SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Σχετικά έγγραφα
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Other Test Constructions: Likelihood Ratio & Bayes Tests

2 Composition. Invertible Mappings

ST5224: Advanced Statistical Theory II

Statistical Inference I Locally most powerful tests

Solution Series 9. i=1 x i and i=1 x i.

Section 8.3 Trigonometric Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Matrices and Determinants

An Inventory of Continuous Distributions

Finite Field Problems: Solutions

Homework 8 Model Solution Section

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Inverse trigonometric functions & General Solution of Trigonometric Equations

Mean-Variance Analysis

Areas and Lengths in Polar Coordinates

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING

Example Sheet 3 Solutions

Areas and Lengths in Polar Coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

C.S. 430 Assignment 6, Sample Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Problem Set 3: Solutions

6. MAXIMUM LIKELIHOOD ESTIMATION

Solutions to Exercise Sheet 5

Lecture 34 Bootstrap confidence intervals

Probability and Random Processes (Part II)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

EE512: Error Control Coding

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Reminders: linear functions

Homework 3 Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

( y) Partial Differential Equations

The Simply Typed Lambda Calculus

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Second Order Partial Differential Equations

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Math 6 SL Probability Distributions Practice Test Mark Scheme

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Math221: HW# 1 solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

derivation of the Laplacian from rectangular to spherical coordinates

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Every set of first-order formulas is equivalent to an independent set

Theorem 8 Let φ be the most powerful size α test of H

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Homework for 1/27 Due 2/5

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Tridiagonal matrices. Gérard MEURANT. October, 2008

Introduction to the ML Estimation of ARMA processes

6.3 Forecasting ARMA processes

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

5. Choice under Uncertainty

4.6 Autoregressive Moving Average Model ARMA(1,1)

Exercises to Statistics of Material Fatigue No. 5

Additional Results for the Pareto/NBD Model

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

D Alembert s Solution to the Wave Equation

5.4 The Poisson Distribution.

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Uniform Convergence of Fourier Series Michael Taylor

A General Note on δ-quasi Monotone and Increasing Sequence

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

F19MC2 Solutions 9 Complex Analysis

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

The Pohozaev identity for the fractional Laplacian

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Strain gauge and rosettes

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Solution to Review Problems for Midterm III

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

STAT200C: Hypothesis Testing

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Oscillatory integrals

Divergence for log concave functions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Fractional Colorings and Zykov Products of graphs

Answer sheet: Third Midterm for Math 2339

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Part III - Pricing A Down-And-Out Call Option

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Exercise 2: The form of the generalized likelihood ratio

Congruence Classes of Invertible Matrices of Order 3 over F 2

Transcript:

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max X 1,..., X n ) t N n) Pr X 1 t,..., X n t) Pr X 1 t) Pr X n t) t + a 2a t + a ) 2a n t + a. 2a 4 marks) b) The unconditional cumulative distribution function of T is PrT t) Pr T t N n) n exp ) n! n ) n t + a n exp ) 2a n! n ) n 1 t + a) exp ) n! 2a n ) t + a) exp + 2a ) t a) exp. 2a 4 marks) c) The unconditional probability density function of T is f T t) ) t a) 2a exp. 2a 1 marks) 1

d) The moment generating function of T is M T s) 2a exp ) a exp 2 a 2a exp 2a exp 2 ) s + 2a ) s + 2 2a st + t 2a ) 1 [ exp ) dt st + t 2a ) 1 [ exp sa + 2 )] a a ) exp sa )]. 2 4 marks) e) Setting ) t a) exp. p 2a and solving for t, we obtain value at risk of T as VaR p T ) a + 2a log p. 3 marks) f) The expected shortfall T is ES p T ) a + 2a p p log xdx a + 2a p {[t log t]p p} a + 2a {p log p p} p a + 2a {log p 1}. 4 marks) 2

