The circle theorem and related theorems for Gauss-type quadrature rules

Σχετικά έγγραφα
Asymptotics for Christoel functions

Uniform Convergence of Fourier Series Michael Taylor

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Computing the Macdonald function for complex orders

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Example Sheet 3 Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Probability and Random Processes (Part II)

Every set of first-order formulas is equivalent to an independent set

Tridiagonal matrices. Gérard MEURANT. October, 2008

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

ST5224: Advanced Statistical Theory II

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

2 Composition. Invertible Mappings

Lecture 21: Properties and robustness of LSE

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Other Test Constructions: Likelihood Ratio & Bayes Tests

Local Approximation with Kernels

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

5. Choice under Uncertainty

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 3: Ordinal Numbers

Fractional Colorings and Zykov Products of graphs

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Problem Set 3: Solutions

Parametrized Surfaces

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Bounding Nonsplitting Enumeration Degrees

About these lecture notes. Simply Typed λ-calculus. Types

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

CRASH COURSE IN PRECALCULUS

Lecture 2. Soundness and completeness of propositional logic

Iterated trilinear fourier integrals with arbitrary symbols

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Reminders: linear functions

A Conception of Inductive Logic: Example

Models for Probabilistic Programs with an Adversary

Statistical Inference I Locally most powerful tests

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Commutative Monoids in Intuitionistic Fuzzy Sets

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

The Simply Typed Lambda Calculus

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Generating Set of the Complete Semigroups of Binary Relations

F A S C I C U L I M A T H E M A T I C I

Theorem 8 Let φ be the most powerful size α test of H

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Areas and Lengths in Polar Coordinates

A Note on Intuitionistic Fuzzy. Equivalence Relation

C.S. 430 Assignment 6, Sample Solutions

Exercises to Statistics of Material Fatigue No. 5

12. Radon-Nikodym Theorem

Finitary proof systems for Kozen s µ

Trigonometric Formula Sheet

Areas and Lengths in Polar Coordinates

Quadratic Expressions

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Elements of Information Theory

( y) Partial Differential Equations

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Congruence Classes of Invertible Matrices of Order 3 over F 2

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Heisenberg Uniqueness pairs

Mean-Variance Analysis

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

6. MAXIMUM LIKELIHOOD ESTIMATION

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Memoirs on Differential Equations and Mathematical Physics

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Homomorphism in Intuitionistic Fuzzy Automata

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SOME PROPERTIES OF FUZZY REAL NUMBERS

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

From the finite to the transfinite: Λµ-terms and streams

Μηχανική Μάθηση Hypothesis Testing

Mellin transforms and asymptotics: Harmonic sums

Inverse trigonometric functions & General Solution of Trigonometric Equations

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

D Alembert s Solution to the Wave Equation

Lecture 15 - Root System Axiomatics

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Covariance and Pseudo-Covariance of Complex Uncertain Variables

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Section 8.3 Trigonometric Equations

Distances in Sierpiński Triangle Graphs

On the Galois Group of Linear Difference-Differential Equations

The Pohozaev identity for the fractional Laplacian

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

Min-max Theory, Willmore conjecture, and Energy of links

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

CE 530 Molecular Simulation

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Transcript:

OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University

OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

OP.circle p. 3/ The circle theorem for Jacobi weight functions Jacobi weight function w(t) = w (α,β) (t) := ( t) α (+t) β, α >, β > Gauss-Jacobi quadrature formula f(t)w(t)dt = n ν= λg ν f(τ G ν ) + R G n (f) R G n (p) = for all p P 2n

OP.circle p. 3/ The circle theorem for Jacobi weight functions Jacobi weight function w(t) = w (α,β) (t) := ( t) α (+t) β, α >, β > Gauss-Jacobi quadrature formula f(t)w(t)dt = n ν= λg ν f(τ G ν ) + R G n (f) R G n (p) = for all p P 2n Davis and Rabinowitz (96) nλ G ν πw (α,β) (τ G ν ) (τ G ν ) 2, n

plots α, β =.75(.25).(.5)3., n = 2 : 5 : 4 n = 6 : 5 : 8.2.2.8.8.8.8 β α.8.8 OP.circle p. 4/

plots α, β =.75(.25).(.5)3., n = 2 : 5 : 4 n = 6 : 5 : 8.2.2.8.8.8.8 β α.8.8 open questions. true for more general weight functions? 2. what about Gauss-Radau? 3. limiting curves other than the circle? OP.circle p. 4/

OP.circle p. 5/ The circle theorem for weight functions in the Szegö class w S iff ln w(t) t 2 dt > Theorem If w S and /( t 2 w(t)) L [ ], where is any compact subinterval of (, ), then nλ ν /(πw(τ ν )) τ 2 ν on, n.

