Early&Age&Activation&of&SCMs&as&Influenced&by&Alkali& Content&of&Cement&& & & A&thesis&submitted&in&conformity&with&the& requirements&

Σχετικά έγγραφα
Χρήση Ανακυκλωµένων Τούβλων ως Αδρανών Σκυροδέµατος Use of recycled clay bricks as concrete aggregates

!!!! Carbon!Fibre!Reinforcement!of!Ceramic!Water!Filters!

NFR MPO. Regional Bicycle Plan MARCH 7, Fort Collins. Timnath Eaton. Severance. Windsor. Loveland. Greeley. Evans LaSalle.

Τεχνολογία Παραγωγής Τσιμέντου και Σκυροδέματος. Διδάσκων: Κωνσταντίνος Γ. Τσακαλάκης Καθηγητής Ε.Μ.Π. Ενότητα 7 η Παραγωγή Έτοιμου Σκυροδέματος

έσποινα ΤΕΛΩΝΙΑΤΗ, Γεώργιος ΡΟΥΒΕΛΑΣ, Ιωάννης ΚΑΡΑΘΑΝΑΣΗΣ Λέξεις κλειδιά : βαρέα σκυροδέµατα, ακτινοβολία, αντοχή

TABLE OF CONTENT. Chapter Content Page

ΠΑΡΑΓΩΓΗ ΕΙΔΙΚΩΝ ΣΚΥΡΟΔΕΜΑΤΩΝ ΥΨΗΛΟΥ ΟΙΚΟΛΟΓΙΚΟΥ ΠΡΟΦΙΛ ΜΕ ΤΗ ΧΡΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΠΑΡΑΠΡΟΪΟΝΤΩΝ

«Πρόγραμμα Ανάπτυξης Βιομηχανικής Έρευνας και Τεχνολογίας (ΠΑΒΕΤ) 2013» Κωδικός έργου: 716-ΒΕΤ-2013

Rational Ligand Design for Potential Applications in Transition Metal Catalysis

Metal Film Flame-Proof Resistors

Metal Oxide Leaded Film Resistor

Answers to practice exercises

Metal Oxide Leaded Film Resistor

Παραγωγή ανθεκτικών σκυροδεμάτων με χρήση αδρανών σκωρίας κάδου

Acoustic Assessment Report. Conestoga-Rovers & Associates. Prepared for: Clean Harbors Canada, Inc. 651 Colby Drive Waterloo, Ontario N2V 1C2

Figure 1 - Plan of the Location of the Piles and in Situ Tests

ΠΑΡΑΓΩΓΗ ΕΤΟΙΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ. Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π.,

ΧΡΗΣΗ ΣΚΩΡΙΩΝ ΧΑΛΥΒΟΥΡΓΙΑΣ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΚΥΒΟΛΙΘΩΝ ΟΔΟΣΤΡΩΣΙΑΣ

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Supplementary!Information!

Metal Film Leaded Precision Resistor

Data Sheet High Reliability Glass Epoxy Multi-layer Materials (High Tg & Low CTE type) Laminate R-1755V Prepreg R-1650V

60W AC-DC High Reliability Slim Wall-mounted Adaptor. SGA60E series. File Name:SGA60E-SPEC

4. Construction. 5. Dimensions Unit mm

Multilayer Chip Inductor

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

Συνοπτική περιγραφή των συνηθέστερων εργαστηριακών δοκιµών Βραχοµηχανικής Εδαφοµηχανικής

High Speed, Low Loss Multi-layer Materials

Ανασκόπηση στο Πρότυπο ΕΛΟΤ ΕΝ 934-2: Πρόσθετα σκυροδέματος

ΤΙΤΛΟΣ ΜΕΛΕΤΗΣ : ΠΡΟΜΗΘΕΙΑ ΑΣΦΑΛΤΟΥ ΑΣΦΑΛΤΟΜΙΓΜΑΤΟΣ ΑΔΡΑΝΩΝ ΥΛΙΚΩΝ ΑΡΙΘΜΟΣ ΜΕΛΕΤΗΣ : Π8/2011 : ΙΔΙΟΙ ΠΟΡΟΙ ΧΡΗΜΑΤΟΔΟΤΗΣΗ

Trimmable Thick Film Chip Resistor

LR Series Metal Alloy Low-Resistance Resistor

Αξιοποίηση σκωριών EAFS ως πρόσθετο υλικό για την παραγωγή τσιμέντων τύπου Portland

