Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Σχετικά έγγραφα
Other Test Constructions: Likelihood Ratio & Bayes Tests

5. Choice under Uncertainty

2 Composition. Invertible Mappings

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Statistical Inference I Locally most powerful tests

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Every set of first-order formulas is equivalent to an independent set

Section 8.3 Trigonometric Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

derivation of the Laplacian from rectangular to spherical coordinates

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Solution Series 9. i=1 x i and i=1 x i.

Example Sheet 3 Solutions

Reminders: linear functions

ST5224: Advanced Statistical Theory II

Matrices and Determinants

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 15 - Root System Axiomatics

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Areas and Lengths in Polar Coordinates

Homework 8 Model Solution Section

Models for Probabilistic Programs with an Adversary

C.S. 430 Assignment 6, Sample Solutions

An Inventory of Continuous Distributions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Concrete Mathematics Exercises from 30 September 2016

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

10.7 Performance of Second-Order System (Unit Step Response)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Areas and Lengths in Polar Coordinates

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

4.6 Autoregressive Moving Average Model ARMA(1,1)


Theorem 8 Let φ be the most powerful size α test of H

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Tridiagonal matrices. Gérard MEURANT. October, 2008

Approximation of distance between locations on earth given by latitude and longitude

Solutions to Exercise Sheet 5

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Problem Set 3: Solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Chapter 3: Ordinal Numbers

EE512: Error Control Coding

Second Order Partial Differential Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Mean-Variance Analysis

The Simply Typed Lambda Calculus

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Μηχανική Μάθηση Hypothesis Testing

Appendix S1 1. ( z) α βc. dβ β δ β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Notes on the Open Economy

Lecture 2. Soundness and completeness of propositional logic

A Note on Intuitionistic Fuzzy. Equivalence Relation

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

1 String with massive end-points

Solution Concepts. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Fractional Colorings and Zykov Products of graphs

Congruence Classes of Invertible Matrices of Order 3 over F 2

Partial Differential Equations in Biology The boundary element method. March 26, 2013

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

w o = R 1 p. (1) R = p =. = 1

Second Order RLC Filters

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Optimal Fund Menus. joint work with. Julien Hugonnier (EPFL) 1 / 17

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

D Alembert s Solution to the Wave Equation

Homework 3 Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Srednicki Chapter 55

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Appendix to Technology Transfer and Spillovers in International Joint Ventures

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

F A S C I C U L I M A T H E M A T I C I

EE101: Resonance in RLC circuits

Monetary Policy Design in the Basic New Keynesian Model

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Math 6 SL Probability Distributions Practice Test Mark Scheme

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

A Conception of Inductive Logic: Example

Part III - Pricing A Down-And-Out Call Option

12. Radon-Nikodym Theorem

Differential equations

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

STAT200C: Hypothesis Testing

Lecture 21: Properties and robustness of LSE

Transcript:

Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home and foreign government W and W, respectively are as follows: W t, τ, a a ut t uτ W t, τ, α α uτ τ ut Losses are: Lτ W t, t B, a W t, τ, a uτ u τ B L t W t B, τ, α W t, τ, α ut u t B Let χ P denote the continuation payoff from the punishment that occurs if at least one player defects. Assume that χ P is not a function of the specific value of the defection tariff. Let χ C denote the continuation payoff if the treaty remains in effect neither player defects. Recall that a, α iid U, A for large A, u > 0, and u < 0.. Optimal Tariffs The home country s expected utility from violating the binding and not paying the fine defection is: A EUD t, a a ut t uτα dhα + σl τ α dhα + δχ P So the optimal defection tariff solves: EUD t, a t a u t 0 u t a t D a u a This violates the binding iff: t D a u > t B a a < u t B a > u t B a B

