Supporting Information. Evaluation of spin-orbit couplings with. linear-response TDDFT, TDA, and TD-DFTB

Σχετικά έγγραφα
Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Supplementary Information for

Homework 8 Model Solution Section

Supporting Information for: electron ligands: Complex formation, oxidation and

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Spherical Coordinates

Space-Time Symmetries


Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Matrices and Determinants

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Table of Contents 1 Supplementary Data MCD

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Homework 3 Solutions

Variational Wavefunction for the Helium Atom

ELECTRONIC SUPPORTING INFORMATION

Supporting Information

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Butadiene as a Ligand in Open Sandwich Compounds

ST5224: Advanced Statistical Theory II

EE512: Error Control Coding

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Reminders: linear functions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Areas and Lengths in Polar Coordinates

Section 9.2 Polar Equations and Graphs

Electronic Supplementary Information (ESI)

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

difluoroboranyls derived from amides carrying donor group Supporting Information

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Lecture 26: Circular domains

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

Second Order Partial Differential Equations

Example Sheet 3 Solutions

2 Composition. Invertible Mappings

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information

Section 8.3 Trigonometric Equations

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Notes on the Open Economy

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Electronic structure and spectroscopy of HBr and HBr +

Supporting Information

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

C.S. 430 Assignment 6, Sample Solutions

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Supplementary materials

Derivation of Optical-Bloch Equations

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

The challenges of non-stable predicates

Answer sheet: Third Midterm for Math 2339

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Areas and Lengths in Polar Coordinates

The Simply Typed Lambda Calculus

SPECIAL FUNCTIONS and POLYNOMIALS

F19MC2 Solutions 9 Complex Analysis

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

1 String with massive end-points

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Section 8.2 Graphs of Polar Equations

Math221: HW# 1 solutions

Solution Series 9. i=1 x i and i=1 x i.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Orbital angular momentum and the spherical harmonics

What happens when two or more waves overlap in a certain region of space at the same time?

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Structural Expression of Exo-Anomeric Effect

6.3 Forecasting ARMA processes

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Tridiagonal matrices. Gérard MEURANT. October, 2008

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Problem Set 3: Solutions

DuPont Suva 95 Refrigerant

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Fused Bis-Benzothiadiazoles as Electron Acceptors

SUPPLEMENTARY INFORMATION

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Electronic Supplementary Information:

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Hartree-Fock Theory. Solving electronic structure problem on computers

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Congruence Classes of Invertible Matrices of Order 3 over F 2

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Solutions to Exercise Sheet 5

Transcript:

Supporting Information Evaluation of spin-orbit couplings with linear-response TDDFT, TDA, an TD-DFTB Xing Gao, Shuming Bai, Daniele Fazzi, Thomas Niehaus, Mario Barbatti, Walter Thiel Table of Contents SI-1. BLOCK MATRIX TRANSFORMATION FOR GAUSSIAN 09... SI-. STO FITTING... 3 SI-3. BMT FOR ATOMIC INTEGRALS IN THE INTERFACE TO DFTB+... 3 SI-4. ENERGY OF EXCITED STATES... 5 SI-5. CARTESIAN COORDINATES... 8 1

