Supporting Information Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

The Free Internet Journal for Organic Chemistry

Supporting Information

Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

Supporting information

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supporting Information

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Experimental section

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information. Experimental section

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Selective mono reduction of bisphosphine

Electronic Supplementary Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Supporting Information for

Supplementary!Information!

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Supplementary Material

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information. for

Supporting Information

Supporting Information

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supplementary information

Supporting Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information

Supporting Information

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

multicomponent synthesis of 5-amino-4-

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Table of Contents 1 Supplementary Data MCD

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Electronic Supplementary Information

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

SUPPORTING INFORMATION

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

SUPPLEMENTARY MATERIAL

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Electronic Supplementary Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Electronic Supplementary Information (ESI)

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Electronic Supplementary Information

Supporting Information for

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Electronic Supplementary information

Supporting Information

Supporting Information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Transcript:

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 215 Supporting Information Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions Ramesh Mamidala [a], Vanga Mukundam [a], Kunchala Dhanunjayarao [a], and Krishnan Venkatasubbaiah* [a] School of Chemical Sciences, National Institute of Science Education and Research (NISER), Institute of Physics Campus, Bhubaneswar-7515, rissa (India). Fax: 91-674-232436; Tel: 91-67423421; E-mail: krishv@niser.ac.in Reagents and solvents were purified according to standard procedures. Palladium acetate, 1,3-diphenyl-1,3-propanedione and phenylhydrazine were purchased from Sigma-Aldrich. Glacial acetic acid was obtained from Spectrochem. All glassware including Schlenk tubes were cleaned using base bath (potassium hydroxide in isopropanol solution), and acid bath (hydrochloric acid in distilled water). In some instance we used hydrofluoric acid to clean the Schlenk tubes. The stir-bars were cleaned using aqua regia solution. All 4 MHz 1 H, 1 MHz 13 C spectra were recorded on a Bruker ARX 4 spectrometer operating at 4 MHz. All 1 H and 13 C NMR spectra were referenced internally to solvent signals. ESI mass spectra were recorded on Bruker, microtf-qii mass spectrometer. Elemental analyses were carried out by using a Thermo quest CE instrument model EA/11 CHNS- elemental analyzer. Single-crystal X-ray diffraction data were collected on a Bruker APEX-II diffractometer equipped with an xford Instruments low-temperature attachment. The data were collected at 296 K using, Mo-Kα radiation (.7173 Å). Crystallographic data for 1 and details of X-ray diffraction experiments and crystal structure refinements are given in Table 1. SADABS 1 absorption corrections were applied in both cases. 1 The structures were solved and refined with SHELX suite of programs. 2 All non-hydrogen atoms were refined with anisotropic displacement coefficients. The H atoms were placed at calculated positions and were refined as riding atoms. Crystallographic data for the structure of 1 have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-1434. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-33; email: deposit@ccdc.cam.ac.uk).

Table S1: ptimization of Heck cross coupling reaction of Bromobenzene and Methyl acrylate using palladacycle a Entry Cat. (mol%) Base Solvent TBAB (mol%) Temp. ( C) Time (h) Yield b (%) TN d 1.1 K 2 C 3 DMF - 11 12 Trace - 2.1 K 2 C 3 DMF - 13 12 12 124 3.1 K 2 C 3 DMF - 13 3 21 21 4.1 K 2 C 3 DMF - 14 3 22 221 5.1 K 2 C 3 DMF 1 14 3 32 321 6.1 K 3 P 4 DMF 1 14 3 54 541 7.1 K 3 P 4 DMF 1 16 3 57 57 8.2 K 3 P 4 DMF 1 16 3 62 31 9.2 K 3 P 4 DMAc 1 16 3 45 226 1.2 K 3 P 4.H 2 DMF 1 16 3 15 77 11.4 K 3 P 4 DMF 1 16 3 49 c 123 12.4 K 3 P 4 DMAc 1 16 3 65 162 13.2 K 3 P 4 DMF 2 16 3 61 311 14.2 K 3 P 4 DMF 2 16 48 63 313 15.2 K 3 P 4 NMP 1 16 3 81 44

