Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 215 Supplementary material Catalytic Dioxygenation of Flavonol by M II Complexes (M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicing the M II - Substituted Quercetin 2,3-Dioxygenase 1
Table of Contents X-ray Structure Determinations. Table Caption Table S1. Summary of X-ray data collection and refinement for the complex [(Fe III L) 2 (μ-o)(μ-oac)]cl 1H 2 O (2B). Table S2. Selected bond distances (Å) and bond angles ( ) for the complex [(Fe III L) 2 (μ-o)(μ-oac)]cl 1H 2 O (2B). Table S3. The solution FT-IR results of the complexes [M II L(OAc)] in ethanol. Table S4. The products analysis results of the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] in DMF. Table S5. Kinetic data for the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] and [(Fe III L) 2 (μ- O)(μ-OAc)]Cl (2B) in DMF. Figure Caption Figure S1. ESI-MS spectrum of the complexes. Insert: The molecular pea cluster of [M II L(OAc)]H + (M: Mn, Co, Ni, Cu) or [Fe III L(OAc)] + (Line: experiment, column: calculated). (a) [Mn II L(OAc)] (1), (b) [Fe II L(OAc)] (2), (c) [Co II L(OAc)] (3), (d) [Ni II L(OAc)] (4), (e) [Cu II L(OAc)] (5), (f) [Zn II L(OAc)] (6). Figure S2. The FT-IR spectra of the ethanol solution and solid sample of [Ni II L(OAc)] (4). (A) solvent ethanol, (B) solid sample of [Ni II L(OAc)], (C) ethanol solution of [Ni II L(OAc)]. Figure S3. The EPR spectra of [Co II L(OAc)] (3) (4 mm in.5 ml DMF) at 1 K. A: under N 2, B: in the presence of 1 eq. flah under N 2. Figure S4. Cyclic voltammograms of (a) [Fe II L(OAc)] (2), (b) [Co II L(OAc)] (3), (c) [Cu II L(OAc)] (5) and flavonol in the presence of 1 eq. (d) [Mn II L(OAc)] (1), (e) [Co II L(OAc)] (3), (f) [Ni II L(OAc)] (4), (g) [Cu II L(OAc)] (5) and (h) [Zn II L(OAc)] (6) in DMF. Figure S5. The HPLC-MS spectra of the reaction products of dioxygenation of flavonol catalyzed by [Co II L(OAc)] (3) at 7 C for 12 hrs. (a) HPLC spectra. MS spectra of (b) HObs (pos.): 26.1 (M + NH 4 ) +, (c) benzoic acid (neg.): 121.3 (M H), 181.1 (M + CH 3 COO), (d) salicylic acid (neg.): 137.2 (M H), (e) N,Ndimethylbenzamide (pos.): 15.2 (M + H) + and (f) 2-hydroxy-N,N-dimethylbenzamide (pos.): 166.2 (M + H) +. Figure S6. Detection of the production of CO during dioxygenation reaction of flavonol catalyzed by [Co II L(OAc)] (3) at 7 C. (a) Plot of the CO concentration vs. reaction time. (b) Plot of the integrated CO concentration vs. reaction time. Figure S7. 1 H NMR spectra of two main products of reaction of flavonol (2.5 1-2 M in 2 ml DMF) with O 2 catalyzed by [Co II L(OAc)] (3) (5% mol) at 1 C for 7 days after esterification by CH 3 OH in the presence of H 2 SO 4 at ambient temperature. (a) salicylic acid methyl ester (b) benzoic acid methyl ester. Figure S8. Eyring plot for the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] in DMF. Figure S9. Spectral changes accompanying the titration of the complex (a) 2B, (c) 1, (d) 2, (e) 3, (f) 4, (g) 5 and (h) 6 2