Solutions to Question 2 If there are norming constants a n >, b n and a nondegenerate G such that the cdf of a normalized version of M n converges to G, i.e. ) Mn b n Pr x F n a n x + b n ) Gx) 1) a n as n then G must be of the same type as cdfs G and G are of the same type if G x) Gax + b) for some a >, b and all x) as one of the following three classes: I : Λx) exp { exp x)}, x R; { if x <, II : Φ α x) exp { x α } if x for some α > ; { exp { x) III : Ψ α x) α } if x <, 1 if x for some α >. SEEN 4 marks) The necessary and sufficient conditions for the three extreme value distributions are: 1 F t + xγt)) I : γt) > s.t. t wf ) 1 F t) II : wf ) and t 1 F tx) 1 F t) x α, x >, exp x), x R, III : wf ) < and t 1 F wf ) tx) 1 F wf ) t) xα, x >. SEEN 4 marks) First, suppose that G belongs to the max domain of attraction of the Gumbel extreme value distribution. Then, there must exist a strictly positive function say ht) such that 1 G t + xht)) t wg) 1 Gt) e x 3

for every x, ). But 1 F t + xht)) t wf ) 1 F t) t wf ) t wf ) t wf ) t wf ) t wf ) t wf ) exp bx) 1 + xh t) ) f t + xht)) ft) 1 + xh t) ) g t + xht)) G a 1 t + xht)) [1 G t + xht))] b 1 g t) G a 1 t) [1 G t)] b 1 1 + xh t) ) g t + xht)) [1 G t + xht))] b 1 1 + xh g t) [1 G t)] b 1 t) ) g t + xht)) [1 G t + xht))] b 1 g t) [1 G t)] b 1 1 G t + xht)) [1 G t + xht))] b 1 1 G t) [1 G t)] b 1 [ ] b 1 G t + xht)) 1 G t) for every x, ), assuming wf ) wg). So, it follows that F also belongs to the max domain of attraction of the Gumbel extreme value distribution with ) P Mn b n x exp [ exp bx)] n for some suitable norming constants a n > and b n. a n 4 marks) Second, suppose that G belongs to the max domain of attraction of the Fréchet extreme value distribution. Then, there must exist a β > such that 1 G tx) t 1 Gt) x β 4

for every x >. But 1 F tx) t wf ) 1 F t) xf tx) t wf ) ft) xg tx) G a 1 tx) [1 G tx)] b 1 t wf ) g t) G a 1 t) [1 G t)] b 1 xg tx) [1 G tx)] b 1 t wf ) g t) [1 G t)] b 1 t wf ) t wf ) t wf ) x bβ xg tx) [1 G tx)] b 1 g t) [1 G t)] b 1 1 G tx) [1 G tx)] b 1 1 G t) [1 G t)] b 1 [ ] b 1 G t + xht)) 1 G t) for every x >. So, it follows that F also belongs to the max domain of attraction of the Fréchet extreme value distribution with ) P Mn b n x exp x bβ) n for some suitable norming constants a n > and b n. a n 4 marks) Third, suppose that G belongs to the max domain of attraction of the Weibull extreme value distribution. Then, there must exist a β > such that 1 G wg) tx) t 1 G wg) t) xβ 5

for every x >. But t 1 F wf ) tx) 1 F wf ) t) t xf wf ) tx) fwf ) t) t xg wf ) tx) G a 1 wf ) tx) [1 G wf ) tx)] b 1 g t) G a 1 wf ) t) [1 G wf ) t)] b 1 t xg wf ) tx) [1 G wf ) tx)] b 1 g wf ) t) [1 G wf ) t)] b 1 xg wf ) tx) [1 G wf ) tx)] b 1 t g wf ) t) [1 G wf ) t)] b 1 1 G wf ) tx) [1 G wf ) tx)] b 1 t 1 GwF ) t) [1 G wf ) t)] b 1 [ ] b 1 G wf ) tx) t 1 GwF ) t) x bβ for every x <, assuming wf ) wg). So, it follows that F also belongs to the max domain of attraction of the Weibull extreme value distribution with ) P Mn b n x exp x) bβ) n for some suitable norming constants a n > and b n. a n 4 marks) 6