a Reaction conditions: 1 equiv of bromobenzene, 2 equiv of Methyl acrylate, 2 equiv of base. TBAB : Tetrabutylammoniumbromide, DMAc : Dimethylacetamide, NMP : N-methyl-2- pyrrolidone; b Isolated yield after chromatography; c Biphenyl product was also observed. d Turn over number, based on number of moles of the isolated product;. Table S2 : Heck cross coupling reaction of Bromobenzene and Styrene using palladacycle a Entry Cat. (mol%) Base Solvent TBAB (mol%) Temp. ( C) Time (h) Yield b (%) TN c 1.1 K 2 C 3 DMF 1 11 3 51 511 2.2 K 3 P 4 DMF 1 16 3 96 475 3.2 K 3 P 4 NMP 1 16 3 99 498 a Reaction conditions: 1 equiv of Bromobenzene, 2 equiv of Styrene, 2 equiv of base; b Isolated yield after chromatography. c Turn over number, based on number of moles of the isolated product Table S3 : Heck cross coupling reaction of iodobenzene and methyl acrylate using palladacycle (1) Entry Base Solvent Temp. ( C) Time (h) Yield c (%) TN d 1 a K 2 C 3 DMF 11 48 86 1.88 X 1 6 2 a K 3 P 4 NMP 16 3 96 1.92 X 1 6 3 b K 2 C 3 DMF 9 48 91 9 X 1 5 4 e K 2 C 3 NMP 14 1 - - a Reaction conditions: 2.45 mmol of iodobenzene, 4.9 mmol of methylacrylate, 4.9 mmol of base and 1.2 X 1-6 mmol of precatalyst 1 in 4 ml solvent

b Reaction conditions: 2.45 mmol of iodobenzene, 4.9 mmol of methylacrylate, 4.9 mmol of base X 1-6 mmol of precatalyst in 4 ml solvent c Isolated yield after chromatography d Turn over number (TN), based on number of moles of the isolated product e Reaction conditions: 2.45 mmol of iodobenzene, 4.9 mmol of methylacrylate, and 4.9 mmol of base Characterization data of the products in Table 2 and Table 3: White solid (m.p.37 C), HR-MS (ESI): calcd. for C 1 H 1 2 ([M + H] + ) : 163.754, found : 163.762 1 H NMR (4 MHz, CDCl 3 ) δ = 7.7 (d, J = 16 Hz, 1H, CH=CH), 4-1 (m, 2H, ArH), 7.39 (t, J = 4 Hz, 3H, ArH), 6.45 (d, J = 16 Hz, 1H, CH=CH), 3.81 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 167.45, 144.89, 134.4, 13.3, 128.9, 128.8, 117.82, 51.71. White solid (m.p. 92 C), HR-MS (ESI): calcd. for C 11 H 12 3 ([M + Na] + ) : 215.679, found : 215.689. 1 H NMR (4 MHz, CDCl 3 ) δ = 7.66 (d, J = 16 Hz, 1H, CH=CH), 7.48 (d, J = 8 Hz, 2H, ArH), 6.91 (d, J = 8 Hz, 2H, ArH), 6.32 (d, J = 16 Hz, 1H, CH=CH), 3.83 (s, 3H, Me), 3.77 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 167.75, 161.4, 142, 129.72, 127.1, 115.25, 114.32, 55.34, 55. White solid (m.p.148 C), HR-MS (ESI): calcd. for C 16 H 14 2 ([M + H] + ) : 239.167, found : 239.164. 1 H NMR (4 MHz, CDCl 3 ) δ = 7.75 (d, J = 16 Hz, 1H, CH=CH), 8-7.64 (m, 6H, ArH), 7.48-7.44 (t, J = 8 Hz, 2H, ArH), 7.36-7.4 (t, J = 8 Hz, 2H, ArH), 6.49 (d, J = 16 Hz, 1H, CH=CH), 3.83 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 16, 144.43, 143.9, 14.15, 133.35, 128.93, 128.6, 127.88, 126, 127.6, 117.66, 51.75.

