MA4445: Quantum Field Theory 1

Σχετικά έγγραφα
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Example Sheet 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Space-Time Symmetries

Section 8.3 Trigonometric Equations

Matrices and Determinants

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

2 Composition. Invertible Mappings

Srednicki Chapter 55

4.6 Autoregressive Moving Average Model ARMA(1,1)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lecture 21: Scattering and FGR

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Homework 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Finite Field Problems: Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Geodesic Equations for the Wormhole Metric

Orbital angular momentum and the spherical harmonics

D Alembert s Solution to the Wave Equation

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Second Order RLC Filters

Areas and Lengths in Polar Coordinates

1 String with massive end-points

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Higher Derivative Gravity Theories

Second Order Partial Differential Equations

Areas and Lengths in Polar Coordinates

Math221: HW# 1 solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lifting Entry (continued)

ST5224: Advanced Statistical Theory II

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Tridiagonal matrices. Gérard MEURANT. October, 2008

Variational Wavefunction for the Helium Atom

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 8 Model Solution Section

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

( y) Partial Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Spherical Coordinates

Example 1: THE ELECTRIC DIPOLE

Solutions to Exercise Sheet 5

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

The Simply Typed Lambda Calculus

C.S. 430 Assignment 6, Sample Solutions

( ) 2 and compare to M.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

EE512: Error Control Coding

[1] P Q. Fig. 3.1

Oscillatory integrals

Approximation of distance between locations on earth given by latitude and longitude

Section 7.6 Double and Half Angle Formulas

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Uniform Convergence of Fourier Series Michael Taylor

SPECIAL FUNCTIONS and POLYNOMIALS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

The Pohozaev identity for the fractional Laplacian

Relativistic particle dynamics and deformed symmetry

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Congruence Classes of Invertible Matrices of Order 3 over F 2

Partial Differential Equations in Biology The boundary element method. March 26, 2013

( ) Sine wave travelling to the right side

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lecture 26: Circular domains

Capacitors - Capacitance, Charge and Potential Difference

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Statistical Inference I Locally most powerful tests

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Differential equations

Dark matter from Dark Energy-Baryonic Matter Couplings

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Durbin-Levinson recursive method

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

6.3 Forecasting ARMA processes

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ECE 468: Digital Image Processing. Lecture 8

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Homework for 1/27 Due 2/5

Strain gauge and rosettes

Reminders: linear functions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Numerical Analysis FMN011

The challenges of non-stable predicates

Parametrized Surfaces

Transcript:

MA4445: Quantum Field Theory 1 Dr. Samson Shatashvilli September 7, 01 1 Note These notes are absolutely awful, there was no way to definitely take down all of the equations, so... sorry? I will try to add as I go along too. Introduction.1 Books Peskin & Schroeder Schwever - Introduction to QFT P.A.M. Dirac lectures of QM. - only use 0 pages but is much better. Why; STR QM Particle Physics TP Quantum Many Body Sytem Phys End QED; (abc ABC...) M(e + e µ + µ ) = i=0 αi M i () α = e 4π c = 1 137.3 Alternate QFT s 1. Quantum Yang Mill s (classical Yang Mills has i = 0, Weak, Strong. Quantum Gravity 3. Cosmology e + e µ + µ Where the total momentum p tot = 0. p + m e = k + m µ k = k = p = p Θ; m e, m µ, m µ >> m e E >> m e, m µ E = p E = p + m ; E = p + m 1.E = p.θ Number Of Events σ = ρ A ρ B e A e B A Where σ is the Cross section. Could also compute the differential cross section dσ dω dσ dω (E, Θ) = 1 64π E M(Θ) 1

