C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Σχετικά έγγραφα
Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information

Supporting Information

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

IV. ANHANG 179. Anhang 178

Table of Contents 1 Supplementary Data MCD

Electronic Supplementary Information (ESI)

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting Information

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Fused Bis-Benzothiadiazoles as Electron Acceptors

Electronic Supplementary Information (ESI)

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting Information

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Supporting Information

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information

Supporting Information for Substituent Effects on the Properties of Borafluorenes

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Supplementary Material

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Supporting Information

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Supporting Information

Supporting Information

Supplementary information

Supporting Information

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Supporting Information for

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Supporting Information

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Supporting Information

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

and Trimethylene Carbonate

SUPPORTING INFORMATION. Recognition of Phosphopeptides by a Dinuclear Copper(II) Macrocyclic Complex in Water:Methanol 50:50 v/v Solution

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting Information

Electronic Supplementary Information:

Supporting Information

Supplementary Material

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

SUPPLEMENTARY MATERIAL

Supplementary Information for

Divergent synthesis of various iminocyclitols from D-ribose

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information-B. A Facile Iterative Synthesis of 2,5-Terpyrimidinylenes as Non-peptidic α-helical Mimics

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

Electronic Supplementary Information

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Electronic Supplementary Information (ESI)

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Electronic Supplementary Information

Supporting Information. Three new high-nuclear transition-metal-substituted

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Supporting Information

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Available online at shd.org.rs/jscs/

Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław, Poland

Transcript:

Supporting Information C H Activation of Cp* Ligand Coordinated to Ruthenium Center: Synthesis and Reactivity of a Thiolate-Bridged Diruthenium Complex Featuring Fulvene-like Cp* Ligand Xiaoxiao Ji, Dawei Yang,*, Peng Tong, Jianzhe Li, Baomin Wang, and Jingping Qu*,, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237, P. R. China *E-mail: qujp@dlut.edu.cn yangdw@dlut.edu.cn S1

Contents: Table S1. Crystallographic data for 3[PF 6 ] and 4[PF 6 ]... S4 Table S2. Crystallographic data for 5[PF 6 ] and 6[PF 6 ]... S5 Table S3. Crystallographic data for 7[PF 6 ]... S6 Figure S1. ORTEP diagram of 3[PF 6 ]... S7 Table S4. Selected bond distances (Å) and bond angles ( ) for 3[PF 6 ]... S7 Figure S2. ORTEP diagram of 4[PF 6 ]... S8 Table S5. Selected bond distances (Å) and bond angles ( ) for 4[PF 6 ]... S8 Figure S3. ORTEP diagram of 5[PF 6 ]... S9 Table S6. Selected bond distances (Å) and bond angles ( ) for 5[PF 6 ]... S9 Figure S4. ORTEP diagram of 6[PF 6 ]... S10 Table S7. Selected bond distances (Å) and bond angles ( ) for 6[PF 6 ]... S10 Figure S5. ORTEP diagram of 7[PF 6 ]... S11 Table S8. Selected bond distances (Å) and bond angles ( ) for 7[PF 6 ]... S11 Figure S6. ESI-HRMS of 2[PF 6 ] in CH 2 Cl 2... S12 Figure S7. ESI-HRMS of 3[PF 6 ] in CH 2 Cl 2... S13 Figure S8. ESI-HRMS of 4[PF 6 ] in CH 2 Cl 2... S14 Figure S9. ESI-HRMS of 5[PF 6 ] in CH 2 Cl 2... S15 Figure S10. ESI-HRMS of 6[PF 6 ] in CH 2 Cl 2... S16 Figure S11. ESI-HRMS of 7[PF 6 ] in CH 2 Cl 2... S17 Figure S12. The 1 H NMR spectrum of 2[PF 6 ] in CD 2 Cl 2... S18 Figure S13. The 13 C NMR spectrum of 2[PF 6 ] in CD 2 Cl 2... S18 Figure S14. The 1 H NMR spectrum of 3[PF 6 ] in CD 2 Cl 2... S19 Figure S15. The 13 C NMR spectrum of 3[PF 6 ] in CD 2 Cl 2... S19 Figure S16. The 1 H NMR spectrum of 4[PF 6 ] in CD 2 Cl 2... S20 Figure S17. The 13 C NMR spectrum of 4[PF 6 ] in CD 2 Cl 2... S20 Figure S18. The 1 H NMR spectrum of 5[PF 6 ] in CD 2 Cl 2... S21 Figure S19. The 13 C NMR spectrum of 5[PF 6 ] in CD 2 Cl 2... S21 Figure S20. The 1 H NMR spectrum of 6[PF 6 ] in CD 2 Cl 2... S22 Figure S21. The 13 C NMR spectrum of 6[PF 6 ] in CD 2 Cl 2... S22 S2