(1. 1 4 M except 2B.5 1 4 M) by flavonol under N 2. Inset: Absorbance changes at max vs. eq. of flah, (b) ESI-MS spectrum of the titration solution of 2B. Figure S1. The UV-vis spectra of the complexes [M II L(OAc)] (.1 mm) (red) and in the presence of equivalent amount of flavonol (blac) (a) [Mn II L(OAc)] (1), (b) [Fe II L(OAc)] (2), (c) [Co II L(OAc)] (3), (d) [Ni II L(OAc)] (4), (e) [Cu II L(OAc)] (5), (f) [Zn II L(OAc)] (6) (g) ESI-MS spectrum of the solution of [Co II L(OAc)] + 1 eq. flah after exposure to O 2. Inset: The pea cluster of [M II L(fla)]H + (M: Mn, Ni, Cu) or [M III L(fla)] + (M: Fe, Co) (Line: experiment, column: calculated). 3
X-ray Structure Determinations Intensity data were measured at 293(2) K on a Bruer SMART APEX II CCD area detector system. Data reduction and unit cell refinement were performed with Smart-CCD software [1]. The structures were solved by direct methods using SHELXS-97 and were refined by full-matrix least squares methods using SHELXL-97. [2] For 2A, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. Since the disordered H 2 O solvent molecules could not be unambiguously modeled, the Platon Squeeze option was utilized to process the data. [3] Squeeze indicates 2 solvent regions in the cell corresponding to about 94 electrons/cell or approximately 4.5 H 2 O molecules per formula. For 2B, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. DELU limits were used for two C atoms from the ligands. Since the disordered H 2 O solvent molecules could not be unambiguously modeled, the Platon Squeeze option was utilized to process the data. [3] Squeeze indicates 8 solvent regions in the cell corresponding to about 788 electrons/cell or approximately 1 H 2 O molecules per formula. For 3A, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. Since the disordered H 2 O solvent molecules could not be unambiguously modeled, the Platon Squeeze option was utilized to process the data. [3] Squeeze indicates 2 solvent regions in the cell corresponding to about 84 electrons/cell or approximately 4 H 2 O molecules per formula. For 4A, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. The hydrogen atom attached to coordinated MeOH was located from the difference Fourier map and refined with restrained O-H distance. Since the disordered H 2 O solvent molecules could not be unambiguously modeled, the Platon Squeeze option was utilized to process the data. [3] Squeeze indicates 4 solvent regions in the cell corresponding to about 68 electrons/cell or approximately 3.5 H 2 O molecules per formula. For 5, all non-hydrogen atoms were refined anisotropically. The hydrogen atoms related to carbon atoms were generated geometrically. All hydrogen atoms attached to oxygen atoms were located from the difference Fourier map and refined with restrained O-H and H H distances. Reference: [1] XSCANS (Version 2.1), Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1994. [2] G. M. Sheldric, SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Göttingen: Göttingen, (Germany), 1997. [3] SQUEEZE (handling of disordered solvents in structure refinement). A. L. Spe. J. Appl. Crystallogr. 23, 36, 7. 4