.4 Dimensional Analysis (units) = c = 1 [Length]=[Time]=[Energy] 1 =[mass] 1 [σ=[length] =[Energy].5 M-Scattering Amplitude Initial state is e + e, and final state is µ + µ [ ] dσ 1 = dω [Energy] M Final State H I Initial State e + e H I µ + µ = 0 } e + e H I γ µ µ + µ 0 H I γ µ s = t x = µν X µ η µν X ν M µ + µ H I γ µ η µν γ H I e + e 1 A µ B µ = A µ η µν B ν Spin Initial, Spin Final Total spin is one, from the polarisation of 1/ spin electrons. (LR) (LR) dσ dω (0, x, y, z) e (0, 1, i, 0) e (0, cos θ, i, sin θ) = {ε µ } 1.. 3. 4. (LR) (LR) e (1 cos θ) (RR) (LR) = 0 (RR) (LL) = 0 M(RL LR) = e (1 cos θ) M(LR RL) = e (1 cos θ) M(LR LR) = e (1 + cos θ) dσ dω = 1 σ = π 1 64φ E M spin = α dσ α dω = π dω 4E π 0 σ tot = 4πα 3E 4E (1 + cos θ) (1 + cos θ)( d cos θ) α = e 4π This is nd order fine string constant, eventually we will find that the constant is 1. 1. E >> M µ, relax. E >> M e, relaxed

3. O(α ) + O(α 4 ), compute 4. e + e µ + µ infinitely many more processes e + e anything, implies nothing anything. M s s r r (p, p, k, k ) = V s (p )( ieγ µ )U s (p) i ν µν q Ū r (k)( ieγ ν V ν )(k ) 1. Relativistic Waves; E + p m E = p + m. Causality; s = t (x 1 x ) < 0 U(t) = x e iht d 3 p x 0 = (π) 3 x e iht p p x o = x p = e ipx ˆp = i x ˆ pe i p v = pe i p x (π) 3 p p p i p i = 1 U(t) = e iht p i p = e π t p p (π) 3 e i = p sin θ dp dθ dφ = π t ip(x x0) = e i (π) 3 t x p p x 0 1 1 p ip(x x0) cos θ (d cos θ)e 1 e ip(x x0) e ip(x x0) = < 0 ip(x x 0 ) = sin p(x x 0) p(x x 0 ) U(t) = x iht x 0 = x e iˆp +m t x 0 1 π x x 0 s = t (x x 0 ) << 0 implies that U(t) = 0 p dp e f(p) = e f(x a) = 0 p dp sin(p x x 0 (e it p +m e f0(a) sqrtf( (a) by doing a taylor expansion [f(x) = f 0 + (x a)f (a) + (x a) f (a) +...] p = i m(x x 0) (x x0 ) t but as x x 0, then this does not equal to zero, which is bad, and shows incompatability. Antiparticles Multiparticle states spin and statistics (Pauli) Probability any commuon (event) space like regions forbidden. H = ˆp m = ˆp + m x e ih(t t ) x Which does not go to zero. Thus need a Quantum Field Theory. 3

3 Field Theory (classical) q 1,..., q N, q 1,..., q N φ x (t) = φ( x, t) φ x (t) φ( x, t) x µ x µ R 1,3 x 0 = t, x S = t x = x 0 x = X µ η µν X ν 1 0 0 0 η = 0 1 0 0 0 0 1 0 0 0 0 1 S = t t 1 dt L(q, q) The equation of Motion is such that δs = 0 S = dt d 3 xl(φ(x), µ φ(x)) δs = 0 = d 4 x Assume φ(x), µ φ) = 0 on boundary of R 1,3 δs = d 4 x ( δφ(x) δφ(x) + δ( µ φ) = µ (δφ) ([ ( )] ) L δφ(x) µ δφ + δ µ φ ) δ µ φ µ(δφ) [ ] d 4 x µ δ µ φ δφ from the E.o.m There are N-variables δφ(x) δ(l µ δ µ φ = 0 H = N i=1 p i q i L(q, q) L p i = q i (q, q) H(p, q, q) H(p, q) p i A ( ij q) q j j q = j (A 1 (q)) ij p j dh = i=1 ( ) L det 0 deta(q) 0 q i q i S = t t 1 dt L(q, q S = dt d 3 x L(φ(x), µ φ(x)) ( H dp i + H dq i + H ) d q i = q i do i L ( dq i + p i L ) d q i p i q i q i q i q i p(x) = H(p, q) L φ( x, t) = Π( x, t)d3 x 4