OP.circle p. 5/ The circle theorem for weight functions in the Szegö class w S iff ln w(t) t 2 dt > Theorem If w S and /( t 2 w(t)) L [ ], where is any compact subinterval of (, ), then nλ ν /(πw(τ ν )) τ 2 ν on, n. Remarks. equality holds if w(t) = ( t 2 ) /2 2. pointwise convergence almost everywhere holds if w S locally, supp w = [, ], ln w(t)dt >

OP.circle p. 6/ Proof Christoffel function Nevai (979) λ n (x; w) := min p P n p(x)= R p 2 (t)w(t)dt nλ n (x; w) πw(x) x 2, n uniformly for x λ n (τ G ν ; w) = λ G ν, ν =, 2,..., n

OP.circle p. 7/ Example Pollaczek weight function (not in S) w(t; a, b) = where 2 exp(ω arccos(t)) + exp(ωπ), t, a > b ω = ω(t) = (at + b)( t 2 ) /2

OP.circle p. 7/ Example Pollaczek weight function (not in S) w(t; a, b) = where 2 exp(ω arccos(t)) + exp(ωπ), t, a > b ω = ω(t) = (at + b)( t 2 ) /2.8.8.8.8.8.8 a = b = a = 4, b = n = 38(5)4

OP.circle p. 8/ Gauss-Radau formula f(t)w(t)dt = λ R f( ) + n ν= λ R ν f(τ R ν ) + R R n (f) Theorem Under the conditions of the previous theorem, the Gauss-Radau formula admits a circle theorem.

OP.circle p. 8/ Gauss-Radau formula f(t)w(t)dt = λ R f( ) + n ν= λ R ν f(τ R ν ) + R R n (f) Theorem Under the conditions of the previous theorem, the Gauss-Radau formula admits a circle theorem. Proof Let w R (t) = (t + )w(t). Then Define τ R ν are the zeros of π n ( ; w R ) l ν(t) = µ ν t τ R µ τ R ν τ R µ, ν =, 2,..., n

OP.circle p. 9/ proof (cont ) Gauss-Radau is interpolatory, λ R ν = = (t+)π n (t;w R ) (τ R ν +)(t τ R ν )π n(τ R ν ;w R ) w(t)dt (t+)l ν(t) τ R ν + w(t)dt.

OP.circle p. 9/ proof (cont ) Gauss-Radau is interpolatory, λ R ν = = (t+)π n (t;w R ) (τ R ν +)(t τ R ν )π n(τ R ν ;w R ) w(t)dt (t+)l ν(t) τ R ν + w(t)dt. Let λ ν, ν =, 2,..., n, be the Gauss weights for w R, λ ν = l ν(t)w R (t)dt = l ν(t)(t + )w(t)dt = (τ R ν + )λ R ν

OP.circle p. 9/ proof (cont ) Gauss-Radau is interpolatory, λ R ν = = (t+)π n (t;w R ) (τ R ν +)(t τ R ν )π n(τ R ν ;w R ) w(t)dt (t+)l ν(t) τ R ν + w(t)dt. Let λ ν, ν =, 2,..., n, be the Gauss weights for w R, Then λ ν = l ν(t)w R (t)dt = l ν(t)(t + )w(t)dt = (τ R ν + )λ R ν nλ R ν πw(τ R ν ) = nλ ν π(τ R ν +)w(τ R ν ) = nλ ν πw R (τν R ) (τν R ) 2

OP.circle p. / Example w(t) = t α ln(/t) on [, ], α > Gauss-Radau f(t)tα ln(/t)dt = λ f() + n ν= λ νf(τ ν ) + R n (f circle theorem (transformed to [, ]) nλ ν πτ α ν ln(/τ ν ) ( 2 )2 (τ ν 2 )2, n.