SI-1. Block Matrix Transformation for Gaussian 09 In this section, we iscuss the block matrix transformation (BMT) for atomic integrals in the interface to Gaussian 09. In Gaussian 09, the output orer for orbitals is XX, YY, ZZ, XY, XZ, YZ; for f orbitals, it is XXX, YYY, ZZZ, XYY, XXY, XXZ, XZZ, YZZ, YYZ, XYZ. In MolSOC, the orer for orbitals is XX, XY, XZ, YY, YZ, ZZ; for f orbitals, it is XXX, XXY, XXZ, XYY, XYZ, XZZ, YYY, YYZ, YZZ, ZZZ. The transformation matrix for orbitals is T T xx T xx 1 0 0 0 0 0 yy xy 0 0 0 1 0 0 zz xz T T 0 0 0 0 0 1 =,6 6,,6 6, C C 0 1 0 0 0 0 xy yy 0 0 1 0 0 0 xz yz 0 0 0 0 1 0 yz zz while for f orbitals, it is T xyz 3 z T 3 3 x x T 1 0 0 0 0 0 0 0 0 0 3 y x y 0 0 0 0 0 0 1 0 0 0 3 z x z 0 0 0 0 0 0 0 0 0 1 xy xy 0 0 0 1 0 0 0 0 0 0 x y xyz T T 0 1 0 0 0 0 0 0 0 0 = f,, C C f,. x z xz 0 0 1 0 0 0 0 0 0 0 3 y 0 0 0 0 0 1 0 0 0 0 xz yz y z 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 y z yz 0 0 0 0 1 0 0 0 0 0 For s an p orbitals, these matrices are ientity matrices. I Suppose we have a matrix H for atomic integrals obtaine from MolSOC, which inclues 1 s, 3 p, an 6 orbitals. This matrix can be blocke as Hss,1 1 Hsp,1 3 H s,1 6 I H = H ps,3 1 H pp,3 3 H p,3 6. Hs,6 1 Hp,6 3 H,6 6 II Applying the transformation matrix efine above, the atomic integral matrix H use for the Gaussian 09 interface can be reconstructe as

1s,1 1 1s,1 1 II I H = 1p,3 3 H 1p,3 3. T C,6 6 C,6 6 SI-. STO Fitting Some fits of Slater type orbitals (STOs) with Gaussian type orbitals (GTOs) are shown in Figure 1S. Fitting errors are usually on the orer of -5 ~ -7 epening on the number of noes in the wave function. l (r).0 1.5 1.0 0.5 O_p_STO O_p_GTO fitting error =5.71E-007 a l (r) 8 6 4 0 fitting error =1.58E-005 b Zn_4s_STO Zn_4s_GTO l (r) 0.0 0 4 6 r (a.u.) c 8 6 4 0 S_3s_STO S_3s_GTO fitting error =1.67E-006-0 1 3 4 r (a.u.) l (r) - 0 1 3 4 0.5 0.4 0.3 0. 0.1 r (a.u.) 0.0 0 4 6 8 S_3_STO S_3_GTO fitting error =6.65E-007 r (a.u.) Figure 1S. Raial part of the atomic wave function versus istance for orbitals: a. O p, b. Zn 4s, c. S 3s,. S 3 SI-3. BMT for atomic integrals in the interface to DFTB+ In DFTB+, the angular-epenent part of the atomic orbitals is of tesseral harmonic form S1. Therefore, the transformation matrix between spherical l, m ( { = 0, = 1, =, = 3}, m { l, l 1,..., l 1, l} l s p f { 1,,..., l 1} n = + ) can be written as, = + ) an Cartesian GTOs n, l ( = C, s s,0 s,1 1 1, s where ( c ) C, 1 s,1 1 s c s =, 4π 3

p, 1 1, px p,0 = C p,3 3 1, p, y p,1 1, pz 0 c p 0 3 where C p,3 3 0 0 c p, c = p c p 0 0 4π, 1, xx,, xy, 1 3, xz,0 = C,5 6, 4, yy, + 1 5, yz, + 6, zz 0 c 0 0 0 0 0 0 0 0 c 0 where C,5 6 c 0 0 c 0 c, 0 0 c 0 0 0 c 0 0 c 0 0 f, 3 f, f, 1 f,0 f,7 f, + 1 f, + f, + 3 f, x f, x y f, x z f, xy f, xyz = C, f, xz 3 f, y f, y z f, yz 3 f, z c = 1 15 1 5, c π = 4 π, 4