H = Π(x, t) = δφ(, tx) [ d 3 x Π( x, t) φ( x, ] t) L(φ, µ φ) Example example E.O.M. µ φ µ φ = H = Π( x, t) φ( x, t) L(φ, µ φ) 3 µ=0 µ φ µ φ = 0 φ 0 φ i = ( t φ) ( φ) i φ i φ L = 1 ( µφ) m φ = 1 φ 1 ( φ) 1 m φ ( + m )φ = 0 ( ( ) ) t + m = 0 H = Π( φ L = 1 Π + 1 ( φ) + m φ 0 *** I APOLOGISE FOR THE ILLEGABILITY OF THIS, SHATASHVILLI WRITES IN A VERY INCO- HERENT FASHION *** 4 Noethers Theorem φ(x) φ (x) = φ(x) + α φ(x) Suppose φ is chose such that the equations of motion do not change. L L = L + α L α L = ( δφ (αδφ) + δ µ φ ] = φ ] α φ) + µ ( δ µ φ αδφ j µ Q = α L = dµj µ δ µ φ φ J µ µ j µ = 0 j 0 d 3 x = j µ σ µ dotq = j 0 d 3 x = ) µ (α φ) [ µ ( δ µ φ jd 3 x = 0 )] α φ m = 0; KG L = 1 ( µφ) φ = 0 ( ) = 6 t = µ µ φ φ + α( φ) φ = 0 0 = L = µ J µ 5

Ex.: Complex KG φ complex C µ j µ 1µ µ φ φ = 0 L = 1 µφ 1 m φ φ = φ 1 + iφ ( + m )φ = 0 ( + m ) φ = 0 φ φ = e iα φ = φ + iαφ +... φ φ = e iαφ = φ iα φ +... j µ = φ = iφ; φ = i φ j µ = δ µ φ φ J µ δ µ φ iφ + φ) δ µ φ( i = 1 ( µ φ iφ + µ φ( i φ)) = 1 µ φ φ µ φphi) φ(x) φ = φ(x + a) = φ(x) + a µ µ φ +... d 4 x L d 4 xl + d 4 x a µ µ L L L = L + a ν µ (δ µ ν L) J µ = δ µ ν L T ν µ = j ν µ = δ µ φ νφ J ν µ Q v = Tν 0 d 3 x Q 0 = H = T0 0 d 3 x = Q i = P = Ti 0 d 3 x ( + m )φ = 0 Π( x, t) = φ( x, t) φ φ Ld3 x H = Π + ( φ) + m φ {p i, q j } = δ ij [p i, q j ] = i δ ij p i = i q i {Π( x, t), φ( y, t)} = δ (3) ( x y) ( ( ) 3 ( ) ) + m t x i=1 i (π) 3 ei p x φ( p, t) = 0 [ ] φ( p, (π) 3 ei p x t)) + p φ( p, t) + m φ( p, t) = 0 [ ] t + ( p + m ) φ( p, t) = 0 6