Figure S22. The 1 H NMR spectrum of 7[PF 6 ] in CD 2 Cl 2... S23 Figure S23. The 13 C NMR spectrum of 7[PF 6 ] in CD 2 Cl 2... S23 Figure S24. The IR (film) spectrum of 2[PF 6 ]... S24 Figure S25. The IR (film) spectrum of 3[PF 6 ]... S24 Figure S26. The IR (film) spectrum of 4[PF 6 ]... S25 Figure S27. The IR (film) spectrum of 5[PF 6 ]... S25 Figure S28. The IR (film) spectrum of 6[PF 6 ]... S26 Figure S29. The IR (film) spectrum of 7[PF 6 ]... S26 S3

Table S1. Crystallographic data for 3[PF 6 ] and 4[PF 6 ] Complex 3[PF 6 ] 4[PF 6 ] Formula C 26 H 34 ClF 6 PRu 2 S 2 C 26 H 33 F 6 I 2 PRu 2 S 2 Formula weight 793.21 1010.55 Crystal dimensions (mm 3 ) 0.33 0.31 0.29 0.33 0.31 0.29 Crystal system Triclinic Monoclinic Space group P 1 P2(1)/n a (Å) 8.4079(17) 12.910(4) b (Å) 13.793(3) 9.210(3) c (Å) 13.875(3) 27.554(9) α (º) 103.766(8) 90.00 β (º) 90.704(9) 93.761(4) γ (º) 93.810(8) 90.00 Volume (Å 3 ) 1558.8(5) 3268.9(17) Z 2 4 T (K) 301(2) 253(2) D calcd (g cm 3 ) 1.690 2.053 μ (mm 1 ) 1.291 3.040 F (000) 792 1936 No. of rflns. collected 24087 35001 No. of indep. rflns. /R int 5438 / 0.0485 5756 / 0.0521 No. of obsd. rflns. [I 0 > 2σ(I 0 )] 4273 5170 Data / restraints / parameters 5438 / 0 / 398 5756 / 0 / 352 R 1 / wr 2 [I 0 > 2σ(I 0 )] 0.0464 / 0.1155 0.0383 / 0.0942 R 1 / wr 2 (all data) 0.0686 / 0.1323 0.0437 / 0.0973 GOF (on F 2 ) 1.013 1.009 Largest diff. peak and hole (e Å 3 ) 1.850 / 0.753 1.953 / 2.054 S4

Table S2. Crystallographic data for 5[PF 6 ] and 6[PF 6 ] Complex 5[PF 6 ] 6[PF 6 ] Formula C 26 H 33 F 6 PRu 2 S 4 C 27 H 33 F 6 OPRu 2 S 2 Formula weight 820.87 784.76 Crystal dimensions (mm 3 ) 0.33 0.31 0.29 0.33 0.31 0.29 Crystal system Monoclinic Triclinic Space group P2(1)/n P 1 a (Å) 13.5457(8) 10.7896(17) b (Å) 8.9101(5) 10.9480(17) c (Å) 25.9846(15) 12.370(2) α (º) 90.00 93.700(4) β (º) 101.048(3) 91.029(4) γ (º) 90.00 91.216(4) Volume (Å 3 ) 3078.1(3) 1457.5(4) Z 4 2 T (K) 300(2) 298(2) D calcd (g cm 3 ) 1.771 1.788 μ (mm 1 ) 1.358 1.294 F (000) 1640 784 No. of rflns. collected 47163 38597 No. of indep. rflns. /R int 5420 / 0.0465 5735 / 0.0354 No. of obsd. rflns. [I 0 > 2σ(I 0 )] 4957 5215 Data / restraints / parameters 5420 / 7 / 352 5735 / 14 / 352 R 1 / wr 2 [I 0 > 2σ(I 0 )] 0.0433 / 0.1116 0.0299 / 0.0857 R 1 / wr 2 (all data) 0.0489 / 0.1156 0.0339 / 0.0898 GOF (on F 2 ) 1.016 0.990 Largest diff. peak and hole (e Å 3 ) 1.220 / 0.693 0.766 / 0.678 S5