1 H NMR (4 MHz, CDCl 3 ) δ = 8. (d, J = 16 Hz, 1H, CH=CH), (d, J = 8 Hz, 1H, ArH), 7.35 (t, J = 8 Hz, 1H, ArH), 6.9-6.98 (m, 2H, ArH), 6.53 (d, J = 16 Hz, 1H, CH=CH), 3.88 (s, 3H, Me), 3.8 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 167.96, 158.36, 14.3, 13, 128.92, 123.37, 12.7, 118.32, 111.15, 55.47, 51.6. White solid (m.p.49 C), HR-MS (ESI): calcd. for C 12 H 14 2 ([M + H] + ) : 191.167, found : 191.167. 1 H NMR (4 MHz, CDCl 3 ) δ = 7.64 (d, J = 16 Hz, 1H, CH=CH), 7.13 (s, 2H, ArH), 7.1 (s, 1H, ArH), 6.36 (d, J = 16 Hz, 1H, CH=CH), 3.8 (s, 3H, Me), 2.32 (s, 6H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 164, 145.22, 138.38, 134.32, 132.1, 125.98, 117.32, 58, 21.16. Light yellow solid (m.p.76 C), HR-MS (ESI): calcd. for C 11 H 9 2 F 3 ([M + H] + ) : 231.627, found : 231.649. 1 H NMR (4 MHz, CDCl 3 ) δ = 7.69 (d, J = 16 Hz, 1H, CH=CH),7.64-7.61 (m, 4H, ArH), 6.5 (d, J = 16 Hz, 1H, CH=CH), 3.81 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 166.83, 142.96, 137.75, 128.17, 125.86, 125.17, 122.46, 12.36, 51.88. White solid (m.p.59 C), HR-MS (ESI): calcd. for C 11 H 12 2 ([M + H] + ) : 177.91, found : 177.924. 1 H NMR (4 MHz, CDCl 3 ) δ = 7.7 (d, J = 16 Hz, 1H, CH=CH), 7.44 (d, J = 8 Hz, 2H, ArH), 7.21 (d, J = 8 Hz, 2H, ArH), 6.42 (d, J = 16 Hz, 1H, CH=CH), 3.82 (s, 3H, Me), 2.39 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 167.62, 144.88, 14.72, 131.67, 129.63, 128.8, 116.7, 51.62, 21.46.

White solid (m.p.16 C), HR-MS (ESI): calcd. for C 11 H 9 2 N ([M + H] + ) : 188.76, found : 188.73. 1 H NMR (4 MHz, CDCl 3 ) δ = 8-7.67 (m, 5H), 6.5 (d, J = 16 Hz), 3.81 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 166.57, 142.41, 138.65, 132.66, 128.41, 121.38, 118.34, 113.42, 52.2. White solid (m.p.124 C). 1 H NMR (4 MHz, CDCl 3 ) δ = 7.66-7.64 (m, 4H, ArH), 1-7.35 (m, 6H, ArH), -7.18 (.m, 2H, CH=CH). 13 C NMR (1 MHz, CDCl 3 ) δ = 137.47, 128.84, 127.76, 126.68. White solid (m.p.134 C), HR-MS (ESI): calcd. for C 15 H 14 ([M + H] + ) : 212.1151, found : 212.1127. 1 H NMR (4 MHz, CDCl 3 ) δ = 3-7.47 (m, 4H, ArH), 7.37 (t, J = 8 Hz, 2H, ArH), (t, J = 8 Hz, 1H, ArH), 7.12 (d, J = 16 Hz, 1H,CH=CH), 6.98 (d, J = 16 Hz, 1H,CH=CH), 6.93 (d, J = 8 Hz, 2H, ArH), 3.85 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 159.34, 137.69, 13.18, 128.68, 128.25, 127.76, 127.25, 126.65, 126.3, 114.18, 55.35. White solid (m.p.219 C). 1 H NMR (4 MHz, CDCl 3 ) δ = 7.65-9 (m, 6H, ArH), 5 (d, J = 8 Hz, 2H, ArH), 7.46 (t, J = 8 Hz, 2H, ArH), 7.41-7.35 (m, 3H, ArH), 7.3-7.25 (m, 1H, ArH), 7.17 (s, 2H, CH=CH). 13 C NMR (1 MHz, CDCl 3 ) δ = 139.99, 139.66, 136.65, 135.71, 128.13, 128.7, 128.3, 122, 126.98, 126.68, 126.66, 126.27, 126.25, 125.86.

