Section 7.6 Double and Half Angle Formulas

Σχετικά έγγραφα
Section 8.3 Trigonometric Equations

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

PARTIAL NOTES for 6.1 Trigonometric Identities

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CRASH COURSE IN PRECALCULUS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Section 9.2 Polar Equations and Graphs

Areas and Lengths in Polar Coordinates

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

derivation of the Laplacian from rectangular to spherical coordinates

Math221: HW# 1 solutions

Areas and Lengths in Polar Coordinates

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

F-TF Sum and Difference angle

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Finite Field Problems: Solutions

Srednicki Chapter 55

MathCity.org Merging man and maths

Trigonometric Formula Sheet

Inverse trigonometric functions & General Solution of Trigonometric Equations

Homework 3 Solutions

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 Composition. Invertible Mappings

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Matrices and Determinants

TRIGONOMETRIC FUNCTIONS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Trigonometry 1.TRIGONOMETRIC RATIOS

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

The Simply Typed Lambda Calculus

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Derivations of Useful Trigonometric Identities

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

EE512: Error Control Coding

Second Order RLC Filters

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Quadratic Expressions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Example Sheet 3 Solutions

Chapter 6 BLM Answers

C.S. 430 Assignment 6, Sample Solutions

Principles of Mathematics 12 Answer Key, Contents 185

Differentiation exercise show differential equation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

w o = R 1 p. (1) R = p =. = 1

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

( ) 2 and compare to M.

Concrete Mathematics Exercises from 30 September 2016

Solutions to Exercise Sheet 5

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Exercises to Statistics of Material Fatigue No. 5

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Problem Set 3: Solutions

( y) Partial Differential Equations

Numerical Analysis FMN011

10.4 Trigonometric Identities

Section 8.2 Graphs of Polar Equations

Approximation of distance between locations on earth given by latitude and longitude

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

ST5224: Advanced Statistical Theory II

Homework 8 Model Solution Section

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Answer sheet: Third Midterm for Math 2339

4.6 Autoregressive Moving Average Model ARMA(1,1)

Tutorial problem set 6,

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Chapter 7 Analytic Trigonometry

6.3 Forecasting ARMA processes

is like multiplying by the conversion factor of. Dividing by 2π gives you the

1 String with massive end-points

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Solution to Review Problems for Midterm III

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Finite difference method for 2-D heat equation

Right Rear Door. Let's now finish the door hinge saga with the right rear door

D Alembert s Solution to the Wave Equation

Chapter 1 Complex numbers

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solution Series 9. i=1 x i and i=1 x i.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ.

Transcript:

09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ) cos(θ)cos(θ) sin(θ)sin(θ) cos (θ) sin (θ) sin(θ) sin(θ + θ) sin(θ)cos(θ) + cos(θ)sin(θ) sin(θ)cos(θ) tan(θ) tan(θ + θ) tan(θ)+tan(θ) tan(θ) tan(θ) tan(θ) tan (θ) F the double angle fmula f the cosine function, we can derive several variations of it using the Pythagean Fmula sin (θ) + cos (θ). Solving f cos (θ), we get cos (θ) sin (θ). Thus, cos (θ) sin (θ) ( sin (θ)) sin (θ) sin (θ) Now, solving f sin (θ), we get sin (θ) cos (θ). Hence cos (θ) sin (θ) cos (θ) [ cos (θ)] cos (θ) + cos (θ) cos (θ) Double-Angle Fmulas: ) cos(θ) cos (θ) sin (θ) sin (θ) cos (θ) ) sin(θ) sin(θ)cos(θ) ) tan(θ) tan(θ) tan (θ) Objective : Use Double-angle Fmulas to Find Exact Values. Find the Exact Value of the following: Ex. Given tan(θ), π < θ < π, find a) tan(θ) b) sin(θ) c) cos(θ) a) Plug the value of tan(θ) into our double-angle fmula: tan(θ) tan(θ) tan (θ) ( ( ) ) ( )

