OAc)] (1 6 M) v in (1 7 M s -1 ) (1 5 M -2 s -1 ) 1 7 4.2 1.5 2. 4.94 5.85 ±.11 2 7 4.2 1.5 1.5 3.64 5.75 ±.6 3 7 4.2 1.7 1. 2.49 5.79 ±.9 4 7 4.2 1.3.5 1.17 5.65 ±.4 (1 5 M -2 s -1 ) 5 7 4.2.9.5 1.6 5.86 ±.11 6 7 4.2 1.32.5 1.55 5.84 ±.7 5.79 ±.8 7 55 5.23.96 1. 1.59 3.17 ±.1 8 55 6.12.94 1. 1.96 3.4 ±.7 9 55 4.34.95 1. 1.39 3.38 ±.4 1 6 4.24 1.5 1. 1.83 4.11 ±.7 11 65 4.13 1.8 1. 2.16 4.84 ±.7 [Ni II L(OAc)] (4) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Ni II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 5 M -2 s -1 ) 1 7 4.2 1.3 2. 8.36 1. ±.7 2 7 4.2 1.2 1.5 5.67.92 ±.9 3 7 4.2 1.7 1. 4.11.98 ±.4 4 7 4.2.96.5 1.69.88 ±.7 (1 5 M -2 s -1 ) 5 7 4.2.82 1. 3.1.94 ±.9 6 7 4.2 1.34 1. 5.84 1.8 ±.11.95 ±.7 7 7 4.87 1.5 1. 4.77.93 ±.1 8 7 5.72 1.5 1. 5.33.88 ±.5 9 75 3.9 1.1 1. 4.45 1.13 ±.7 1 8 3.79 1. 1. 5.23 1.38 ±.5 11 9 3.49 1.4 1. 7.26 2. ±.9 1

[Cu II L(OAc)] (5) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Cu II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 4 M -2 s -1 ) 1 1 3.18 1.5 2..91 1.37 ±.7 2 1 3.18 1. 3. 1.28 1.34 ±.11 3 1 3.18 1.4 4. 1.81 1.37 ±.9 4 1 3.18 1.2 5. 2.9 1.29 ±.5 (1 4 M -2 s -1 ) 5 1 3.96 1.1 5. 2.8 1.4 ±.11 6 1 4.75 1. 5. 3.25 1.37 ±.12 1.35 ±.12 7 1 3.18.86 5. 1.83 1.33 ±.11 8 1 3.18 1.21 5. 2.55 1.33 ±.9 9 85 3.63.91 5. 1.2.73 ±.8 1 9 3.49.9 5. 1.35.86 ±.11 11 95 3.33.91 5. 1.65 1.9 ±.7 [Zn II L(OAc)] (6) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Zn II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 4 M -2 s -1 ) 1 1 3.18.8 2. 2.26 4.44±.2 2 1 3.18.8 3. 3.3 4.45±.8 3 1 3.18.79 4. 4.38 4.4±.6 4 1 3.18.72 5. 5.47 4.78±.1 5 1 3.18.9 5. 6.3 4.4±.1 6 1 3.96.89 5. 7.8 4.43±.11 7 1 4.75.87 5. 9.89 4.78±.15 (1 4 M -2 s -1 ) 4.52±.3 8 1 3.18.27 5. 1.97 4.58±.9 9 1 3.18.55 5. 4.13 4.56±.7 1 1 3.18.65 5. 4.58 4.43±.1 11 1 3.18.93 5. 6.27 4.24±.1 12 85 3.63.8 5. 3.73 2.57±.1 13 9 3.49.8 5. 4.2 3.1±.7 14 95 3.33.8 5. 4.92 3.69±.8 11

[(Fe III L) 2 (μ-o)(μ-oac)]cl (2B) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [[(Fe III L) 2 (μ-o)(μ-oac)]cl] (1 6 M) v in (1 9 M s -1 ) 1 7 4.2.9.5.43 2 7 4.2.93 1..85 3 7 4.2.91 1.5 1.14 4 7 4.2.92 2. 1.62 5 1 3.18 1.1.5 6.37 6 1 3.18.96 1. 12.4 7 1 3.18.97 1.5 18.5 8 1 3.18.97 2. 24.7 12