Eπίδραση µετακαολίνη στις ιδιότητες του σκυροδέµατος

ΕΛΕΓΧΟΣ ΚΑΤΑΛΛΗΛΟΤΗΤΑΣ ΣΚΩΡΙΑΣ ΚΑΔΟΥ (LADLE FURNACE SLAG) ΣΑΝ ΣΥΜΠΛΗΡΩΜΑΤΙΚΗ ΚΟΝΙΑ ΓΙΑ ΤΗΝ ΠΑΡΑΓΩΓΗ ΣΚΥΡΟΔΕΜΑΤΟΣ

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

2742/ 207/ / «&»

SOFT FERRITE CORE FOR EMI/EMC SUPPRESSION. AVERTEC Co., Ltd.

Metal Film Leaded Precision Resistor

E I,conc = E M + E P + E T + E G (1) E M = C E c + Σ (SCM E SCM ) + A E A + W E W + D E D (2)

Λέξεις κλειδιά: Αδρανή σκωρίας (slag aggregates), ανθεκτικότητα (durability, αειφορία (sustainability)

ect of Modified Wheat Starches on the Textural Properties of Baked Products, such as Cookies

Thin Film Chip Resistors

Σύνθετα Υλικά: Χαρακτηρισμός και Ιδιότητες

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512. official distributor of

LR Series Metal Alloy Low-Resistance Resistor

THICK FILM LEAD FREE CHIP RESISTORS

THICK FILM CHIP RESISTOR" CAL-CHIP ELECTRONICS INC."

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Μελέτη συνθέσεων σκυροδέµατος στη Γέφυρα Ρίου-Αντιρρίου

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

ΕΚΘΕΣΗ ΟΚΙΜΗΣ ΙΕΙΣ ΥΣΗΣ ΒΡΟΧΗΣ RAIN PENETRATION TEST

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Χρήση ποζολανικών τσιμέντων σε σκυροδέματα υψηλής επίδοσης. Utilization of pozzolanic cements in high performance concrete

Injection Molded Plastic Self-lubricating Bearings

ΚΙΝ ΥΝΟΙ ΛΟΙΜΩΞΕΩΝ ΧΕΙΡΟΥΡΓΙΚΗΣ ΘΕΣΗΣ ΓΥΝΑΙΚΩΝ ΠΟΥ ΥΠΟΒΑΛΛΟΝΤΑΙ ΣΕ ΚΑΙΣΑΡΙΚΗ ΤΟΜΗ

Carbon Film Leaded Resistor

CPTC Thermistor:PS Series

RJJ Miniature Aluminum Electrolytic Capacitors RJJ. Series RJJ High-Frequency, Low Impedance, Standard Type. Radial Type

RC series Thick Film Chip Resistor

Γλωσσάρι όρων για Σκυρόδεμα. άκαμπτο οδόστρωμα αλληλεπίδραση αναμικτήρας ανθεκτικότητα αντιδραστήριο αντικείμενο. αυτοσυμπυκνούμενο σκυρόδεμα

Consolidated Drained

AC Impedance Characteristics of Ternary Cementitious Materials

Επίδραση των κρυσταλλικών προσμείκτων PRAH στην ανθεκτικότητα των σκυροδεμάτων

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΙΑΡΚΕΙΑΣ ΖΩΗΣ ΚΑΤΑΣΚΕΥΩΝ ΑΠΟ ΣΚΥΡΟ ΕΜΑ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΕΠΙΒΕΒΑΙΩΣΗ

4 Way Reversing Valve

Αικατερίνη ΜΗΛΙΟΠΟΥΛΟΥ 1

A3: ΕΠΙΛΟΓΗ ΑΞΙΟΠΙΣΤΙΑΣ

Περιγραφή ΠΟΣΟΤ ΚΑΤΗΓΟΡΙΑ/ΔΡ. ΟΥΣΙΑ M.M. CPV ΠΑΡΑΤΗΡΗΣΕΙΣ Α/Α ΚΩΔΙΚΟΣ CPV

ΕΠΕΣ. Σκυρόδεμα χαμηλής θερμικής αγωγιμότητας

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Fixed Inductors / AL TYPE

Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών

ΧΡΗΣΗ ΠΡΟΣΘΕΤΩΝ ΥΛΙΚΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΕΚΤΟΞΕΥΟΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