Table S1. Summary of X-ray data collection and refinement for the complex [(Fe III L) 2 (μ-o)(μ-oac)]cl 1H 2 O (2B). empirical formula C 44 H 43 ClFe 2 N 6 O 9 crystal habit bloc M r 946.99 Crystal color brown crystal system tetragonal crystal size (mm 3 ).2.15.1 space group I4(1)cd μ /mm -1.684 a /Å 16.545(5) 2θ max /deg 5. b/ Å 16.545(5) completeness to θ (%) 99.6 c /Å 36.72(2) reflections collected 26254 α /deg 9 independent reflections 4245 β /deg 9 R int.733 γ /deg 9 R1 a /wr2 b [I>2sigma(I)].757/.1976 V /Å 3 152(8) R1 a /wr2 b (all data).136/.215 Z 8 goodness-of-fit ( F 2 ).995 D x / g cm -3 1.251 T /K 296(2) a R1 = F o - F c / F o. b wr2 = [ w (F o2 - F c2 ) 2 / w(f o2 ) 2 ] 1/2 5
Table S2. Selected bond distances (Å) and bond angles ( ) for the complex [(Fe III L) 2 (μ-o)(μ-oac)]cl 1H 2 O (2B). bond distances (Å) bond angles ( ) Fe-N(1) 2.33(6) O(1)-Fe-O(5) 13.12(16) Fe-N(2) 2.122(8) O(1)-Fe-O(4) 94.6(2) Fe-N(3) 2.177(6) O(1)-Fe-N(1) 87.2(2) Fe-O(1) 1.985(5) O(1)-Fe-N(2) 87.3(3) Fe-O(4) 2.39(7) O(1)-Fe-N(3) 159.9(2) Fe-O(5) 1.84(3) O(5)-Fe-N(1) 167.81(18) O(5)-Fe-N(2) 96.8(3) O(5)-Fe-N(3) 96.94(18) O(5)-Fe-O(4) 98.5(3) O(4)-Fe-N(1) 87.(2) O(4)-Fe-N(2) 163.7(3) O(4)-Fe-N(3) 83.9(3) N(1)-Fe-N(2) 76.9(3) N(1)-Fe-N(3) 72.7(2) N(2)-Fe-N(3) 88.8(3) 6
Table S3. The solution FT-IR results of the complexes [M II L(OAc)] in ethanol. [Mn II L(OAc)] [Fe II L(OAc)] [Co II L(OAc)] [Ni II L(OAc)] [Cu II L(OAc)] [Zn II L(OAc)] (1) (2) (3) (4) (5) (6) COO of L : as (CO 2 ) (cm 1 ) 1594 1594 16 165 169 165 s (CO 2 ) (cm 1 ) 1413 1394 145 1417 149 1391 (cm 1 ) 181 2 195 188 2 214 OAc : as (CO 2 ) (cm 1 ) 1557 1557 1549 1558 1576 1583 s (CO 2 ) (cm 1 ) 1413 1413 142 142 1379 144 (cm 1 ) 144 144 147 156 197 143 7
Table S4. The products analysis results of the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] (5 mol %) in DMF for 12 hrs. T Yield (%) Conv TON Conv. Catalyst ( C) HObs Benzoic Salicilic N,N-dimethyl 2-Hydroxy-N,N-. (%) rate acid acid benzamide dimethyl (h 1 ) benzamide [Mn II L(OAc)] (1) 1 82.4 81.3 82.4 16.5 1.37 [Fe II L(OAc)] (2) 7 67.2 56. 8.4 67.2 13.4 1.12 [Co II L(OAc)] (3) 7 27.2 25.4 55.1 23.4 82.3 16.5 1.37 [Ni II L(OAc)] (4) 7 13.5 3.5 55.7 36.8 7.5 8.8 16.2 1.35 [Cu II L(OAc)] (5) 1 8.5 78.2 8.5 16.1 1.34 [Zn II L(OAc)] (6) 1 16.7 48.8 65.4 16.7 9.4 91.5 18.3 1.5 8