White solid (m.p.119 C), HR-MS (ESI): calcd. for C 15 H 11 N ([M + H] + ) : 26.964, found : 26.963. 1 H NMR (4 MHz, CDCl 3 ) δ = 7.65-3 (m, 6H, ArH), 7.4 (t, J = 8 Hz, 2H, ArH), 7.32 (t, J = 8 Hz, 1H, ArH), 7.2 (d, J = 16 Hz, 1H, CH=CH), 7.7 (d, J = 16 Hz, 1H, CH=CH). 13 C NMR (1 MHz, CDCl 3 ) δ = 141.86, 136.3, 131, 132.43, 128.88, 128.67, 126.93, 126.88, 126.74, 11, 19. 1 H NMR (4 MHz, CDCl 3 ) δ = 7.63-7.48 (m, 4H, ArH), 7.36 (t, J = 8 Hz, 2H, ArH), 7.28-7.24 (m, 2H, ArH), 7.13 (d, J = 16 Hz, 1H, CH=CH), 6.99 (t, J = 8 Hz, 1H, ArH), 6.92 (d, J = 16 Hz, 1H, CH=CH), 3.9 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 156.94, 137.99, 129.13, 128.68, 128.6, 127.37, 126.58, 126.47, 126.43, 122, 12.77, 11.97, 55. 1 H NMR (4 MHz, CDCl 3 ) δ = 2 (d, J = 8 Hz, 2H, ArH), 7.37 (t, J = 8 Hz, 2H, ArH), (t, J = 8 Hz, 1H, ArH),, 7.16 (s, 2H, ArH), 7.14-7.4 (m, 2H, CH=CH), 6.93 (s, 1H, ArH), 2.36 (s, 6H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 137.44, 136.84, 136.55, 128.75, 128.2, 127.98, 127.61, 126.78, 125.77, 123.75, 2.63. Light yellow solid (m.p.144 C). 1 H NMR (4 MHz, CDCl 3 ) δ = 7.96 (d, J = 8 Hz, 2H, ArH), 7.6-4 (m, 4H, ArH), 7.39 (t, J = 8 Hz, 2H, ArH), 7.31 (t, J = 8 Hz, 1H, ArH), 7.23 (d, J = 16 Hz, 1H, CH=CH), 7.13 (d, J = 16 Hz, 1H, CH=CH), 2.61 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 193, 142.3, 136.71, 135.96, 131.48, 128.9, 128.82, 128.34, 127.46, 126.84, 126.52, 26.61.