ω p = p + m [ ] t + ω p φ(p, t) = 0 H SHO = 1 Π + 1 ω φ φ = 1 aω (â + â ) SHO ω Π = i (â â ) [Π, φ] = 1 [â, â ] = 1 H SHO = ω(â â + 1 ) [H, â ] = ωâ [H, â] = ωâ â 0 = 0 (thegroundstate) H 0 = ω(â + â + 1 ) 0 = 1 ω 0 = E 0 0 H(â 0 ) = ( [H, â ] + â H ) 0 = (ωâ + 1 ) ωâ 0 = (ω + 1 ω)(â 0 ) H(â n 0 ) = (n + 1 )ω(â n 0 ) E n = (n + 1 ω φ( p, t) = 1 ωp (a( p, t) + a ( p, t)) φ( x, t) = Π( x, t) = ωp Π( p, t) = i d 3 p (π) 3 ei p x φ( p, t) = (a( p, t) a ( p, t)) 1 (π) 3 (e i p x a( p, t) + e i p x a ( p, t)) ωp ωp d 3 p d (π) 3 ei p x Π( x, 3 p t) = (π) 3 ( 1) (ei p x a( p, t) e i p x a ( p, t) [ ] ˆΠ( x, t), ˆφ( y, t) = iδ (3) ( x y) [â(p, t), â (p, t) ] = δ (3) ( p p ) H = d 3 xh = d 3 x (π) 3 (π) 3 ( 1) ωp ω p (e i p x a(p, t) e i p x a (p, t))(e i p x a(p, t) e i p x a (p, t)) = d 3 x p 1 ω pa (p, t)a(p, t) + a(p, t)a (p, t)) E 0 = δ (3) (0) ω p H KG = ω p â (p, t)â(p, t) Hamiltonians H o = 0 0 [H, â (p, t)] = ω p â (p, t) H, â(p, t)] = ω p â(p, t) 7

NO HATS FROM NOW ON H KG = ω p â (p, t)â(p, t) ω p = E p, a (p, t) 0 = p > such that = [a (p )a(p ), a (p)] = a (p )[a(p ), a (p)] â(p, t) 0 = 0 H(a (p, t) 0 ) = ω p (a (p) 0 p 1, p = a (p 1 )a (p ) 0 H p 1, p = (ω p1 + ω p ) p 1, p p 1,..., p N = a (p 1 )...a (p N ) 0 > N H p 1,..., p N = ω pi p 1, p i=1 H = T0 0 d 3 x p i = Ti 0 d 3 x = p i a (p)a(p) H = ω p a (p)a(p) ω p = p + m p = pa (p)a(p) 0 0 = 1 a (p) 0 = p (ω p, p) a (p 1 )a (p ) 0 = p 1, p (ω p1 + ω p, p 1 + p ) p 1 p = 0 a(p 1 )a (p ) 0 = 0 [a(p 1 ), a (p )] + a (p )a(p 1 ) 0 But the commutator bracketrs are equal to δ (3) ( p 1 p ) p 3 = γ(p 3 + βe) E = γ(e + βp 3 ) δ (3) ( p 1 p ) δ (3) ( p 1 p ) dp 3 dp 3 δ (f(x) f(x 0 )) δ(x x 0 ) δ (f(x) f(x 0 )) 1 f (x 0 ) δ(x x 0) df(y) dxδ(x) = 1 dy dyδ(f(y) = 1 δ(f(y))f (y) = δ(y) p 1 p = δ (3) ( p 1 p ) vecp = E p a (p) 0 p 1 p = E p1 δ (3) ( p 1 p ) = E p 1 δ (3) (p 1 p ) E p1 δ (3) (p 1 p ) = E p 1 δ(p 1 p ) φ( x, t = 0) φ( x, t) = e iht φ( x, t = 0)e iht i φ t = [H, φ] 8