Relative Intensity 1 8 6 4 2 417.3 [ Mn II L] + 477.5 [ Mn II L(OAc)] H + 474 476 478 48 482 484 4 5 6 7 8 9 m / z (a) Relative Abundance 1 8 6 4 2 418.1 [Fe II L] + 474 476 478 48 482 45.1 [Fe II L(CH 3 OH)] + 477. [Fe III L(OAc)] + 911.1 [ (Fe III L) 2 (OAc)(O)] + 477. [ Fe III L(OAc)] + 2 4 6 8 1 12 m / z (b) 1 421. [ Co II L] + 1 48.2 [ NiL II (OAc)] H + Relative Abundance 8 6 4 2 481.2 [ CoL II (OAc)] H + 478 48 482 484 486 Relative Abundance 8 6 4 2 42. [ Ni II L] + 478 48 482 484 486 4 5 6 7 m / z (c) 2 3 4 5 6 7 m / z (d) Relative Abundance 1 8 6 4 2 425. [Cu II L] + 461. [Cu II L(H 2 O) 2 ] + 485. [Cu II L(OAc)]H + 482 484 486 488 49 Relative Abundance 1 8 6 4 2 426.2 [Zn II L] + 486.3 [Zn II L(OAc)]H + 486.3 [Zn II 486 488 L(OAc)]H + 49 492 m/ z 462.2 [Zn II L(H 2 O) 2 ] + 58.3 [ZnII L(OAc)]Na + 4 5 6 7 m / z (e) 4 45 5 55 6 65 m / z (f ) Figure S1. ESI-MS spectra of the complexes. Insert: The molecular pea cluster of [M II L(OAc)]H + (M: Mn, Co, Ni, Cu) or [Fe III L(OAc)] + (Line: experiment, column: calculated). (a) [Mn II L(OAc)] (1), (b) [Fe II L(OAc)] (2), (c) [Co II L(OAc)] (3), (d) [Ni II L(OAc)] (4), (e) [Cu II L(OAc)] (5), (f) [Zn II L(OAc)] (6). 13

16 T ( %) 12 8 (A) (B) (C) 4 4 3 2 1 Wave number ( cm -1 ) Figure S2. The FT-IR spectra of the ethanol solution and solid sample of [Ni II L(OAc)] (4). (A) solvent ethanol (B) solid sample of [Ni II L(OAc)] (C) ethanol solution of [Ni II L(OAc)]. 14

(B) + 1 eq. flah under N 2 (A) under N 2 1 2 3 4 H (G) Figure S3. The EPR spectra of [Co II L(OAc)] (3) (4 mm in.5 ml DMF) at 1 K. A: under N 2, B: in the presence of 1 eq. flah under N 2. 15

2μΑ Fe III /Fe II 2μΑ Co III /Co II 2μΑ Cu II /Cu I.6.4.2. -.2 -.4 E vs. SCE (V) ( a ).2. -.2 -.4 E vs. SCE (V) ( b ). -.5-1. E vs. SCE (V) ( c ) 2μΑ fla /fla - 2 A fla /fla - 5 μα fla /fla -.8.6.4 E vs. SCE (V) ( d) 1.2.8.4. -.4 E vs. SCE (V) (e) 1.2.8.4. E vs. SCE (V) ( f ) fla /fla - 1μΑ fla /fla - 2μΑ 1.2.8.4. E vs. SCE (V) (g).8.6.4.2 E vs. SCE (V) (h) Figure S4. Cyclic voltammograms of (a) [Fe II L(OAc)] (2), (b) [Co II L(OAc)] (3), (c) [Cu II L(OAc)] (5) and flavonol in the presence of 1 eq. (d) [Mn II L(OAc)] (1), (e) [Co II L(OAc)] (3), (f) [Ni II L(OAc)] (4), (g) [Cu II L(OAc)] (5) and (h) [Zn II L(OAc)] (6) in DMF. 16