Example w(t) = t α ln(/t) on [, ], α > Gauss-Radau f(t)tα ln(/t)dt = λ f() + n ν= λ νf(τ ν ) + R n (f circle theorem (transformed to [, ]) nλ ν πτ α ν ln(/τ ν ) ( 2 )2 (τ ν 2 )2, n. plot (α =.75(.25).(.5)3).5.5.3.3.....8.8 n = 2(5)4 n = 6(5)8 OP.circle p. /

OP.circle p. / Gauss-Lobatto formula f(t)w(t)dt = λl f( ) + n ν= λl ν f(τ L ν ) +λ L n+f() + R L n(f) Theorem Under the conditions of the previous theorem, the Gauss-Lobatto formula admits a circle theorem.

OP.circle p. / Gauss-Lobatto formula f(t)w(t)dt = λl f( ) + n ν= λl ν f(τ L ν ) +λ L n+f() + R L n(f) Theorem Under the conditions of the previous theorem, the Gauss-Lobatto formula admits a circle theorem. Proof Similar to Gauss-Radau: nλ L ν πw(τ L ν ) = nλ ν π( (τ L ν ) 2 )w(τ L ν ) = nλ ν πw L (τ L ν ) (τ L ν ) 2

OP.circle p. 2/ Gauss-Kronrod formula (GK) f(t)w(t)dt = n ν= λk ν f(τν G ) + n+ µ= λ K µ f(τ K µ ) + R K n (f)

OP.circle p. 2/ Gauss-Kronrod formula (GK) f(t)w(t)dt = n ν= λk ν f(τν G ) + n+ µ= λ K µ f(τ K µ ) + R K n (f) Theorem Assume (GK) exists with τµ K distinct nodes in (, ) and τµ K τν G, all µ, ν, and the Gauss formula for w admits a circle theorem. Then, under some additional (technical) conditions, 2nλ K ν πw(τν G ) (τν G ) 2, 2nλ K µ πw(τµ K ) (τµ K ) 2

OP.circle p. 2/ Gauss-Kronrod formula (GK) f(t)w(t)dt = n ν= λk ν f(τν G ) + n+ µ= λ K µ f(τ K µ ) + R K n (f) Theorem Assume (GK) exists with τµ K distinct nodes in (, ) and τµ K τν G, all µ, ν, and the Gauss formula for w admits a circle theorem. Then, under some additional (technical) conditions, 2nλ K ν πw(τν G ) (τν G ) 2, 2nλ K µ πw(τµ K ) (τµ K ) 2 Proof Similar to previous proofs.

Example Jacobi weight w (α,β), α, β [, 52 ) Peherstorfer and Petras (23).2.2.8.8.8.8.8.8 n = 2(5)4 6(5)8 α, β = (.4)2, β α OP.circle p. 3/

OP.circle p. 4/ Connection with potential theory density of the equilibrium measure ω [,] of the interval [, ] ω [,] (t) = π t, < t < 2 Christoffel function and equilibrium measure nλ n (t; w) w(t) ω [,] (t), n

OP.circle p. 4/ Connection with potential theory density of the equilibrium measure ω [,] of the interval [, ] ω [,] (t) = π t, < t < 2 Christoffel function and equilibrium measure nλ n (t; w) w(t) ω [,] (t), n In general, for E R a regular set and E a compact set on which w satisfies the Szegö condition (Totik, 2), nλ G ν w(τ G ν ) ω E (τ G ν ) on

OP.circle p. 5/ Example w(t) = weight function supported on two intervals t γ (t 2 ξ 2 ) p ( t 2 ) q, t [, ξ] [ξ, ], elsewhere,

OP.circle p. 5/ Example w(t) = weight function supported on two intervals t γ (t 2 ξ 2 ) p ( t 2 ) q, t [, ξ] [ξ, ], elsewhere, plot (for ξ = 2 and p = q = ± 2, γ = ±).5.3...8.8 n = 6(5)8

OP.circle p. 5/ Example w(t) = weight function supported on two intervals t γ (t 2 ξ 2 ) p ( t 2 ) q, t [, ξ] [ξ, ], elsewhere, plot (for ξ = 2 and p = q = ± 2, γ = ±).5.3...8.8 n = 6(5)8 density of equilibrium measure ω [, ξ] [ξ,] (t) = π t (t 2 ξ 2 ) /2 ( t 2 ) /2