White solid (m.p.136 C). 1 H NMR (4 MHz, CDCl 3 ) δ = 9 (s, 4H, ArH), 2 (d, J = 8 Hz, 2H, ArH), 7.37 (t, J = 8 Hz, 2H, ArH), 7.29(t, J = 8 Hz, 1H, ArH), 7.18 (d, J = 16 Hz, 1H, CH=CH), 7.12(d, J = 16 Hz, 1H, CH=CH). 13 C NMR (1 MHz, CDCl 3 ) δ = 14.82, 136.65, 131.22, 128.82, 128.31, 127.14, 126.8, 126.59, 125.7, 125.66, 125.63, 129. White solid (m.p.122 C). 1 H NMR (4 MHz, CDCl 3 ) δ = 5 (d, J = 8 Hz, 2H, ArH), 7.46 (d, J = 8 Hz, 2H, ArH), 7.4 (t, J = 8 Hz, 2H, ArH),, 7.31-7.18 (m, 4H, ArH), 7.17-7.8 (m, 2H, CH=CH), 2.41 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 135, 138, 129.43, 128.68, 128.65, 127.73, 127.43, 126.46, 126.43, 21.29. White solid (m.p.89 C). 1 H NMR (4 MHz, CDCl 3 ) δ = 7.65-5 (m, 4H, ArH), 1-7.43 (m, 2H, ArH), 7.4-7.34 (m, 1H, ArH), 7.7-7. (m, 2H, ArH), 3.9 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 159.26, 14.91, 14.87, 133.84, 133.82, 128.84, 128.24, 126.83, 114.32, 55.39. White solid (m.p.211 C). 1 H NMR (4 MHz, CDCl 3 ) δ = 7.71-7.67 (m, 8H, ArH), 7.49 (t, J = 8 Hz, 4H, ArH), 7.39 (t, J = 8 Hz, 3H, ArH). 13 C NMR (1 MHz, CDCl 3 ) δ = 14.74, 14.15, 128.85, 124, 127.38, 127.9.

White solid (m.p.88 C), HR-MS (ESI): calcd. for C 13 H 9 N ([M + H] + ) : 18.88, found : 18.87. 1 H NMR (4 MHz, CDCl 3 ) δ = 7.74-7.67 (m, 4H, ArH), 7.6 (d, J = 8 Hz, 2H, ArH), 1-7.41 (m, 3H, ArH). 13 C NMR (1 MHz, CDCl 3 ) δ = 145.67, 139.18, 139.2, 132.6, 129.13, 128.68, 127.74, 127.24, 118.96, 11.92. 1 H NMR (4 MHz, CDCl 3 ) δ = 4 (d, J = 8 Hz, 2H, ArH), 7.42 (t, J = 8Hz, 2H, ArH), 7.35-7.31 (m, 3H, ArH), 7.6-6.99 (m, 2H, ArH), 3.82 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 156.48, 155.6, 136, 13.91, 13.74, 126, 128.62, 127.99, 126.92, 12.84, 111.24, 57. 1 H NMR (4 MHz, CDCl 3 ) δ = 7.62 (d, J = 8 Hz, 2H, ArH), 7.46 (t, J = 8 Hz, 2H, ArH), 7.37 (m, 1H, ArH), 7.25 (s, 2H, ArH), (s, 1H, ArH), 2.43 (s, 6H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 141.49, 141.29, 138.27, 128.91, 128.65, 127.21, 127.1, 125.14, 21.44. 1 H NMR (4 MHz, CDCl 3 ) δ = 8.4 (d, J = 8 Hz, 2H, ArH), 7.73-7.65 (m, 4H, ArH), (t, J = 8 Hz, 2H, ArH), 7.45-7.41 (m, 1H, ArH), 2.67 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 197.8, 145.8, 139.89, 135.87, 128.98, 128.94, 128.26, 127.29, 127.24, 26.68.