b) Befe we can apply the double-angle fmula f the sine function, we need to find sin(θ) and cos(θ). Since θ is in the second quadrant, y will be positive and x will be negative. tan(θ) 0 y, so x and y. Now, find r: x r x + y r ( ) + ( ) r + r r ± (reject the negative answer) Thus, sin(θ) y r cos(θ) x r Now, we can find sin(θ): sin(θ) sin(θ)cos(θ) ( )(. c) Using the results fm part b, we get: cos(θ) cos (θ) sin (θ) (. ) 8 9 ) ( 9 and ) 9 9 9 Objective : Use the double-angle fmulas to establish identities. Establish the following identities: Ex. a cos (θ) sin (θ) cos(θ) Ex. b cos(θ) +sin(θ) cot(θ) cot(θ)+ Ex. c cot(θ) (cot(θ) tan(θ)) a) We will start with the left side: cos (θ) sin (θ) (fact) [cos (θ) sin (θ)][cos (θ) + sin (θ)] (cos (θ) + sin (θ) ) [cos (θ) sin (θ)][] cos (θ) sin (θ) (apply the double-angle identity) cos(θ)

b) We will start with the right side; cot(θ) cot(θ)+ cos(θ ) sin(θ ) cos(θ ) sin(θ ) + (write in terms of sine and cosine) (multiply the top & bottom by sin(θ)) cos(θ ) sin(θ ) sin(θ) sin(θ) cos(θ ) sin(θ ) sin(θ)+ sin(θ) cos(θ) sin(θ) cos(θ) +sin(θ) If we examine the left side f a moment, we have cos(θ) in the numerat which is equal to cos (θ) sin (θ). This suggests that we need to multiply top and bottom by the conjugate of the numerat: cos(θ) sin(θ) cos(θ)+sin(θ) cos(θ)+sin(θ) (expand) cos(θ) +sin(θ) cos (θ) sin (θ) cos (θ)+cos(θ)sin(θ)+sin (θ) cos (θ) sin (θ) cos (θ)+sin (θ)+ cos(θ)sin(θ) cos (θ) sin (θ) +cos(θ) sin(θ) cos(θ) +sin(θ) c) Let's start with the left side: cot(θ) tan(θ) tan(θ) tan (θ) tan (θ) tan(θ) tan(θ ) tan (θ) tan(θ ) tan(θ) tan(θ ) tan(θ ) tan(θ) (cot(θ) tan(θ)) (regroup the denominat) (cos (θ) + sin (θ) ) (apply the double-angle fmulas) The identity has been established (apply double-angle fmula f tangent) (invert and multiply) (multiply top and bottom by (cot(θ) tan(θ) ) tan(θ) )

Solve f all values in [0, π): Ex. sin(θ)sin(θ) cos(θ) sin(θ)sin(θ) cos(θ) (get zero on one side) sin(θ)sin(θ) cos(θ) 0 (sin(θ) sin(θ)cos(θ)) sin(θ)cos(θ)sin(θ) cos(θ) 0 (fact out cos(θ)) cos(θ)[sin (θ) ] 0 (solve) cos(θ) 0 sin (θ) 0 Ex. θ π π sin (θ) sin(θ) ± ± ± The reference angle is π, so the four angles are π, π π π, π + π 5π, π π 7π So, the solution is { π, π, π, 5π, π, 7π }. cos(θ) sin (θ) cos(θ) sin (θ) (cos(θ) sin (θ)) sin (θ) sin (θ) (add sin (θ) to both sides) There is no solution. Ex. 5 tan(θ) + cos(θ) 0 The tangent function is undefined when the cos(θ) 0 θ π. Writing the general fm of the solution, our restriction is θ π π + kπ + kπ (solve f θ) θ π π + kπ + kπ, k is an integer k 0 θ π + (0)π π π π + (0)π π k θ π 5π π + ()π Thus, our restriction is θ π, π, 5π 7π,. + ()π 7π