CoL1(OAc)-fla-1 #789-8 RT: 7.6-7.7 AV: 6 SB: 22 7.6-7.32, 7.93-8.7 NL: 2.E5 F: - c ESI Q1MS [1.-1.] 121.32 1 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 CoL1(OAc)-fla-1 #1129-1158 RT: 1.87-11.14 AV: 15 SB: 76 9.93-1.63, 12.25-13.1 NL: 1.63E6 F: + c ESI Q1MS [1.-1.] 15.15 1 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 15.67 19.2 12.35 123.45 137.16 139.13 151.24 145.2 181.11 1 113.8 179.13 29.1 159.12 177.36 23.7 5 133.28 167.9 183.2 141.69 163.7 114.34 174.36 196.41 214.34 233.7 25.78 255.21 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 181.7 29.4 223.7 5 15.9 188.12 124.14 179.12 157.6 234.26 171.99 189.26 27.7 28.41 297.1 117.8 145.7 127.31 218.2 245.2 25.11 263.1 268.99 35.4 321.1 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 MnL1(OAc)-fla-1 #1668-1685 RT: 16.7-16.22 AV: 9 SB: 26 15.62-15.84, 16.71-16.98 NL: 3.1E7 F: + c ESI Q1MS [1.-1.] 26.7 1 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 5 CoL1(OAc)-fla-1 #551-56 RT: 5.31-5.39 AV: 5 SB: 11 5.4-5.17, 5.51-5.58 NL: 2.33E5 F: - c ESI Q1MS [1.-1.] 137.13 1 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 CoL1(OAc)-fla-1 #961-978 RT: 9.25-9.4 AV: 9 SB: 43 8.81-9.22, 9.7-1.1 NL: 6.33E5 F: + c ESI Q1MS [1.-1.] 1 141.13 113.6 5 132.78 177.1 255.33 161.56 181.29 189.52 24.24 215.21 227.2 231.77 24.46 261.8 143.9 169.11 247.8 268.43 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 112.99 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 19.68 118.5 124.19 121.31 127.18 224.5 243.4 265.3 119.9 13.4 138.75 158.29 178.98 189.46 216.11 234.91 292.4 331.89 346.97 357.13 379.96 388.93 47.22 415.49 43.36 453.38 463.5 492.43 15.34 179.14 166.16 179.11 1 176.9 223.7 251.7 24.9 188.11 273. 5 228.25 121.46 147.9 153.24 238.2 279.61 294.22 314.24 196.14 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 237.16 26.1 (M + NH 4) + Relative Abundance O O COOH (a) 34.7 48.26 252.12 275.3 39. (b) Relative Abundance 121.3 (M H) 181.1 (M + CH 3 COO) COOH Relative Abundance 137.2 (M H) COOH OH 153.27 189.2 241.25 131.88 225.15 (c) 149.55 155.14 197.26 219.45 (d) Relative Abundance 15.2 (M + H) + O N 133.6 292.5 311.96 (e) Relative Abundance 166.2 (M + H) + O N OH 18.19 28.31 165.5 246.23 139.58 16.61 11.92 131.95 22.96 219.14 255.8 267.4 286.88 26.6 37. (f) Figure S5. The HPLC-MS spectra of the reaction products of dioxygenation of flavonol catalyzed by [Co II L(OAc)] (3) at 7 C for 12 hrs. (a) HPLC spectra. MS spectra of (b) HObs (pos.): 26.1 (M + NH 4 ) +, (c) benzoic acid (neg.): 121.3 (M H), 181.1 (M + CH 3 COO), (d) salicylic acid (neg.): 137.2 (M H), (e) N,Ndimethylbenzamide (pos.): 15.2 (M + H) + and (f) 2-hydroxy-N,N-dimethylbenzamide (pos.): 166.2 (M + H) +. 17

[CO] (ppm) 6 4 2 4 8 12 t (min) Accumulated [CO] (ppm) 9 6 3 4 8 12 t (min) ( a ) ( b ) Figure S6. Detection of the production of CO during dioxygenation reaction of flavonol catalyzed by [Co II L(OAc)] (3) at 7 C. (a) Plot of the CO concentration vs. reaction time. (b) Plot of the integrated CO concentration vs. reaction time. 18

OH OCH 3 OCH 3 7.8 7.6 7.4 7.2 7. 6.8 δ(ppm) O 8. 7.8 7.6 7.4 δ (ppm) O 1 8 6 4 2 δ(ppm) (a) 8 6 4 2 δ (ppm) (b) Figure S7. 1 H NMR spectra of two main products of reaction of flavonol (2.5 1-2 M in 2 ml DMF) with O 2 catalyzed by [Co II L(OAc)] (3) (5% mol) at 1 C for 7 days after esterification by CH 3 OH in the presence of H 2 SO 4 at ambient temperature. (a) salicylic acid methyl ester (b) benzoic acid methyl ester. Note: The 1 H NMR (CDCl 3, 4 MHz) data of salicylic acid methyl ester and benzoic acid methyl ester. There are some solvent peas in spectra. Salicylic acid methyl ester: (ppm) 3.86 (s, 3 H, -COOCH 3 ), 6.8 (t, J = 7.5 Hz, 1 H, H Ph-5 ), 6.9 (d, J = 1 Hz, 1 H, H Ph-3 ), 7.37 (t, J = 7.5 Hz, 1 H, H Ph-4 ), 7.75 (d, J = 7.5 Hz, 1 H, H Ph-6 ), 1.68 (s, 1H, -OH). Benzoic acid methyl ester: (ppm) 3.84 (s, 3 H, -COOCH 3 ), 7.36 (t, J = 7.5 Hz, 1 H, H Ph-4 ), 7.47 (t, J = 7.5 Hz, 2 H, H Ph-3, H Ph-5 ), 7.96 (d, J = 7.5 Hz, 2 H, H Ph-2, H Ph-6 ). 19