where, C f,7 0 3c f 1 0 0 0 0 c f 1 0 0 0 0 0 0 0 c 0 0 0 0 0 f 0 c f 3 0 0 0 0 c f 3 0 4c 3 0 f 0 0 3c f 4 0 0 0 0 3c f 4 0 c f 4, c f 3 0 0 c f 3 0 4c f 3 0 0 0 0 0 0 c f 0 0 0 0 c f 0 0 c f 1 0 0 3c f 1 0 0 0 0 0 0 35 5 1 7 c f 1 =, c f =, c f 3 =, c f 4 =. 3π 16π 3π 16π Now, we can apply the MBT following the same strategy as in Section S1, I Suppose we have a matrix H14 14 for atomic integrals obtaine from MolSOC, which inclues 1 s, 3 p an f orbitals. This matrix can be blocke as Hss,1 1 Hsp,1 3 H sf,1 I H14 14 = H ps,3 1 H pp,3 3 H pf,3. H fs, 1 H fp, 3 H ff, II Applying the transformation matrix efine above, the atomic integral matrix H11 11 use for the DFTB+ interface can be reconstructe as C s,1 1 C s,1 1 II I H11 11 = C p,3 3 H14 14 C p,3 3. T C f,7 C f, 7 SI-4. Energy of Excite States Table S1. Basis set effects on state energies for tthy at TDDFT/B3LYP level. E (ev) (TD-B3LYP) cc-pvdz aug-cc-pvdz cc-pvtz S 0 1 gs 0.00 0.00 0.00 T 1 3 ππ* 1.68 1.70 1.68 T 3 nπ* 1.89 1.9 1.90 1 nπ*.8.8.8 S 1 Table S. Density functional effects on state energies for tthy at TDDFT/TZVP level. B3LYP TDDFT B3LYP TDA PBE0 TDDFT E (ev) (TZVP) CAM-B3LYP ωb97xd TDDFT TDDFT ωb97xd TDA M06X TDDFT PBE TDDFT TD-DFTB 5

S 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 T 1 1.67 1.80 1.6 1.53 1.66 1.87 1.7 1.69 1.96 T 1.88 1.96 1.90 1.94.00.07.00 1.86.08 S 1.6.8.33.36.38.41.9.15 1.99 Table S3. Vertical excitation energies an ominant excitations for formalehye an acetone at TDDFT/TZVP/(CAM-)B3LYP an TD-DFTB levels. B3LYP CAM-B3LYP TD-DFTB E (ev) ominant excitation E (ev) ominant excitation E (ev) ominant excitation formalehye S 1 4.0 n H π * 4.00 n H π * L(0.99) 4.50 n H π * T 1 3.9 n H π * 3.6 n H π * L(0.99) 4.50 n H π * T 5.61 5.5 7.4 acetone S 1 4.48 n H π * L(0.99) 4.5 n H π * L(0.98) 4.7 n H π * T 1 3.84 n H π * L(0.99) 3.88 n H π * L(0.98) 4.71 n H π * T 5.73 L(0.94) 5.69 L(0.91) 6.79 Table S4. State energies an ominant excitations for thymine (Thy), 4-thiothymine (4tThy), an,4-thiothymine (,4tThy) from TD(A)DFT/TZVP (B3LYP, ωb97xd, an PBE), TD-DFTB, an CASPT. 1 (n π*) S 1 or S 3 (π π*) T 3 1 (n π*) T E (ev) ominant excitation E (ev) ominant excitation E (ev) ominant excitation Thy TD-B3LYP 3.93 n H-1 π * L(0.96) 1.88 3.60 n H-1 π * L(0.93) TD-ωB97XD 4.44 n H-1 π * L(0.90) 1.80 4.06 n H-1 π * L(0.84) TD-PBE 3.1 n H-1 π *.07.97 n H-1 π * TDA-B3LYP 3.94 n H-1 π * L(0.97).16 L(0.98) 3.63 n H-1 π * L(0.94) TD-DFTB.93 n H-1 π * L(0.87).64 L(0.94).93 n H-1 π * L(0.94) CASPT 4.0 n H- π * L(0.58) n H-1 π * L(0.15).56 L(0.76) 4.17 n H- π * L(0.41) n H-1 π * L(0.0) 4tThy TD-B3LYP.51 n H π * L(0.99).11 L(0.98).0 n H π * TD-ωB97XD.79 n H π * L(0.96).08 L(0.95).49 n H π * TD-PBE.4 n H π * 1.95 n H π *. TDA-B3LYP.5 n H π * L(0.99). n H π * L(0.98).9 L(0.98) TD-DFTB 1.91 n H π * 1.91 n H π *. CASPT.7 n H π * L(0.89).67 L(0.8).70 n H π * L(0.81),4tThy TD-B3LYP.48 n H π * L(0.86) n H- π * L(0.13).09 π H-3 π * L(0.89).17 n H π * L(0.78) n H- π * L(0.19) TD-ωB97XD.76 n H π * L(0.7) n H- π * L(0.4).05 π H-3 π * L(0.75) L(0.5).45 n H π * L(0.69) n H- π * L(0.6) TD-PBE.13 n H π * L(0.95) 1.91 n H π * L(0.97).0 π H-3 π * L(0.84) TDA-B3LYP.49 n H π * L(0.86) n H- π * L(0.13).19 n H π * L(0.78) n H- π * L(0.19).8 π H-3 π * L(0.85) L(0.13) TD-DFTB 1.83 n H π * 1.83 n H π *.0(T 3 ) π H-3 π * L(0.89) CASPT.64 n H π * L(0.49) n H- π * L(0.37).60 L(0.81).6 n H π * L(0.46) n H- π * L(0.36) 6