tan(θ) + cos(θ) 0 sin(θ) cos(θ) + cos(θ) 0 sin(θ)cos(θ) sin (θ) sin(θ)cos(θ) sin (θ) (tan(θ) sin(θ) cos(θ) ) (use the double angle identities) + cos(θ) 0 (multiply by sin (θ)) ( sin (θ)) + cos(θ) ( sin (θ)) 0 ( sin (θ)) sin(θ)cos(θ) + cos(θ)( sin (θ)) 0 (fact out cos(θ)) cos(θ)[sin(θ) + ( sin (θ)] 0 (simplify inside the bracket) cos(θ)[ sin (θ) + sin(θ) + ] 0 (fact out ) cos(θ)[sin (θ) sin(θ) ] 0 (x x (x + )(x ) cos(θ)[sin(θ)+ ][sin(θ) ] 0 (solve) cos(θ) 0, sin(θ) + 0, sin(θ) 0 cos(θ) 0, sin(θ), sin(θ) θ π π, θ π + π 7π π π π, θ π None of these values match our restrictions, so the solution is { π, 7π, π, π }. We will first derive the half angle fmula f the sine function. Recall that cos(θ) sin (θ). We will now solve this f sin(θ): sin (θ) cos(θ) (subtract ) sin (θ) cos(θ) (divide by ) sin (θ) cos(θ) (use the square root property) sin(θ) ± sin( α ) ± cos(θ) cos(α) (Let α Now, we will derive the half angle fmula f cos(θ): cos (θ) cos(θ) (add ) cos (θ) + cos(θ) (divide by ) cos (θ) +cos(θ) cos(θ) ± cos( α ) ± +cos(θ) θ, then α θ) (use the square root property) (Let α θ, then α θ)

F the half angle fmula f the tangent function, we will use the quotient fmula: tan ( α ) sin ( α ) sin ( α cos ( α ) ) cos ( α ) cos(α) cos(α) So, tan ( α ) cos(α) tan( α ) ± cos(α). cos(α) (use the square root property) Sometimes, it might be better to use the fmula you get befe you use the square root property. Half angle fmulas sin( α ) ± cos( α ) ± cos(α) sin ( α ) cos(α) cos ( α ) tan( α ) ± cos(α) tan ( α ) cos(α) Sign equals the sign of trigonometric function in the quadrant of α/. Find the following: Ex. Write sin (θ) as an equivalent expression with the powers of the sine and cosine equal to one. sin (θ) (write as a perfect square and θ θ ) [sin ( θ )] (apply the nd half-angle fmula f sine) cos(θ) [ ] (expand) cos(θ) cos(θ) cos(θ)+cos (θ) cos(θ) + cos (θ) (write θ θ in the last term) cos(θ) + cos ( θ ) (apply the nd fmula f cosine) cos(θ) + +cos(θ) ( )

5 cos(θ) + 8 + cos(θ) 8 8 cos(θ) + 8 cos(θ) Establish the identity: Ex. 7a tan( α ) cos(α) Ex. 7b tan( α ) a) We will start with the right side. Since sin ( α ) cos(α), then sin ( α ) cos(α). Also, sin[( α )] sin( α )cos( α ). Thus, cos(α) sin ( α ) sin( α )cos( α ) (reduce) sin( α ) cos( α ) tan( α ) The identity has been established. b) tan( α cos(α) cos(α) ) (use the result from part a) (multiply top & bottom by the conjugate of cos(α)) cos (α) () sin (α ) () (expand the numerat) (but, sin (α) cos (α)) (reduce) The identity has been established. The advantage of these two fmulas f the half-angle of tangent is you do not have to wry about determining the sign. Other half-angle fmulas f tangent: tan( α ) cos(α) tan( α ) Now, let's apply these fmulas to an application problem from the book (Sullivan's PreCalculus, 9 th edition, 0, page 9, exercise 95.)