The home country s expected utility from violating the binding and paying the fine settlement is: A EUS t, a a ut t σl t uταdhα + So the optimal settlement tariff solves: EUS t, a t This violates the binding iff: Note that: t S a < t D a for all a. The optimal cooperative tariff is: +H δβχ C + H δχ P a u t σu t 0 u t a σ t Sa u t S a u a σ a > u t B + σ σlταdhα a σ > t B a σ < u t B { td a if a < a t B a B if a B a t B.2 Equilibrium Regions The home country s expected utility from actions C, S, and D given optimal tariff levels are: A EU C t B a, a a u t B a t B a uταdhα + +H δβχ C + H δχ P σlταdhα A EU S t S a, a a u t S a t S a σl t S a uταdhα + +H δβχ C + H δχ P A EU D t D a, a a u t D a t D a uταdhα + To compare utility from actions C and S, define for a: a EU C t B a, a EU S t S a, a Note that t S t B, so 0. Also: a u t B t B a u t S a + t S a + σl t S a σlταdhα σlταdhα + δχ P u t B u t S a a σ u t S a t Sa u t B u t S a < 0 + t Sa 2

So S strictly dominates C for all < a. To compare utility from actions S and D, define for a: a EU S t S a, a EU D t D a, a a u t S a t S a σl t S a a u t D a + t D a + δh βχ C χ P a σ u t S a t Sa t Sa + u t S a + t Da au t D a t Da u t D a u t S a u t D a < 0 So D strictly dominates S for sufficiently large values of a. By symmetry, indifference point a D is implicitly defined by: The equilibrium exists iff: > 0. λ a D u t S a D u t D a D + t D a D t S a D σl t S a D + δh a D βχ C χ P 0.3 Continuation Values Let t E a denote equilibrium tariffs when the institution is in place. The continuation payoff for home from the treaty being in effect is: χ C where Ψ A 0 a D au t E a t E a dha σ L t E a dha +σ Ψ δβh a D 2 A L τ E α dhα + δh a D 2 βχ C + δ A H a D 2 χ P a u t E a t E a dha + δ H a D 2 χ P u τ E α dhα.4 Comparative Statics Full Compliance Recall that the binding is not violated if a < u t B + σ. So the probability that the binding is not violated is H. Stability S u t B u t B 2 > 0 and S > 0 3

The institution is stable if a < a D. By the implicit function theorem: λ t B and λ σ Then for large A: a D σ u t S a D t S a D t S a D a D u t D a D t D a D + t D a D +u t S a D u t D a D + δh a D βχ C χ P + δh a D βχ C χ P u t S a D u t D a D + δh a D βχ C χ P + δh a D βχ C χ P < 0 λ tb σu t B + δh a D βχ C χ P > 0 λ σ a D σ u t S a D t S a D t S a D u t S a D u t B + δh a D βχ C χ P u t S a D u t B + δh a D βχ C χ P < 0 > 0 and < 0 Depth versus Rigidity Recall that χ C is the expected utility of a state from being a member of the cooperative regime. In equilibrium, λ 0. So for any pair t B, σ: χ C a D u t D a D u t S a D t D a D + t S a D + σl t S a D δβh a D The two first-order conditions on the optimal pair t B, σ are: + χ P β This implies that: dχ C dt B dχ C dσ + 0 + 0 D So for any pair t B, σ that generates χ C t B, σ χ : 4

dt B dσ dχc dσ dχ C dt B + + + + D + + D + + D where: δβh a D + σu t B δβh a D + a D u t S a D t S a D χp β δβh a D L t S a D + L t S a D χp + δβh a D β χp β + t S a D + σ u t S a D t S a D dt B dσ L t S a D δβha D + σu t B δβha D + β χp β χp L t S a D + δh a D χ P σu t B δh a D χ P > 0 for small A 2 Asymmetric Type Distributions Assume that home country type, a, is distributed according to distribution function Ha. Denote home continuation payoffs by χ N and χ C. Assume that foreign country type, α, is distributed according to distribution function F α. Denote foreign continuation payoffs χ N and χ C. The one-period utility functions of the home and foreign government W and W, respectively are as follows: W t, τ, a a ut t uτ W t, τ, α α uτ τ ut 5