White solid (m.p.69 C). 1 H NMR (4 MHz, CDCl 3 ) δ = 7.71 (s, 4H, ArH), 7.62 (d, J = 8 Hz, 2H, ArH), 1-7.4 (m, 3H, ArH). 13 C NMR (1 MHz, CDCl 3 ) δ = 144.76, 139.79, 129., 128.2, 127.44, 127.3, 125.74, 125.71. White solid (m.p.49 C). 1 H NMR (4 MHz, CDCl 3 ) δ = 7.65 (d, J = 8 Hz, 2H, ArH), 4 (d, J = 8 Hz, 2H, ArH), 7.49 (t, J = 8 Hz, 2H, ArH), 7.39 (t, J = 8 Hz, 1H, ArH),, 7.32 (d, J = 8 Hz, 2H, ArH),, 2.46 (s, 3H, Me). 13 C NMR (1 MHz, CDCl 3 ) δ = 141.21, 138.41, 137.6, 123, 128.76, 127.4, 127.2, 21.15. White solid (m.p.6 C), HR-MS (ESI): calcd. for C 13 H 1 ([M + H] + ) : 183.84, found : 183.88. 1 H NMR (4 MHz, CDCl 3 ) δ = 1.7 (s, 1H, CH), 7.94 (d, J = 8 Hz, 2H, ArH), 7.76 (d, J = 8 Hz, 2H, ArH), 7.65 (d, J = 8 Hz, 2H, ArH), 1-7.41 (m, 3H, ArH). 13 C NMR (1 MHz, CDCl 3 ) δ = 191.97, 147.23, 139.74, 135.21, 13.29, 129.3, 128.49, 127.71, 127.39.. Reference:

1. G. M. Sheldrick, SADABS Program for Correction of Area Detector Data; University of Go ttingen: Go ttingen, Germany, 1999. 2. SHELXTL, Package v. 6.1, BrukerAXS, Madison and WI. Molecular Structure of 1,3,5-triphenyl pyrazole 1 H NMR of 1,3,5-triphenyl pyrazole

.5 1. 2. 3. 4. 5. 6. 6.5 7. 8. ppm 1. 13.29 1.94 6.85 7.3 7.32 7.33 7.34 7.34 7.37 7.38 7.45 7.95 7.97 6.8 7. 7.2 7.4 7.6 7.8 8. ppm 1. 13.29 1.94 6.85 7.29 7.3 7.32 7.33 7.34 7.34 7.36 7.37 7.38 7.4 7.43 7.45 7.47 7.95 7.97 7.97 4-pz 3 C NMR of 1,3,5-triphenyl pyrazole 25 35 45 55 65 75 85 95 15 115 125 135 145 155 ppm

HRMS oof 1,3,5-triphenyl pyrazzole 1 H NMR R of Palladaccycle (1) 13 C NMR R of Palladacycle (1)

* mino or isomer CH2Cl2 * 19 18 * 17 1 16 * * * 15 14 13 * 12 HRMS oof Palladacyccle (1) 1 H& 13 C NMR of the t isolated products * * 11 * 1 ppm * 9 8 7 6 5 4 4 3 2 1

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1 1 1 3.6 1. 3.7 2.3 1. 3.81 6.43 6.47 7.38 7.4 1 2 3 4 7.68 7.72 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21

1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 3.12 1. 1.1 2.1 6.3 1.11 1.27 3.83 6.47 6.51 7.36 7.38 7.4 7.44 7.46 7.48 8 7.6 7.62 7.64 7.73 7.77 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21

1.2 2.4 2.3 1. 6.8 7.65 7.61 7.45 7.43 6.89 6.86 6.31 6.27 3.83 3.77 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 21 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 12. 1 13. 3..84 3.15 2.13 3.81 6.48 6.52 8 7.6 7.63 7.65 7.67 N 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 N

1.14 1.13 2.23 1. 3.27 3.8 8.2 7.98 1 7.49 7.35 6.96 6.92 6.9 6.55 6.51 3.88 3.8 1 1 1 9. 8. 7. 6.5 6. 5. 4. 3. 2. 1..5. 21 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1

1.2 2.3 1.1 1. 2.91 6.27 11.37 7.66 7.62 7.13 7.1 6.43 6.39 3.8 2.32 1 12. 1 11. 1. 9. 8. 7. 6.5 6. 5. 4. 3. 2. 1..5. 21 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1 1 1 2.94 1. 5.26 3.81 6.48 6.52 7.61 7.67 7.71 F F F 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 F F F