Solutions to Question 3 a) Note that wf ) N and Pr X wf )) 1 F wf ) 1) Pr X N) 1 F N 1) Pr X N) 1 Pr X 1) Pr X 2) Pr X N 1) 1 N 1 1 N 1 N 1 N 1 N 1 N 1 N 1. Hence, there can be no non-degenerate it. 4 marks) b) Note that wf ) n and Pr X wf )) 1 F wf ) 1) Pr X n) 1 F n 1) Pr X n) 1 Pr X n 1) Pr X n) Pr X n) 1. Hence, there can be no non-degenerate it. c) Note that wf ) b. The corresponding cdf is F x) log x log a log b log a. 7

Note that t 1 F wf ) tx) 1 F wf ) t) t 1 F b tx) 1 F b t) 1 logb tx) log a log b log a t 1 logb t) log a log b log a log b logb tx) t log b logb t) t x. x b tx 1 b t So, F x) belongs to the Weibull domain of attraction. 4 marks) d) Note that wf ). Then 1 F t + xgt)) t 1 F t) { [ 1 1 exp t + xgt)) 2 ]} a t 1 {1 exp [ t 2 ]} a { [ 1 1 a exp t + xgt)) 2 ]} t 1 {1 a exp [ t 2 ]} [ t + xgt)) 2 ] exp t exp [ t 2 ] exp [ 2txgt) x 2 g 2 t) ] t exp x) if gt) 1/2t). So, F x) [1 exp x 2 )] a belongs to the Gumbel domain of attraction. 4 marks) 8

e) Note that wf ). Then 1 F tx) t 1 F t) t 1 1 + [1 exp tx) 1 )] a 1 1 + [1 exp t 1 )] a [1 exp tx) 1 )] a t [1 exp t 1 )] a [ 1 exp tx) 1 ) t 1 exp t 1 ) [ ] 1 1 + tx) 1 a t 1 1 + t 1 x a. ] a. So, the cdf F x) 1 [1 exp x 1 )] a belongs to the Fréchet domain of attraction. 4 marks) 9

Solutions to Question 4 a) If X is an absolutely continuous random variable with cdf F ) then VaR p X) F 1 p) and ES p X) 1 p p F 1 v)dv. 2 marks) SEEN b) i) The corresponding cdf is for a < x < a; F x) x a 3y 2 2a 3 dy 3 2a 3 [ y 3 3 ] x a 3 2a 3 [ ] x 3 + a 3 x3 + a 3 3 2a 3 2 marks) b) ii) Inverting we obtain VaR p X) 2p 1) 1/3 a. F x) x3 + a 3 2a 3 p, 1 marks) b) iii) The expected shortfall is ES p X) 1 p p 2v 1) 1/3 dv 1 p [ 32v 1) 4/3 8 ] p 3a [ 2p 1) 4/3 1 ]. 8p 2 marks) 1

c) i) The likelihood function of a is L a) 3 n 2 n a 3n 3 n 2 n a 3n 3 n 2 n a 3n 3 n 2 n a 3n 3 n 2 n a 3n n [ X 2 i I { a < X i < a} ] i1 n ) 2 X i i1 n i1 I { a < X i < a} n ) 2 X i I {max X 1,..., X n ) < a, min X 1,..., X n ) > a} i1 n ) 2 X i I {a > max X 1,..., X n ), a > min X 1,..., X n )} i1 n ) 2 X i I {a > max [max X 1,..., X n ), min X 1,..., X n )]}. i1 3 marks) c) ii) Note that L a) is a decreasing function over a and a > max [max X 1,..., X n ), min X 1,..., X n )]. Hence, the mle of a is max [max X 1,..., X n ), min X 1,..., X n )]. c) iii) The mles of VaR and ES are VaR p X) 2p 1) 1/3 â and ÊS p X) 3â [ 2p 1) 4/3 1 ], 8p where â max [max X 1,..., X n ), min X 1,..., X n )]. 1 marks) 2 marks) 11