Table S3. Crystallographic data for 7[PF 6 ] Complex 7[PF 6 ] Formula C 31 H 42 F 6 NPRu 2 S 2 Formula weight 839.89 Crystal dimensions (mm 3 ) 0.33 0.31 0.29 Crystal system Space group Monoclinic P2(1)/n a (Å) 8.6965(6) b (Å) 27.3649(18) c (Å) 15.0412(10) α (º) 90.00 β (º) 105.3340(10) γ (º) 90.00 Volume (Å 3 ) 3452.1(4) Z 4 T (K) 300(2) D calcd (g cm 3 ) 1.616 μ (mm 1 ) 1.097 F (000) 1696 No. of rflns. collected 19401 No. of indep. rflns. /R int 19401 / 0.0219 No. of obsd. rflns. [I 0 > 2σ(I 0 )] 5141 Data / restraints / parameters 5689 / 48 / 404 R 1 / wr 2 [I 0 > 2σ(I 0 )] 0.0365 / 0.1302 R 1 / wr 2 (all data) 0.0413 / 0.1350 GOF (on F 2 ) 1.165 Largest diff. peak and hole (e Å 3 ) 1.027 / 0.502 S6

Figure S1. ORTEP diagram of 3[PF 6 ] Hydrogen atoms and counteranion PF 6 are omitted for clarity (thermal ellipsoids shown at 50% probability). Table S4. Selected bond distances (Å) and bond angles ( ) for 3[PF 6 ] Distances (Å) Ru1 Ru2 2.6428(8) Ru2 S2 2.4743(18) Ru1 S1 2.2944(17) Ru1 Cl1 2.205(6) Ru1 S2 2.4817(18) Ru2 Cl1 2.377(2) Ru2 S1 2.2938(17) Angles ( ) S1 Ru1 S2 78.62(7) S1 Ru2 S2 78.78(7) S1 Ru1 Ru2 54.82(4) S1 Ru2 Ru1 54.84(4) S2 Ru1 Ru2 57.64(4) S2 Ru2 Ru1 57.91(4) Ru1 Cl1 Ru2 67.56(5) Torsion angles ( ) Ru2 Cl1Ru1 S1 18.28(7) Cp*1 Cp*2 25.48(27) Ru2 Cl1Ru1 S2 56.66(6) S7

Figure S2. ORTEP diagram of 4[PF 6 ] The PF 6 anion and hydrogen atoms except for the hydrogen atoms associated with C17 atom are omitted for clarity (thermal ellipsoids shown at 50% probability). Table S5. Selected bond distances (Å) and bond angles ( ) for 4[PF 6 ] Distances (Å) Ru1 Ru2 2.967(1) C14 C13 1.441(8) Ru1 S1 2.286(2) C14 C15 1.425(8) Ru1 S2 2.294(2) C11 C16 1.507(8) Ru2 S1 2.340(2) C12 C17 1.476(8) Ru2 S2 2.345(2) C13 C18 1.504(8) Ru1 I2 2.708(2) C14 C19 1.498(8) C11 C12 1.427(8) C20 C15 1.492(9) C12 C13 1.422(8) C17 I1 2.161(6) Angles ( ) I2 Ru1 Ru2 115.77(2) S1 Ru2 Ru1 49.26(4) S1 Ru1 Ru2 50.87(3) S2 Ru2 Ru1 49.22(3) S2 Ru1 Ru2 50.95(3) C12 C17 I1 108.2(4) Torsion angles ( ) S1 Ru1Ru2 S2 125.68(7) C 5 Me 4 CH 2 I Cp* 80.40(19) S8

Figure S3. ORTEP diagram of 5[PF 6 ] The PF 6 anion and hydrogen atoms except for the hydrogen atoms associated with C17 atom are omitted for clarity (thermal ellipsoids shown at 50% probability). Table S6. Selected bond distances (Å) and bond angles ( ) for 5[PF 6 ] Distances (Å) Ru1 Ru2 2.9689(5) C14 C13 1.409(10) Ru1 S1 2.2799(13) C14 C15 1.428(10) Ru1 S2 2.2782(13) C11 C16 1.486(9) Ru2 S1 2.3370(13) C12 C17 1.519(9) Ru2 S2 2.3428(13) C13 C18 1.510(10) Ru1 S3 2.3689(14) C14 C19 1.513(10) C11 C12 1.428(8) C20 C15 1.503(9) C12 C13 1.387(9) S4 C17 1.817(7) S3 S4 2.029(2) C11 C15 1.406(9) Angles ( ) S1 Ru1 S2 87.47(5) S1 Ru2 S2 84.66(4) S1 Ru1 Ru2 50.83(3) S4 S3 Ru1 101.35(9) S2 Ru1 Ru2 50.98(3) Torsion angles ( ) S1 Ru1Ru2 S2 125.94(7) C 5 Me 4 CH 2 S 2 Cp* 73.76(24) S9