Losses are: Lτ W t, τ B, a W t, τ, a uτ u τ B L t W t B, τ, α W t, τ, α ut u t B 2. Optimal Tariffs Home The home country s expected utility from from violating the binding and not paying compensation defection is: UD t, a a ut t uτα df α + σl τ α df α + δχ N So the optimal defection tariff solves: UD t, a t a u t 0 u t a t D a u a This violates the home binding iff: t D a u > t B a a < u t B a > u t B a B The home country s expected utility from violating the binding and paying compensation settlement is: US t, a a ut t σl t uτα df α + +F δβχ C + F δχ N σlτα df α So the optimal settlement tariff solves: US t, a t a u t σu t 0 u t a σ t Sa u a σ This violates the home binding iff: t S a u a σ a > u t B + σ > t B a σ < u t B 6

Note that: t S a < t D a for all a. The optimal cooperative tariff is: { td a if a < a t B a B if a B a t B Foreign The foreign country s expected utility from from violating the binding and not paying compensation defection is: U D τ, α α uτ τ a D uta dha + σl t a dha + δχ N So the optimal defection tariff solves: U D τ, α τ α u τ 0 u τ α τ Dα u α This violates the foreign binding iff: τ D α u > τ B α α < u τ B α > u τ B α B The foreign country s expected utility from violating the binding and paying compensation settlement is: a D U S τ, α α uτ τ σlτ uta dha + σl ta dha +H a D δβχ C + H a D δχ N So the optimal settlement tariff solves: U S τ, α τ α u τ σu τ 0 u τ α σ τ Sα u α σ This violates the foreign binding iff: τ S α u > τ B α σ α > u τ B + σ Note that: τ S α < τ D α for all α. The optimal cooperative tariff is: { τd α if α < α τ B α B if α B α τ B α σ < u τ B 7

2.2 Equilibrium Regions Home The home country s expected utility from actions C, S, and D given tariff levels above are: U C t B a, a a u t B a t B a uταdf α + σlταdf α +F δβχ C + F δχ N U S t S a, a a u t S a t S a σl t S a uταdf α + σlταdf α +F δβχ C + F δχ N U D t D a, a a u t D a t D a uταdf α + σlταdf α + δχ N To compare home utility from actions C and S, define for a: a U C t B a, a U S t S a, a a u t B t B a u t S a + t S a + σl t S a Note that t S t B, so 0. Also: u t B u t S a a σ u t S a t Sa u t B u t S a < 0 + t Sa So S strictly dominates C for all < a. To compare home utility from actions S and D, define for a: a U S t S a, a U D t D a, a a u t S a t S a σl t S a a u t D a + t D a + δf βχ C χ N a σ u t S a t Sa t Sa + u t S a + t Da au t D a t Da u t D a u t S a u t D a < 0 So D strictly dominates S for sufficiently large values of a. Indifference point a D is implicitly defined by: λ a D u t S a D u t D a D + t D a D t S a D σl t S a D + δf βχ C χ N 0 8

The equilibrium exists iff: > 0. Foreign The foreign country s expected utility from actions C, S, and D given tariff levels above are: U C τ B α, α α u τ B α τ B α a D utadha + σl tadha +H a D δβχ C + H a D δχ N U S τ S α, α α u τ S α τ S α σl τ S α a D utadha + σl tadha +H a D δβχ C + H a D δχ N a D U D τ D α, α α u τ D α τ D α utadha + σl tadha + δχ N To compare foreign utility from actions C and S, define for α: α U C τ B α, α U S τ S α, α α u τ B τ B α u τ S α + τ S α + σl τ S α Note that τ S τ B, so 0. Also: u τ B u τ S α α σ u τ S α τ Sα u τ B u τ S α < 0 + τ Sα So S strictly dominates C for all < α. To compare foreign utility from actions S and D, define for α: α U S τ S α, α U D τ D α, α α u τ S α τ S α σl τ S α α u τ D α + τ D α + δh a D βχ C χ N α σ u τ S α τ Sα τ Sα + u τ Sα + τ Dα αu τ D α τ Dα u τ D α u τ S α u τ D α < 0 So D strictly dominates S for sufficiently large values of α. 9