.72 2. 1.84.76 2.89 3. 7.72 7.68 7.45 7.43 7.29 7.22 7.2 6.44 6.4 3.82 2.39 1 12. 1 11. 1. 9. 8. 7. 6.5 6. 5. 4. 3. 2. 1..5. 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 12. 1 2. 6.18 3.95 7.18 7.38 7.48 7.49 7.64 7.66 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 12. 3. 2.3 1.18 2.13 4.18 3.85 6.92 6.94 6.98 7.2 7.8 7.12 7.24 7.28 7.35 7.37 7.39 7.47 7.49 1 3 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 12. 2. 1.12 3.17 2.15 2.16 6.14 7 7.17 7.29 7.3 7.35 7.37 7.39 7.41 7.45 7.46 7.48 4 6 7.62 7.63 7.65 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 12. 1 13. 1.6 1.6 2.6 2.4 2.7 2. 1.61 7.7 7.11 7.2 7.24 7.3 7.32 7.34 7.37 7.39 7.41 3 5 7 9 7.63 7.65 N 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 N

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 12. 1 13. 1 3..96.89.89 2.2 1.83 2.85 1.1 1.27 9 3.9 6.91 6.93 6.97 6.99 7.1 7.11 7.15 7.34 7.36 7.38 7.48 3 4 6 7.6 7.63 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19

2.7 2.12 1.3 2.7 1.83 1. 6.9 3 1 7.39 7.37 7.35 7.25 7.16 7.1 7.8 6.93 2.36 1 1 1 9. 8. 7. 6.5 6. 5. 4. 3. 2. 1..5. 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 12. 1 13. 3. 1.82 1.8 1.15 2.3 1.81 1.83 2.41 7.12 7.13 7.21 7.23 7.27 7.29 7.29 7.31 7.38 7.4 7.42 7.45 7.47 4 6 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1 1 1 2.4 1.1 2.4 2. 4.6 7.11 7.15 7.19 7.23 7.3 7.31 7.33 7.38 7.4 7.41 4 6 7.61 F F F 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 F F F

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1 1 1 3. 1.3 1.1 1.9 2.9 4.2 2.1 2.61 7.11 7.15 7.21 7.25 7.29 7.31 7.32 7.37 7.39 7.41 4 5 8 7.6 7.95 7.97 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21

4.1 2.6.91 1.94 3. 7.62 7.49 7.38 7.7 7.4 3.9 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1 1 1 1 2. 4.12 8.12 7.37 7.39 7.41 7.47 7.49 1 7.67 7.68 7.71 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1 1 1 3.1 2. 4.2 7.41 7.43 7.45 7.49 1 8 7.6 7.61 7.67 7.69 7.72 7.74 N 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 N

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 3. 2.4 2.9 2.15 5 3.82 6.99 7.1 7.2 7.4 7.6 7.32 7.33 7.35 7.4 7.42 7.44 3 5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19

2.19 2.19 1.4 2.1 1. 6.7 7.63 7.61 7.48 7.46 7.44 7.39 7.37 7.35 7.29 2.43 12. 1 11. 1. 9. 8. 7. 6.5 6. 5. 4. 3. 2. 1..5. 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 12. 1 3..98 2.11 2.7 2.1 2.1 2.67 7.29 7.41 7.43 7.45 7.48 2 7.65 7.67 7.7 7.73 8.7 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1 1 1 1.11 2.18 2.16 2.14 2.13 1. 7.41 7.42 7.44 7.47 7.49 1 7.64 7.65 7.75 7.77 7.95 7.97 1.7 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 12. 1 13. 1. 2. 2. 4. 7.41 7.43 7.44 7.48 7.49 1 7.61 7.63 7.71 F F F 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 F F F

..5 1. 2. 3. 4. 5. 6. 6.5 7. 8. 9. 1. 11. 1 3.6 1.89 1.4 1.98 2. 2.46 7.29 7.31 7.33 7.37 7.39 7.41 7.47 7.49 1 5 7 7.64 7.66 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21.15 76.76 77.8 77.39 127.2 128.76 123 137.6 138.41 141.21