Table S5. Vertical excitation energies an ominant excitations for psoralens from TDDFT/TZVP/B3LYP, ωb97xd, TD-DFTB. B3LYP ωb97xd TD-DFTB E ominant E ominant E ominant (ev) excitations (ev) excitations (ev) excitations psoralenoo S 1 3.8 L(0.9) 4.30 L(0.89) 3.09 n H-1 π * S 4.40 L(0.85) 4.78 L(0.78) 3.41 L(0.99) L+1(0.17) S 3 4.51 n H- π * L(0.95) 4.96 n H- π * L(0.80) 4.04 π H- π * L(0.99) T 1.85 L(0.6).85 L(0.64).96 L(0.6) L+1(0.14) L(0.13) T 3.04 L(0.6) 3.3 L(0.61) 3.09 n H-1 π * L+1(0.17) L+1(0.1) L(0.13) T 3 3.68 L+1(0.65) 4.03 L+1(0.44) 3.34 π H- π * L(0.17) L(0.19) L(0.14) T 4 4.15 n H- π * L(0.90) 4.44 L+1(0.9) 3.99 L+1(1.00) π H-4 π * L(0.15) L+(0.14) T 5 4.31 L+1(0.61) 4.54 n H- π * L(0.75) 4.19 n H-1 π * L+1 n H- π * L+(0.16) (1.00) psoralenos S 1 3.56 L(0.95) 4.04 L(0.90).79 n H π * S 3.91 n H- π * L(0.95) 4.1 n H- π * L(0.8) 3.05 S 3 4.19 L(0.75) 4.57 L(0.70) 3.63 π H- π * L(0.88) L+1(0.19) L+1(0.3) (S 4 ) T 1.76 L(0.48).75 L(0.65).73 L(0.4) L+1(0.14) L(0.) T.90 L(0.50) 3.15 L(0.6).79 n H π * L(0.4) L+1(0.1) L+1(0.18) T 3 3.38 L+1(0.65) 3.64 L+1(0.4) 3.17 π H- π * L(0.19) L(0.19) L(0.18) T 4 3.55 3.80 3.43 n H- π * L(0.91) n H- π * L(0.78) L+1 (1.00) T 5 4.15 L+1(0.77) 4.34 L+1(0.43) 3.54 n H π * L+1(1.00) psoralenso S 1 3.64 L(0.96) 4. L(0.66).96 n H-1 π * L(0.0) S 4.11 L(0.8) 4.5 L(0.6) 3.13 L+1(0.13) L(0.1) S 3 4.47 n H- π * L(0.95) 4.93 n H- π * L(0.80) 3.57 π H- π * L(0.93) T 1.77 L(0.66).76 L(0.59).84 L+1(0.1) L+1(0.15) L(0.) T.99 L(0.66) 3.1 L(0.38).96 n H-1 π * L(0.0) L+1(0.7) L(0.) T 3 3.4 L+1(0.70) 3.7 L+1(0.43) 3.05 π H- π * L(0.18) L(0.37) T 4 4.11 L+1(0.89) 4.37 L+1(0.76) 3.41 L+1(1.00) T 5 4.1 n H- π * L(0.90) 4.51 n H- π * L(0.75) 3.61 n H-1 π * L+1 (T 6 ) (T 6 ) (1.00) 7