Indifference point is implicitly defined by: λ u τ S u τ D + τ D τ S σl τ S + δh a D βχ C χ N 0 The equilibrium exists iff: > 0. 2.3 Continuation Values Let t E a and τ E α denote equilibrium tariffs of the home and foreign country, respectively, when the institution is in place. If the institution does not exist, then the home and foreign country choose t D a and τ D α in every time period. This yields anarchy continuation payoffs: { } χ N a u t D a t D a dha u τ D α df α δ { } χ N α u τ D α τ D α df α u t D a dh a δ Home The continuation payoff for home from the treaty being in effect is: a D χ C au t E a t E a dha σ L t E a dha u τ E α df α +σ L τ E α df α + δh a D F βχ C + δ H a D F χ N where Ψ Ψ δβh a D F a D au t E a t E a dha σ L t E a dha +σ L τ E α df α + δ H a D F χ N u τ E α df α Foreign The continuation payoff for foreign from the treaty being in effect is: 0

χ C α u τ E α τ E α df α σ L τ E α df α u t E a dha a D +σ L t E a dha + δh a D F βχ C + δ H a D F χ N where Ψ Ψ δβh a D F α u τ E α τ E α df α σ L τ E α df α a D +σ L t E a dha + δ H a D F χ N u t E a dha 2.4 Comparative Statics Full Compliance Recall that the home country does not violate its binding if a u t B + σ. S u t B u t B 2 > 0 and S > 0 Recall that the foreign country does not violate its binding if α u τ B + σ. u τ B τ B u τ B 2 > 0 and > 0 Stability The cutpoints a D, are implicitly defined by the system of equations: By Cramer s Rule: λ a D, 0 λ a D, 0 λ t B λ t B λ a D and λ σ λ σ λ a D

τ B λ τ B λ τ B λ and λ σ λ σ λ where: u t S a D u t D a D + δf β D δf β + δf βχ C χ N λ tb σu t B + δf β λ τb δf β τ B λ σ L t S a D + δf β χ λ a D δh a D β C + δh a D βχ C χ N u τ S u τ D + δh a D β χ C D χ λ t B δh a D β C λ τ B σu τ B + δh a D β χ C τ B λ σ L τ S + δh a D β χ C Comparative statics on a D As h a D, H a D, f, F grow small: λ a D u t S a D u t D a D + δf β χ C u τ S u τ D + δh a D β χ C χ δf β + δf βχ C χ N δh a D β C + δh a D βχ C χ N D u t S a D u t D a D u τ S u τ D > 0 2

λ t B λ t B λ tb + λ t B σu t B + δf β u τ S u τ D + δh a D β χ C χ + δf β + δf βχ C χ N δh a D β C σu t B u τ S u τ D > 0 λ σ λ σ λ σ + λ σ L t S a D + δf β χ C u τ S u τ D + δh a D β χ C + δf β + δf βχ C χ N L τ S + δh a D β χ C L t S a D u τ S u τ D < 0 λ t B λ t B λ a D σu t B u τ S u τ D u t S a D u t D a D u τ S u τ D > 0 λ σ λ σ λ a D L t S a D u τ S u τ D u t S a D u t D a D u τ S u τ D < 0 Comparative Statics on As h a D, H a D, f, F grow small: λ δf β + δf βχ C χ N δh a D β u t S a D u t D a D + δf β χ C u t S a D u t D a D u τ S u τ D < 0 χ C + δh a D βχ C χ N u τ S u τ D + δh a D β χ C 3

λ τ B λ τ B λ τb + λ τ B δf β τ B δh a D β χ C + u t S a D u t D a D + δf β σu τ B u t S a D u t D a D < 0 + δh a D βχ C χ N σu τ B + δh a D β χ C τ B λ σ λ σ λ σ + λ σ L t S a D + δf β + u t S a D u t D a D + δf β L τ S u t S a D u t D a D > 0 χ δh a D β C + δh a D βχ C χ N L τ S + δh a D β χ C τ B λ τ B λ τ B λ σu τ B u t S a D u t D a D u t S a D u t D a D u τ S u τ D > 0 λ σ λ σ λ L τ S u t S a D u t D a D u t S a D u t D a D u τ S u τ D < 0 4