Figure S4. ORTEP diagram of 6[PF 6 ] The PF 6 anion and hydrogen atoms except for the hydrogen atoms associated with C20 atom are omitted for clarity (thermal ellipsoids shown at 50% probability). Table S7. Selected bond distances (Å) and bond angles ( ) for 6[PF 6 ] Distances (Å) Ru1 Ru2 2.7772(4) C14 C13 1.411(5) Ru1 S1 2.3644(8) C14 C15 1.463(5) Ru1 S2 2.3817(8) C11 C16 1.497(5) Ru2 S1 2.3592(8) C12 C17 1.493(5) Ru2 S2 2.4123(8) C13 C18 1.504(5) Ru2 C20 2.216(3) C14 C19 1.495(5) C11 C12 1.421(5) C20 C15 1.429(5) C12 C13 1.445(5) C15 C11 1.448(5) C27 O1 1.125(5) Ru1 C27 1.898(4) Ru2 C15 2.754(4) Angles ( ) S1 Ru1 S2 78.11(3) S1 Ru2 S2 77.61(3) S1 Ru1 Ru2 53.91(2) C20 Ru2 Ru1 77.18(10) S2 Ru1 Ru2 55.11(2) Ru2 C20 C15 95.72(22) Torsion angles ( ) S1 Ru1Ru2 S2 101.42(4) C 5 Me 4 CH 2 Cp* 77.47(11) S10

Figure S5. ORTEP diagram of 7[PF 6 ] The PF 6 anion and hydrogen atoms except for the hydrogen atoms associated with C20 atom are omitted for clarity (thermal ellipsoids shown at 50% probability). Table S8. Selected bond distances (Å) and bond angles ( ) for 7[PF 6 ] Distances (Å) Ru1 Ru2 2.7412(4) C14 C13 1.410(7) Ru1 S1 2.3543(10) C14 C15 1.445(6) Ru1 S2 2.3596(11) C11 C16 1.503(6) Ru2 S1 2.3531(9) C12 C17 1.486(7) Ru2 S2 2.4002(11) C13 C18 1.514(7) Ru2 C20 2.216(4) C14 C19 1.502(7) C11 C12 1.409(7) C20 C15 1.442(6) C12 C13 1.442(7) C15 C11 1.448(6) Ru1 C31 1.982(5) C31 N1 1.130(6) Angles ( ) S1 Ru1 S2 78.48(4) S1 Ru2 S2 77.70(4) S1 Ru1 Ru2 54.36(2) C20 Ru2 Ru1 75.67(12) S2 Ru1 Ru2 55.53(3) Ru2 C31 N1 178.1(5) Torsion angles ( ) S1 Ru1Ru2 S2 101.49(5) C 5 Me 4 CH 2 Cp* 74.24(18) S11

% % % Figure S6. ESI-HRMS of 2[PF 6 ] in CH 2 Cl 2 (a) The signal at an m/z = 613.0126 corresponds to [2] +. (b) Calculated isotopic distribution for [2] + (upper) and the amplifying experimental diagram for [2] + (bottom). (a) JXX 16060208 30 (0.296) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (SG, 2x3.00); Cm (30:31) 612.0139 100 144 613.0126 610.0142 615.0160 609.0139 (b) 607.0190 616.0149 606.0103 604.0158 618.0042 0 m/z 580 585 590 595 600 605 610 615 620 625 630 100 609.0137 612.0131 613.0124 611.0127 615.0125 0 606.0155 607.0146 617.0127 618.0153 100 610.0142 609.0139 612.0139 613.0126 615.0160 607.0190 616.0149 606.0103 618.0042 0 600 602 604 606 608 610 612 614 616 618 620 622 m/z S12