Table S6. Vertical excitation energies an ominant excitations for BODIPY at TDDFT/TZVP/(CAM-)B3LYP level. B3LYP CAM-B3LYP E (ev) ominant excitations E (ev) ominant excitations BODIPY S 1.58 L(0.99).69 L(0.98) T 1 1.34 1.15 T.70 L(0.87).83 L(0.54) L+1(0.17) SI-5. Cartesian coorinates Cartesian coorinates in Angstrom, for all molecules investigate in this work. formalehye C -0.139-0.00000 0.0000 O 1.064400 0.00000-0.00001 H -0.717794 0.93914 0.000000 H -0.717798-0.93914 0.000039 acetone C -0.166195 0.001194-0.173304 O 0.995476 0.006-0.496361 C -0.968665 1.78406-0.070441 H -0.314973.141560-0.175067 H -1.7697 1.97114-0.861767 H -1.501870 1.3356 0.881793 C -0.9077-1.7807 0.15447 H -1.09577-1.31643 1.30069 H -1.87197-1.3577-0.34783 H -0.301731 -.139413-0.130635 -thiothymine N -1.81458-0.393339 0.564053 C -3.19336-0.497647 0.446440 N -3.844849 0.77 0.40080 C -3.18787 1.890877 0.14751 C -1.8381 1.96033 0.056073 C -1.069971 0.745890 0.36133 S -3.900754-1.71159-0.613819 O 0.15551 0.704996 0.383914 C -1.378 3.938-0.351 H -3.81160.766764 0.047198 H -0.389778 3.46163 0.559503 8

H -0.533579 3.151194-1.165183 H -1.79975 4.06677-0.331434 H -4.84461 0.74669 0.519835 H -1.81199-1.31706 0.74873 thymine C -.909875-0.69050-0.75046 C -0.96907 0.789501-0.88958 C -1.8537 1.844318 0.06763 C -3.687 1.547385 0.54145 H -3.9836.39771 0.660440 O -3.385348-1.615949-1.78475 O 0.48383 0.881498-0.50813 C -1.400473 3.4396 0.147397 H -1.641309 3.66743 1.134181 H -0.331135 3.34808-0.03640 H -1.941543 3.870633-0.574804 N -1.583501-0.490619-0.4019 H -0.98147-1.15500-0.786819 N -3.713370 0.446397-0.38774 H -4.70890 0.31153-0.560634 4-thiothymine N -1.849545-0.436139 0.3638 C -3.13053-0.45019 0.53403 N -3.87070 0.740518 0.8449 C -3.150749 1.901485-0.1755 C -1.80895 1.903194-0.57845 C -1.14 0.694914-0.019118 O -3.814395-1.46160 0.85659 S 0.589846 0.58584-0.15743 C -1.058533 3.135119-0.669847 H -3.76743.77650-0.61638 H -0.316476 3.413561 0.083639 H -0.53066.975915-1.614157 H -1.739 3.976314-0.804 H -4.875 0.7573 0.39386 H -1.391740-1.316080 0.538097,4-thiothymine N -1.849597-0.439399 0.57464 C -3.197739-0.498714 0.178537 N -3.814670 0.65973-0.097117 C -3.143553 1.87355-0.93316 9