c iv) Let Z max [max X 1,..., X n ), min X 1,..., X n )]. The cdf of Z is F Z z) Pr max [max X 1,..., X n ), min X 1,..., X n )] z) Pr max X 1,..., X n ) z, min X 1,..., X n ) z) Pr max X 1,..., X n ) z, min X 1,..., X n ) z) Pr X 1 z,..., X n z, X 1 z,..., X n z) Pr z X 1 z,..., z X n z) Pr n z X z) [Pr X z) Pr X z)] n [ ] z 3 n a 3 for z >. The corresponding pdf is f Z z) 3na 3n z 3n 1 for z >. 3 marks) c v) The expected value of Z is a [ z EZ) 3na 3n z 3n dz 3na 3n 3n+1 Hence, â is biased for a. 3n + 1 ] a 3n a3n+1 dz 3na 3n + 1 3na 3n + 1. 2 marks) c vi) Since [ ] Bias VaRp X) 2p 1) 1/3 Bias [â], we see that VaR p X) is biased for VaR p X). 1 marks) c vii) Since ] Bias [ÊSp X) 3 [ 2p 1) 4/3 1 ] Bias [â], 8p 12

we see that ÊS px) is biased for ES p X). 1 marks) 13

Solutions to Question 5 a) Note that F α 1 + 1 x 1 ) α 1 k x i, i1 2 F x 1 x 2 αα + 1) 2 1 + 1 ) α 2 k x i, i1 3 F αα + 1)α + 3) 1 + 1 x 1 x 2 x 3 3 ) α 3 k x i, i1 and so on. In general, as required. f x 1, x 2,..., x k ) αα + 1) α + k 1) k 1 + 1 ) α k k x i, i1 4 marks) b) The pdf of S is f S s) as required. s s x1 s x1 x k 1 f x 1, x 2,..., t x 1 x 2 x k 1 ) dx k dx 2 dx 1 s s x1 k αα + 1) α + k 1) k αα + 1) α + k 1) k s s x1 s x1 x k 1 αα + 1) α + k 1) 1 + s ) α k s k αα + 1) α + k 1) s 1 k + s ) α k, k! k s x1 x k 1 s x1 ) α k 1 + 1 x i dx k dx 2 dx 1 i1 1 + s ) α k dxk dx 2 dx 1 s x1 x k 1 dx k dx 2 dx 1 14 4 marks)

c) The cdf of S is F S s) as required. αα + 1) α + k 1) k! k αα + 1) α + k 1) k! s x k 1 + x ) α k dx /s+) 1 s/s+) y α 2 1 y) k dy αα + 1) α + k 1) 1 y) α 2 y k dy k! αα + 1) α + k 1) B s/s+) k + 1, α 1), k! 4 marks) d) The nth moment of S is E S n ) αα + 1) α + k 1) k! k n+1 αα + 1) α + k 1) k! x n+k 1 + x ) α k dx 1 1 y) n+k y α n 2 dy n+1 αα + 1) α + k 1) B α n 1, n + k + 1). k! 4 marks) e) The joint likelihood function is L α, ) αn α + 1) n α + k 1) n k!) n kn Its log is The joint likelihood function is [ ] α n α + 1) n α + k 1) n log L α, ) log k!) n + k kn n ) k [ n s i The partial derivatives of this with respect to α and are log L α, ) α n α + n α + 1 + + 15 i1 i1 1 + s i n log s i α + k) i1 n n α + k 1 i1 log ) ] α k n i1 1 + s i. log ) 1 + s i ).

and log L α, ) kn + α + k 2 n s i 1 + s ) 1 i. i1 The maximum likelihood estimates of α and are the simultaneous solutions of n α + n α + 1 + + n α + k 1 n log 1 + s ) i i1 and kn α + k 2 n s i 1 + s ) 1 i. i1 4 marks) 16