Figure S7. ESI-HRMS of 3[PF 6 ] in CH 2 Cl 2 (a) The signal at an m/z = 648.9858 corresponds to [3] +. (b) Calculated isotopic distribution for [3] + (bottom) and the amplifying experimental diagram for [3] + (upper). (a) (b) S13

Figure S8. ESI-HRMS of 4[PF 6 ] in CH 2 Cl 2 (a) The signal at an m/z = 866.8186 corresponds to [4] +. (b) Calculated isotopic distribution for [4] + (bottom) and the amplifying experimental diagram for [4] + (upper). (a) (b) S14

Figure S9. ESI-HRMS of 5[PF 6 ] in CH 2 Cl 2 (a) The signal at an m/z = 676.9549 corresponds to [5] +. (b) Calculated isotopic distribution for [5] + (bottom) and the amplifying experimental diagram for [5] + (upper). (a) (b) S15

% % % Figure S10. ESI-HRMS of 6[PF 6 ] in CH 2 Cl 2 (a) The signal at an m/z = 641.0052 corresponds to [6] +. (b) Calculated isotopic distribution for [6] + (upper) and the amplifying experimental diagram for [6] + (bottom). (a) JXX-3 16071522 25 (0.247) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (SG, 2x3.00); Cm (22:32) 641.0052 100 1.74e3 640.0059 639.0059 643.0054 637.0061 644.0111 636.0090 (b) 0 634.0115 646.0048 632.0119 647.9946 200 400 600 800 1000 1200 1400 m/z 100 637.0087 640.0080 641.0074 639.0077 643.0075 0 634.0104 635.0095 645.0077 100 634.0115 637.0061 636.0090 641.0052 640.0059 639.0059 643.0054 644.0111 646.0048 0 628 630 632 634 636 638 640 642 644 646 648 650 m/z S16

% % % Figure S11. ESI-HRMS of 7[PF 6 ] in CH 2 Cl 2 (a) The signal at an m/z = 696.0857 corresponds to [7] +. (b) Calculated isotopic distribution for [7] + (upper) and the amplifying experimental diagram for [7] + (bottom). (a) JXX 16081116 69 (0.682) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (SG, 2x3.00); Cm (56:73) 695.0867 100 625 694.0875 693.0864 698.0862 692.0887 690.0878 699.0863 (b) 689.0866 701.0903 687.0920 702.1244 0 m/z 670 675 680 685 690 695 700 705 710 715 720 100 692.0873 695.0867 696.0861 694.0864 698.0862 0 689.0891 690.0882 699.0882 100 692.0887 695.0867 694.0875 696.0857 698.0862 0 690.0878 699.0863 689.0866 684 686 688 690 692 694 696 698 700 702 704 m/z S17

Figure S12. The 1 H NMR spectrum of 2[PF 6 ] in CD 2 Cl 2 Figure S13. The 13 C NMR spectrum of 2[PF 6 ] in CD 2 Cl 2 S18

Figure S14. The 1 H NMR spectrum of 3[PF 6 ] in CD 2 Cl 2 Figure S15. The 13 C NMR spectrum of 3[PF 6 ] in CD 2 Cl 2 S19

Figure S16. The 1 H NMR spectrum of 4[PF 6 ] in CD 2 Cl 2 Figure S17. The 13 C NMR spectrum of 4[PF 6 ] in CD 2 Cl 2 S20

Figure S18. The 1 H NMR spectrum of 5[PF 6 ] in CD 2 Cl 2 Figure S19. The 13 C NMR spectrum of 5[PF 6 ] in CD 2 Cl 2 S21

Figure S20. The 1 H NMR spectrum of 6[PF 6 ] in CD 2 Cl 2 Figure S21. The 13 C NMR spectrum of 6[PF 6 ] in CD 2 Cl 2 S22

Figure S22. The 1 H NMR spectrum of 7[PF 6 ] in CD 2 Cl 2 Figure S23. The 13 C NMR spectrum of 7[PF 6 ] in CD 2 Cl 2 S23

Figure S24. The IR (film) spectrum of 2[PF 6 ] Figure S25. The IR (film) spectrum of 3[PF 6 ] S24

Figure S26. The IR (film) spectrum of 4[PF 6 ] Figure S27. The IR (film) spectrum of 5[PF 6 ] S25

Figure S28. The IR (film) spectrum of 6[PF 6 ] Figure S29. The IR (film) spectrum of 7[PF 6 ] S26