C -1.797095 1.931963-0.1787 C -1.095406 0.73487 0.066154 S -4.03155-1.94734 0.4160 S 0.607536 0.61856 0.175149 C -1.043647 3.68-0.40485 H -3.77040.75984-0.50749 H -0.469950 3.468154 0.47447 H -0.338645 3.119587-1.51494 H -1.7496 4.03763-0.639190 H -4.81937 0.6379-0.157057 H -1.386158-1.308939 0.468901 psoralenoo O -4.0976 0.983961 0.000000 C -3.003331 0.354454 0.000000 O -1.8119 1.055041 0.000000 C -.893000-1.09471 0.000000 C -1.697697-1.70730 0.000000 C -0.47745-0.953034 0.000000 C -0.595087 0.454056 0.000000 C 0.511143 1.87736 0.000000 C 0.785333-1.547040 0.000000 C 1.909768-0.737538 0.000000 C 1.737466 0.65831 0.000000 O.94043 1.78519 0.000000 C 3.333491-0.94117 0.000000 C 3.88011 0.87390 0.000000 H -3.8957-1.635518 0.000000 H -1.635709 -.79147 0.000000 H 0.86776 -.68465 0.000000 H 0.39909.363736 0.000000 H 3.867-1.879343 0.000000 H 4.904183 0.69340 0.000000 psoralenos O -4.47711 0.6139 0.000000 C -3.334935 0.3388 0.000000 C -.931630-1.158396 0.000000 C -1.664873-1.6948 0.000000 C -0.463569-0.80333 0.000000 C -0.513687 0.595613 0.000000 C 0.650336 1.358530 0.000000 C 0.775055-1.471417 0.000000 C 1.9457-0.7795 0.000000

C 1.843685 0.67996 0.000000 O 3.07816 1.30536 0.000000 C 3.35340-1.008775 0.000000 C 3.964994 0.190491 0.000000 H -3.7694-1.85506 0.000000 H -1.517347 -.687597 0.000000 H 0.80631 -.555813 0.000000 H 0.619675.441384 0.000000 H 3.835735-1.97817 0.000000 H 5.00404 0.476804 0.000000 S -.0391 1.484315 0.000000 psoralenso O -4.7347 0.881651 0.000000 C -3.06861 0.94171 0.000001 O -1.90066 1.04007 0.000000 C -.899047-1.151174 0.000000 C -1.68977-1.70953 0.000000 C -0.493379-0.91841 0.000000 C -0.66591 0.481833 0.000000 C 0.415133 1.345669 0.000000 C 0.791493-1.450680 0.000000 C 1.898093-0.609589 0.000000 C 1.686170 0.78999 0.000000 C 3.94341-0.93953 0.000000 C 4.087971 0.15096 0.000000 H -3.81597-1.75048 0.000000 H -1.579979 -.801848 0.000000 H 0.90954 -.5815 0.000000 H 0.438.41483 0.000000 H 3.67153-1.953684 0.000000 H 5.167591 0.183633 0.000000 S 3.19971 1.65304 0.000000 BODIPY B 0.964140-1.115596 0.015703 F 0.577677-1.83741 1.13554 N -1.954648-1.94965-0.493743 H -1.085747 -.65180-0.905943 C -3.058036 -.69538-0.83564 F 0.70061-1.87549-1.14679 N 0.135194 0.3394-0.070960 C -4.011867-1.907384 0.3701 H -4.99477 -.5143 0.634301 11

N.450963-0.745701 0.066669 C -3.453183-0.630430 0.476775 C -.16814-0.6794-0.039057 C -1.1889 0.379731-0.07918 C -1.503388 1.7941-0.13660 C -.711540.483789-0.49689 H -3.654061 1.958497-0.31641 C -.673677 3.860319-0.3304 H -3.597118 4.418096-0.398653 C -1.45866 4.549794-0.7614 H -1.455870 5.63163-0.38166 C -0.5506 3.875667-0.0040 H 0.686148 4.415586-0.19836 C -0.8938.483443-0.137433 C 0.756446 1.493740-0.09850 C.4548 1.633654-0.05871 H.59639.6900-0.07794 C.971604 0.57951 0.01457 C 4.36115 0.440513 0.075417 C 4.679365-0.916851 0.164995 H 5.661819-1.354300 0.3609 C 3.479631-1.61878 0.15763 H 5.044703 1.74885 0.05870 H 3.99949 -.674489 0.1519 H -3.909869 0.15591 0.96169 H -3.093189-3.794-0.583598 Reference [S1] Görrler-Walran, C.; Binnemans, K. Rationalization of Crystal-Fiel Parametrization, In: Hanbook on the Physics an Chemistry of Rare Earths Vol. 3, es. Gschneiner, K. A. an Eyring, L. North Hollan, 1996. 1