Table S5. Kinetic data for the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] and [(Fe III L) 2 (μ- O)(μ-OAc)]Cl (2B) in DMF. [Mn II L(OAc)] (1) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Mn II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 4 M -2 s -1 ) 1 1 3.18 1.2 1..58 1.79 ±.7 2 1 3.18.99 2. 1. 1.59 ±.5 3 1 3.18.97 3. 1.45 1.57 ±.4 4 1 3.18 1. 4. 2.4 1.6 ±.6 5 1 3.96 1. 3. 1.91 1.61 ±.5 6 1 4.75 1. 3. 2.37 1.66 ±.3 (1 4 M -2 s -1 ) 1.65 ±.12 7 1 3.18.79 3. 1.22 1.62 ±.9 8 1 3.18 1.32 3. 2.19 1.74 ±.7 9 85 3.63.99 1..33.92 ±.5 1 9 3.49 1.1 1..39 1.11 ±.7 11 95 3.33 1. 1..47 1.41 ±.4 [Fe II L(OAc)] (2) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Fe II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 4 M -2 s -1 ) 1 7 4.2.89 1..21.58 ±.1 2 7 4.2.89 2..4.55 ±.8 3 7 4.2.91 3..62.56 ±.7 4 7 4.2.89 4..8.56 ±.4 5 7 4.87.9 3..72.55 ±.8 6 7 5.72.89 3..81.53 ±.4 (1 4 M -2 s -1 ).55 ±.2 7 7 4.2.65 3..45.57 ±.5 8 7 4.2 1.1 3..69.52 ±.5 9 75 3.9.87 3..84.83 ±.6 1 9 3.49.87 3. 1.13 1.24 ±.5 11 95 3.33.89 3. 1.42 1.6 ±.4 9
[Co II L(OAc)] (3) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Co II L(OAc)] (1 6 M) v in (1 7 M s -1 ) (1 5 M -2 s -1 ) 1 7 4.2 1.5 2. 4.94 5.85 ±.11 2 7 4.2 1.5 1.5 3.64 5.75 ±.6 3 7 4.2 1.7 1. 2.49 5.79 ±.9 4 7 4.2 1.3.5 1.17 5.65 ±.4 (1 5 M -2 s -1 ) 5 7 4.2.9.5 1.6 5.86 ±.11 6 7 4.2 1.32.5 1.55 5.84 ±.7 5.79 ±.8 7 55 5.23.96 1. 1.59 3.17 ±.1 8 55 6.12.94 1. 1.96 3.4 ±.7 9 55 4.34.95 1. 1.39 3.38 ±.4 1 6 4.24 1.5 1. 1.83 4.11 ±.7 11 65 4.13 1.8 1. 2.16 4.84 ±.7 [Ni II L(OAc)] (4) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Ni II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 5 M -2 s -1 ) 1 7 4.2 1.3 2. 8.36 1. ±.7 2 7 4.2 1.2 1.5 5.67.92 ±.9 3 7 4.2 1.7 1. 4.11.98 ±.4 4 7 4.2.96.5 1.69.88 ±.7 (1 5 M -2 s -1 ) 5 7 4.2.82 1. 3.1.94 ±.9 6 7 4.2 1.34 1. 5.84 1.8 ±.11.95 ±.7 7 7 4.87 1.5 1. 4.77.93 ±.1 8 7 5.72 1.5 1. 5.33.88 ±.5 9 75 3.9 1.1 1. 4.45 1.13 ±.7 1 8 3.79 1. 1. 5.23 1.38 ±.5 11 9 3.49 1.4 1. 7.26 2. ±.9 1
[Cu II L(OAc)] (5) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Cu II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 4 M -2 s -1 ) 1 1 3.18 1.5 2..91 1.37 ±.7 2 1 3.18 1. 3. 1.28 1.34 ±.11 3 1 3.18 1.4 4. 1.81 1.37 ±.9 4 1 3.18 1.2 5. 2.9 1.29 ±.5 (1 4 M -2 s -1 ) 5 1 3.96 1.1 5. 2.8 1.4 ±.11 6 1 4.75 1. 5. 3.25 1.37 ±.12 1.35 ±.12 7 1 3.18.86 5. 1.83 1.33 ±.11 8 1 3.18 1.21 5. 2.55 1.33 ±.9 9 85 3.63.91 5. 1.2.73 ±.8 1 9 3.49.9 5. 1.35.86 ±.11 11 95 3.33.91 5. 1.65 1.9 ±.7 [Zn II L(OAc)] (6) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [Zn II L(OAc)] (1 6 M) v in (1 8 M s -1 ) (1 4 M -2 s -1 ) 1 1 3.18.8 2. 2.26 4.44±.2 2 1 3.18.8 3. 3.3 4.45±.8 3 1 3.18.79 4. 4.38 4.4±.6 4 1 3.18.72 5. 5.47 4.78±.1 5 1 3.18.9 5. 6.3 4.4±.1 6 1 3.96.89 5. 7.8 4.43±.11 7 1 4.75.87 5. 9.89 4.78±.15 (1 4 M -2 s -1 ) 4.52±.3 8 1 3.18.27 5. 1.97 4.58±.9 9 1 3.18.55 5. 4.13 4.56±.7 1 1 3.18.65 5. 4.58 4.43±.1 11 1 3.18.93 5. 6.27 4.24±.1 12 85 3.63.8 5. 3.73 2.57±.1 13 9 3.49.8 5. 4.2 3.1±.7 14 95 3.33.8 5. 4.92 3.69±.8 11