8 ln ( / T) 6 4 2 2.6 2.8 3. 3.2 1/ T ( 1-3 K -1 ) Co Ni Fe Cu Mn Zn Figure S8. Eyring plot for the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] in DMF. 2

Abs. Abs. 1..5 42 nm A (42 nm) 1..5. 1 2 3 flah ( eq.) vs. cat.. 4 6 8 1 1.2.8.4. 425 nm A (425 nm) ( a ) 1.2.8.4...4.8 1.2 1.6 flah ( eq.) vs. cat. 4 6 8 1 ( c ) Intensity Abs. 3 24 18 12 6 1.5 1..5 4 nm 655.28 ( [ Fe III L(fla)] + ) 655.28 [ FeIIIL(fla)] + 652 654 656 658 66 4 8 12 16 ( b ) A (4 nm) 1.2.8.4...5 1. 1.5 flah ( eq.) vs. cat.. 4 6 8 1 ( d ) Abs. 1.2.8.4. 1.5 422 nm 4 6 8 1 ( e ) 424 nm A (422 nm) 1. 1.2.8.4...4.8 1.2 flah ( eq.) vs. cat. Abs. 1.5 1..5. 443 nm A (443 nm) 1.5 1..5...4.8 1.2 1.6 flah ( eq.) vs. cat. 4 6 8 1 421 nm ( f ) 2. Abs. 1..5. A (424 nm).5...5 1. 1.5 flah ( eq.) vs. cat. 4 6 8 1 ( g ) Abs. 1.6.8. A (421 nm) 1.5 1..5...4.8 1.2 1.6 flah (eq.) vs. cat. 4 6 8 1 ( h ) Figure S9. Spectral changes accompanying the titration of the complex (a) 2B, (c) 1, (d) 2, (e) 3, (f) 4, (g) 5 and (h) 6 (1. 1 4 M except 2B.5 1 4 M) by flavonol under N 2. Inset: Absorbance changes at max vs. eq. of flah, (b) ESI-MS spectrum of the titration solution of 2B. 21

Abs. 2 1 425 nm 655.5 [ Mn II L(fla)] H + Abs. 2 1 4 nm 655.1 [ Fe III L(fla)] + 2 652 654 656 658 66 4 6 8 ( a ) 422 nm 681.25 [ Co II L(fla)] Na + 1.5 652 654 656 658 66 4 6 8 ( b ) 443 nm 658.3 [ Ni II L(fla)] H + Abs. 1 2 68 684 688 4 6 8 ( c ) 424 nm 663.1 [ Cu II L(fla)] H + Abs. 1..5. 2.4 421 nm 657 66 663 666 4 6 8 ( d ) 664.5 [Zn II L(fla)]H + Abs. Relative Intensity 1 1 8 6 4 2 662 664 666 668 67 m/ z 4 6 8 ( e ) 658.25 [ Co III L(fla)] + 481.25 [ Co II L] + HOAc 53.25 [ Co II L] + NaOAc 656 658 66 662 664 m/ z 681.25 [ Co II L(fla)] Na + 4 5 6 7 m/ z 8 9 ( g ) Abs. 1.6.8. 662 664 666 668 67 672 674 m / z 4 6 8 1 ( f ) Figure S1. The UV-vis spectra of the complexes [M II L(OAc)] (.1 mm) (red) and in the presence of equivalent amount of flavonol (blac) (a) [Mn II L(OAc)] (1), (b) [Fe II L(OAc)] (2), (c) [Co II L(OAc)] (3), (d) [Ni II L(OAc)] (4), (e) [Cu II L(OAc)] (5), (f) [Zn II L(OAc)] (6) (g) ESI-MS spectrum of the solution of [Co II L(OAc)] + 1 eq. flah after exposure to O 2. Inset: The pea cluster of [M II L(fla)]H + (M: Mn, Ni, Cu) or [M III L(fla)] + (M: Fe, Co) (Line: experiment, column: calculated). 22