i t π( x, t) = [π(x, t), ] i [φ( x, t φ( x, t) = t), d 3 x { 1 π (x ) + 1 ( φ) + 1 m φ ] [ d 3 x x φ( x, t) ] x ( iδ( x x ) + m ( o)φ( x, t)δ( x x ) = im φ + i φ( x, t) t π( x, t) = m φ + φ( x, t) π( x, t) + φ(x, t) π( x, t) = (3) φ( x.t) m φ( x, t) φ( x, t) (3) φ( x, t) + m φ( x, t) = 0 ( + m )φ = 0 H = E p a (p )a(p ) n Ha(p) = a(p)(h E p ) [H, a(p)] = E p a)p) t n i n Hn n! a(p) = n a(p) (H E p) n t n n! e iht a(p) = a(p)e i(h Ep)t e iht a(p)e iht = a(p)e iept a(p, t) = e iept a(p, t = 0) a (p, t) = e iept a (p, t = 0) 1 ( φ( x, 0) = a(p)e i px (π) 3 + a (p)e e p x) Ep 1 ( φ( x, t) = a(p)e ip x (π) 3 + a (p)e ip x) Ep p x = Et p x = p µ x µ = p 0 x 0 pcdot x 1 0 φ(x)φ(y) 0 = D(x y) = (π) 3 e ip (x y) E p a(p) 0 = 0 0 a = 0 [a(p), a (p )] = δ (3) ( p p ) δ(f(x)) = p = m p 0 p = m N i=1 1 f (x i ) δ(x x i) f(x i ) = 0 i = 1,..N δ(p 0 ( p + m ) = 1 δ(p 0 E p ) 1 δ(p 0 + E p ) E p E p D(x y) = (π) 3 πδ(p m ) p0>0e ip(x y) p o t p( x y) d 4 p (π) 4 πδ(p m )e i p +m t 4π 1 p i dp p +m t (π) 3 = 1 de(e m 0 p + m (π) m E e iet 9

1.. D(x y) = x 0 y 0 = t x y = 0 s = (x 0 y 0 ) ( x y) > 0 e i p r t >> 0 ψ ψ = e imt x y = r p + m (π) 3 = 1 (π) 1 dp (π) p eipr e ipr 0 E p ipr 0 = i (π) e ip rη p + m p dp sin θdθdη e ipr dp p p + m e ipr p + m e mr im Need [φ(x), φ(y)] to be zero. 0 [φ(x), φ(y)] 0 = 0 1 [φ(x), φ(y)] = D(x y) D(y x) = (π) 3 (e ip(x y) e ip(x y) ) E p Somethingsomethingsomething φ-complex Noether current Q = d 3 xi(φ φ φ φ) (x y) (x y)? 0 [φ(x), φ (y)] 0 [Q, φ] = φ positive energy [Q, φ ] = φ negative energy Positively charged particles with positive energy cancel negatively charged particles with negative energy. Something something something antiparticle, something something something going backwards and forwards in time something something. 0 [φ(x), φ(y)] 0 = (π) 3 ( e ip(x y) E p eip(x y) E p p(x y) = p 0 (x 0 y 0 ) + p( x y) = p(x y) p 0 : p 0 = E p = p(x y) 0 [φ(x), φ d 4 p e ip(x y) (y)] 0 = (π) 4 p = G(x y) m Θ(x 0 y 0 ) 0 [φ(x), φ(y)] 0 = G R (x y) ( + m )G R (x y) = iδ (4) (x y) e ( + m ip(x y) )G R = (π) 4 d 4 p = δ (4) (x y) Θ(y 0 x 0 ) 0 [φ(x), φ(y)] 0 = G Adv (x y) Θ(x 0 y 0 ) 0 φ(x)φ(y) 0 + Θ(y 0 x 0 ) 0 φ(y)φ(x) 0 = G F (x y) = 0 T (φ(x)φ(y)) 0 d 4 p i G F (x y) = (π) 4 p m + iɛ e ip(x y) p 0 = ± p + m ± iɛ ( + m )φ(x) = j(x) L = 1 ( µφ) 1 m φ + j(x)φ(x) ) 10

Imagine φ 0 is a solution to ( + m )φ 0 = 0 φφ 0 + G(x y)j(y)d 4 y G : ( + m )G(x y) = δ (4) (x y) d 3 p 1 (π) 3 (a(p)e ipx + a (p)e ipx 1 ) + Ep (π) 3 Θ(x 0 y 0 )(e ip(x y) e ip(x y) )j(y)d 4 y E p = H = [( ) ] 1 (π) 3 a(p) + i j(p) e ip x + c 1 c 1 Ep Ep a(p) a(p) + ( (π) 3 E p a (p) 0 h 0 = 1 0 N 0 = i Ep j(p) ) ( i j (p) a(p) + Ep (π) 3 j(p) 0 a 1 Ep jp < ) i j(p) Ep 11