[(Fe III L) 2 (μ-o)(μ-oac)]cl (2B) Exp. No. T ( C) [O 2 ] (1 3 M) [flah] (1 4 M) [[(Fe III L) 2 (μ-o)(μ-oac)]cl] (1 6 M) v in (1 9 M s -1 ) 1 7 4.2.9.5.43 2 7 4.2.93 1..85 3 7 4.2.91 1.5 1.14 4 7 4.2.92 2. 1.62 5 1 3.18 1.1.5 6.37 6 1 3.18.96 1. 12.4 7 1 3.18.97 1.5 18.5 8 1 3.18.97 2. 24.7 12
Relative Intensity 1 8 6 4 2 417.3 [ Mn II L] + 477.5 [ Mn II L(OAc)] H + 474 476 478 48 482 484 4 5 6 7 8 9 m / z (a) Relative Abundance 1 8 6 4 2 418.1 [Fe II L] + 474 476 478 48 482 45.1 [Fe II L(CH 3 OH)] + 477. [Fe III L(OAc)] + 911.1 [ (Fe III L) 2 (OAc)(O)] + 477. [ Fe III L(OAc)] + 2 4 6 8 1 12 m / z (b) 1 421. [ Co II L] + 1 48.2 [ NiL II (OAc)] H + Relative Abundance 8 6 4 2 481.2 [ CoL II (OAc)] H + 478 48 482 484 486 Relative Abundance 8 6 4 2 42. [ Ni II L] + 478 48 482 484 486 4 5 6 7 m / z (c) 2 3 4 5 6 7 m / z (d) Relative Abundance 1 8 6 4 2 425. [Cu II L] + 461. [Cu II L(H 2 O) 2 ] + 485. [Cu II L(OAc)]H + 482 484 486 488 49 Relative Abundance 1 8 6 4 2 426.2 [Zn II L] + 486.3 [Zn II L(OAc)]H + 486.3 [Zn II 486 488 L(OAc)]H + 49 492 m/ z 462.2 [Zn II L(H 2 O) 2 ] + 58.3 [ZnII L(OAc)]Na + 4 5 6 7 m / z (e) 4 45 5 55 6 65 m / z (f ) Figure S1. ESI-MS spectra of the complexes. Insert: The molecular pea cluster of [M II L(OAc)]H + (M: Mn, Co, Ni, Cu) or [Fe III L(OAc)] + (Line: experiment, column: calculated). (a) [Mn II L(OAc)] (1), (b) [Fe II L(OAc)] (2), (c) [Co II L(OAc)] (3), (d) [Ni II L(OAc)] (4), (e) [Cu II L(OAc)] (5), (f) [Zn II L(OAc)] (6). 13
16 T ( %) 12 8 (A) (B) (C) 4 4 3 2 1 Wave number ( cm -1 ) Figure S2. The FT-IR spectra of the ethanol solution and solid sample of [Ni II L(OAc)] (4). (A) solvent ethanol (B) solid sample of [Ni II L(OAc)] (C) ethanol solution of [Ni II L(OAc)]. 14
(B) + 1 eq. flah under N 2 (A) under N 2 1 2 3 4 H (G) Figure S3. The EPR spectra of [Co II L(OAc)] (3) (4 mm in.5 ml DMF) at 1 K. A: under N 2, B: in the presence of 1 eq. flah under N 2. 15
2μΑ Fe III /Fe II 2μΑ Co III /Co II 2μΑ Cu II /Cu I.6.4.2. -.2 -.4 E vs. SCE (V) ( a ).2. -.2 -.4 E vs. SCE (V) ( b ). -.5-1. E vs. SCE (V) ( c ) 2μΑ fla /fla - 2 A fla /fla - 5 μα fla /fla -.8.6.4 E vs. SCE (V) ( d) 1.2.8.4. -.4 E vs. SCE (V) (e) 1.2.8.4. E vs. SCE (V) ( f ) fla /fla - 1μΑ fla /fla - 2μΑ 1.2.8.4. E vs. SCE (V) (g).8.6.4.2 E vs. SCE (V) (h) Figure S4. Cyclic voltammograms of (a) [Fe II L(OAc)] (2), (b) [Co II L(OAc)] (3), (c) [Cu II L(OAc)] (5) and flavonol in the presence of 1 eq. (d) [Mn II L(OAc)] (1), (e) [Co II L(OAc)] (3), (f) [Ni II L(OAc)] (4), (g) [Cu II L(OAc)] (5) and (h) [Zn II L(OAc)] (6) in DMF. 16
CoL1(OAc)-fla-1 #789-8 RT: 7.6-7.7 AV: 6 SB: 22 7.6-7.32, 7.93-8.7 NL: 2.E5 F: - c ESI Q1MS [1.-1.] 121.32 1 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 CoL1(OAc)-fla-1 #1129-1158 RT: 1.87-11.14 AV: 15 SB: 76 9.93-1.63, 12.25-13.1 NL: 1.63E6 F: + c ESI Q1MS [1.-1.] 