Verify the following: Ex. 8 Given D D W csc(θ) cot(θ) W csc(θ) cot(θ), show that W Dtan( θ ) (multiply by (csc(θ) cot(θ)) (csc(θ) cot(θ))d (csc(θ) cot(θ)) W csc(θ) cot(θ) (csc(θ) cot(θ))d W W D(csc(θ) cot(θ)) (rewrite in terms of sine and cosine) W D( sin(θ) cos(θ) sin(θ) ) W D( cos(θ) sin(θ) W Dtan( θ ) (combine) ) (apply the half-angle fmula) Objective : Use half-angle Fmulas to Find Exact Values Find the exact value of the following: Ex. 9a sin(5 ) Ex. 9b cos(.5 ) a) sin(5 ) sin( 0o ) ± cos(0 o ) Since 5 is in quadrant I, then the sine function is positive: cos(0 o ) (cos(0 ) ) (multiply the top & bottom by ) b) Since the cosine function is even, then cos(.5 ) cos(.5 ). Thus, +cos(5 o ) cos(.5 ) cos( 5o ) ± Since.5 is in quadrant II, then cosine function is negative:

7 +cos(5 o ) (cos(5 ) cos(5 ) +( ) (multiply the top & bottom by ) Ex. 0 Given cos(θ) π < θ < π, find a) sin( θ ) b) cos( θ ) c) tan( θ ) First. let's figure out what quadrant θ lies in: π < θ < π (divide by ) π < θ < π Thus, θ a) sin( θ ) ± cos(θ) Since θ cos(θ) b) cos( θ ) ± +cos(θ) Since θ is in quadrant II. is in quadrant II, then the sine function is positive:. (cos(θ) ) (multiply the top & bottom by ) is in quadrant II, then the cosine function is negative: +cos(θ) (cos(θ) )

8 + + + c) tan( θ ) ± cos(θ) +cos(θ) Since θ. (multiply the top & bottom by ) is in quadrant II, then the tangent function is negative: cos(θ) +cos(θ) + + (cos(θ) ) (multiply the top & bottom by ) Solve f all angles in the interval [0, π): Ex. sin (θ) + cos (θ) 0 sin (θ) + cos (θ) 0 (F + L (F + L)(F FL + L )) (sin(θ) + cos(θ))(sin (θ) sin(θ)cos(θ) + cos (θ)) 0 (sin (θ) + cos (θ) in the nd parenthesis) (sin(θ) + cos(θ))( sin(θ)cos(θ)) 0 (sin(θ) sin(θ)cos(θ)) (sin(θ) + cos(θ))( sin(θ)) 0 (solve) sin(θ) + cos(θ) 0 sin(θ) 0 cos(θ) sin(θ) sin(θ) (square both sides) no solution cos (θ) sin (θ) (subtract sin (θ) from both sides) cos (θ) sin (θ) 0 (cos(θ) cos (θ) sin (θ)) cos(θ) 0 θ π θ π π + kπ π We will need to write our general solution: + kπ (solve f θ)

θ π π + kπ + kπ, k is an integer k 0 θ π + (0)π π π π + (0)π k θ π 5π + ()π π 7π + ()π Since we squared the equation, we have to check f the solutions. θ π θ π θ 5π θ 7π sin ( π ) + cos ( π ) + 0 (reject) sin ( π ) + cos ( π ) + ( ) 0 (keep) sin ( 5π ) + cos ( 5π ) + ( ) 0 (reject) sin ( 7π ) + cos ( 7π ) ( ) + 0 (keep) The solution is { π, 7π } Let' summarize the fmulas that we derived in this section: Double-Angle Fmulas: ) cos(θ) cos (θ) sin (θ) sin (θ) cos (θ) ) sin(θ) sin(θ)cos(θ) ) tan(θ) tan(θ) tan (θ) 9 Half angle fmulas ) sin( α ) ± cos(α) 5) cos( α ) ± ) tan( α ) ± cos(α) b) tan( α ) cos(α) sin ( α ) cos(α) cos ( α ) tan ( α ) cos(α) c) tan( α )