15.15 1 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 15.67 19.2 12.35 123.45 137.16 139.13 151.24 145.2 181.11 1 113.8 179.13 29.1 159.12 177.36 23.7 5 133.28 167.9 183.2 141.69 163.7 114.34 174.36 196.41 214.34 233.7 25.78 255.21 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 181.7 29.4 223.7 5 15.9 188.12 124.14 179.12 157.6 234.26 171.99 189.26 27.7 28.41 297.1 117.8 145.7 127.31 218.2 245.2 25.11 263.1 268.99 35.4 321.1 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 MnL1(OAc)-fla-1 #1668-1685 RT: 16.7-16.22 AV: 9 SB: 26 15.62-15.84, 16.71-16.98 NL: 3.1E7 F: + c ESI Q1MS [1.-1.] 26.7 1 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 5 CoL1(OAc)-fla-1 #551-56 RT: 5.31-5.39 AV: 5 SB: 11 5.4-5.17, 5.51-5.58 NL: 2.33E5 F: - c ESI Q1MS [1.-1.] 137.13 1 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 CoL1(OAc)-fla-1 #961-978 RT: 9.25-9.4 AV: 9 SB: 43 8.81-9.22, 9.7-1.1 NL: 6.33E5 F: + c ESI Q1MS [1.-1.] 1 141.13 113.6 5 132.78 177.1 255.33 161.56 181.29 189.52 24.24 215.21 227.2 231.77 24.46 261.8 143.9 169.11 247.8 268.43 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 112.99 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 19.68 118.5 124.19 121.31 127.18 224.5 243.4 265.3 119.9 13.4 138.75 158.29 178.98 189.46 216.11 234.91 292.4 331.89 346.97 357.13 379.96 388.93 47.22 415.49 43.36 453.38 463.5 492.43 15.34 179.14 166.16 179.11 1 176.9 223.7 251.7 24.9 188.11 273. 5 228.25 121.46 147.9 153.24 238.2 279.61 294.22 314.24 196.14 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 237.16 26.1 (M + NH 4) + Relative Abundance O O COOH (a) 34.7 48.26 252.12 275.3 39. (b) Relative Abundance 121.3 (M H) 181.1 (M + CH 3 COO) COOH Relative Abundance 137.2 (M H) COOH OH 153.27 189.2 241.25 131.88 225.15 (c) 149.55 155.14 197.26 219.45 (d) Relative Abundance 15.2 (M + H) + O N 133.6 292.5 311.96 (e) Relative Abundance 166.2 (M + H) + O N OH 18.19 28.31 165.5 246.23 139.58 16.61 11.92 131.95 22.96 219.14 255.8 267.4 286.88 26.6 37. (f) Figure S5. The HPLC-MS spectra of the reaction products of dioxygenation of flavonol catalyzed by [Co II L(OAc)] (3) at 7 C for 12 hrs. (a) HPLC spectra. MS spectra of (b) HObs (pos.): 26.1 (M + NH 4 ) +, (c) benzoic acid (neg.): 121.3 (M H), 181.1 (M + CH 3 COO), (d) salicylic acid (neg.): 137.2 (M H), (e) N,Ndimethylbenzamide (pos.): 15.2 (M + H) + and (f) 2-hydroxy-N,N-dimethylbenzamide (pos.): 166.2 (M + H) +. 17
[CO] (ppm) 6 4 2 4 8 12 t (min) Accumulated [CO] (ppm) 9 6 3 4 8 12 t (min) ( a ) ( b ) Figure S6. Detection of the production of CO during dioxygenation reaction of flavonol catalyzed by [Co II L(OAc)] (3) at 7 C. (a) Plot of the CO concentration vs. reaction time. (b) Plot of the integrated CO concentration vs. reaction time. 18
OH OCH 3 OCH 3 7.8 7.6 7.4 7.2 7. 6.8 δ(ppm) O 8. 7.8 7.6 7.4 δ (ppm) O 1 8 6 4 2 δ(ppm) (a) 8 6 4 2 δ (ppm) (b) Figure S7. 1 H NMR spectra of two main products of reaction of flavonol (2.5 1-2 M in 2 ml DMF) with O 2 catalyzed by [Co II L(OAc)] (3) (5% mol) at 1 C for 7 days after esterification by CH 3 OH in the presence of H 2 SO 4 at ambient temperature. (a) salicylic acid methyl ester (b) benzoic acid methyl ester. Note: The 1 H NMR (CDCl 3, 4 MHz) data of salicylic acid methyl ester and benzoic acid methyl ester. There are some solvent peas in spectra. Salicylic acid methyl ester: (ppm) 3.86 (s, 3 H, -COOCH 3 ), 6.8 (t, J = 7.5 Hz, 1 H, H Ph-5 ), 6.9 (d, J = 1 Hz, 1 H, H Ph-3 ), 7.37 (t, J = 7.5 Hz, 1 H, H Ph-4 ), 7.75 (d, J = 7.5 Hz, 1 H, H Ph-6 ), 1.68 (s, 1H, -OH). Benzoic acid methyl ester: (ppm) 3.84 (s, 3 H, -COOCH 3 ), 7.36 (t, J = 7.5 Hz, 1 H, H Ph-4 ), 7.47 (t, J = 7.5 Hz, 2 H, H Ph-3, H Ph-5 ), 7.96 (d, J = 7.5 Hz, 2 H, H Ph-2, H Ph-6 ). 19
8 ln ( / T) 6 4 2 2.6 2.8 3. 3.2 1/ T ( 1-3 K -1 ) Co Ni Fe Cu Mn Zn Figure S8. Eyring plot for the dioxygenation of flavonol catalyzed by the complexes [M II L(OAc)] in DMF. 2
Abs. Abs. 1..5 42 nm A (42 nm) 1..5. 1 2 3 flah ( eq.) vs. cat.. 4 6 8 1 1.2.8.4. 425 nm A (425 nm) ( a ) 1.2.8.4...4.8 1.2 1.6 flah ( eq.) vs. cat. 4 6 8 1 ( c ) Intensity Abs. 3 24 18 12 6 1.5 1..5 4 nm 655.28 ( [ Fe III L(fla)] + ) 655.28 [ FeIIIL(fla)] + 652 654 656 658 66 4 8 12 16 ( b ) A (4 nm) 1.2.8.4...5 1. 1.5 flah ( eq.) vs. cat.. 4 6 8 1 ( d ) Abs. 1.2.8.4. 1.5 422 nm 4 6 8 1 ( e ) 424 nm A (422 nm) 1. 1.2.8.4...4.8 1.2 flah ( eq.) vs. cat. Abs. 1.5 1..5. 443 nm A (443 nm) 1.5 1..5...4.8 1.2 1.6 flah ( eq.) vs. cat. 4 6 8 1 421 nm ( f ) 2. Abs. 1..5. A (424 nm).5...5 1. 1.5 flah ( eq.) vs. cat. 4 6 8 1 ( g ) Abs. 1.6.8. A (421 nm) 1.5 1..5...4.8 1.2 1.6 flah (eq.) vs. cat. 4 6 8 1 ( h ) Figure S9. Spectral changes accompanying the titration of the complex (a) 2B, (c) 1, (d) 2, (e) 3, (f) 4, (g) 5 and (h) 6 (1. 1 4 M except 2B.5 1 4 M) by flavonol under N 2. Inset: Absorbance changes at max vs. eq. of flah, (b) ESI-MS spectrum of the titration solution of 2B. 21
Abs. 2 1 425 nm 655.5 [ Mn II L(fla)] H + Abs. 2 1 4 nm 655.1 [ Fe III L(fla)] + 2 652 654 656 658 66 4 6 8 ( a ) 422 nm 681.25 [ Co II L(fla)] Na + 1.5 652 654 656 658 66 4 6 8 ( b ) 443 nm 658.3 [ Ni II L(fla)] H + Abs. 1 2 68 684 688 4 6 8 ( c ) 424 nm 663.1 [ Cu II L(fla)] H + Abs. 1..5. 2.4 421 nm 657 66 663 666 4 6 8 ( d ) 664.5 [Zn II L(fla)]H + Abs. Relative Intensity 1 1 8 6 4 2 662 664 666 668 67 m/ z 4 6 8 ( e ) 658.25 [ Co III L(fla)] + 481.25 [ Co II L] + HOAc 53.25 [ Co II L] + NaOAc 656 658 66 662 664 m/ z 681.25 [ Co II L(fla)] Na + 4 5 6 7 m/ z 8 9 ( g ) Abs. 1.6.8. 662 664 666 668 67 672 674 m / z 4 6 8 1 ( f ) Figure S1. The UV-vis spectra of the complexes [M II L(OAc)] (.1 mm) (red) and in the presence of equivalent amount of flavonol (blac) (a) [Mn II L(OAc)] (1), (b) [Fe II L(OAc)] (2), (c) [Co II L(OAc)] (3), (d) [Ni II L(OAc)] (4), (e) [Cu II L(OAc)] (5), (f) [Zn II L(OAc)] (6) (g) ESI-MS spectrum of the solution of [Co II L(OAc)] + 1 eq. flah after exposure to O 2. Inset: The pea cluster of [M II L(fla)]H + (M: Mn, Ni, Cu) or [M III L(fla)] + (M: Fe, Co) (Line: experiment, column: calculated). 22