LR(-A) Series Metal Alloy Low-Resistance Resistor

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

FWM-DAT/DAF. Εφαρμοσμένα συστήματα Τεχνικά δεδομένα > FWM02DATV3 > FWM25DATV3 > FWM03DATV3 > FWM35DATV3 > FWM04DATV3 > FWM06DATV3

Αθήνα, 8/1/2014 Αρ. Πρωτ. Φ2-74 ΓΕΝ. ΓΡΑΜΜΑΤΕΙΑ ΕΜΠΟΡΙΟΥ. ΤΜΗΜΑ Δ' Ταχ. Δ/νση: Πλ. Κάνιγγος ΠΡΟΣ : 1. Γεν. Δ/νσεις Ανάπτυξης Ταχ. Κώδ.

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Current Sensing Metal Chip Resistor

Current Sensing Chip Resistor

ΕΠΕΣ. Πανελλήνιο Συνέδριο Σκυροδέματος «Κατασκευές από Σκυρόδεμα»

Table 2 Suggested prediction methods to use for a given set of available input parameters per each examined soil hydraulic property) a.

Melf Carbon Film Resistor MMC Series

Thin Film Chip Resistors

Thin Film Chip Resistors

ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ

ΑΝΘΕΚΤΙΚΟΤΗΤΑ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΕΛΛΗΝΙΚΕΣ ΙΠΤΑΜΕΝΕΣ ΤΕΦΡΕΣ ΔΙΑΦΟΡΕΤΙΚΗΣ ΔΡΑΣΤΙΚΟΤΗΤΑΣ ΣΤΗΝ ΕΠΙΘΕΣΗ ΧΛΩΡΙΟΝΤΩΝ

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙΤΕΧΝΟΛΟΓΙΚΗ ΥΠΕΡΟΧΗ ΜΕ

ΧΡΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΠΑΡΑΠΡΟΪΟΝΤΩΝ ΓΙΑ ΤΗΝ ΠΑΡΑΣΚΕΥΗ ΣΚΥΡΟΔΕΜΑΤΟΣ

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Συµπεριφορά τοίχων πληρώσεως µε διάζωµα Ω.Σ. ή µε οπλισµό οριζόντιων αρµών

Συµπεριφορά σκυροδέµατος µε ασβεστολιθικά τσιµέντα Portland σε συνδυασµένο περιβάλλον χλωριόντων και θειικών ιόντων και χαµηλές θερµοκρασίες

Accu-Guard II. SMD Thin-Film Fuse ELECTRICAL SPECIFICATIONS

Transcript:

Early&Age&Activation&of&SCMs&as&Influenced&by&Alkali& Content&of&Cement&& & & A&thesis&submitted&in&conformity&with&the& requirements& for&the&degree&of&master&of&applied&science& Department&of&Civil&Engineering& University&of&Toronto& & & by& & & & Mona&Qouqa& & & & & & & & & &Copyright&by&Mona&Qouqa&2015& & &

ii Early&Age&Activation&of&SCMs&as&Influenced&by&Alkali&Content&of&Cement& & & Master&of&Applied&Science& Department&of&Civil&Engineering& University&of&Toronto& Mona&Qouqa& Year&of&Convocation&2015& & Abstract& & AlotofresearchhasbeendoneontheactivationofSCMsinorderto guaranteemaximumperformanceofconcretewhetherthroughdurabilityor strength,especiallyatearlyage.theuseofscmsalongwithlow?alkali cementsmightbesuggestedasanapproachtoensureoptimalconcrete conditionsagainstextremedeteriorationmechanismssuchasalkali aggregatereactions.theissuewiththatisitisthoughtthatthescmsmaybe betteractivatedbyhighalkalicontentcements.thisprojectinvestigates otherdriversforactivation,mainlythecontentofalite.fromthetestresults itisconcludedthatalthoughhighalkalicementcontentwithaveragealite contentsampleshadhighstrength,sodidthelowestalkalicementwiththe highestalitecontent.

iii Table&of&Contents& Abstract&...&ii Table&of&Contents&...&iii List&of&Figures&...&v List&of&Tables&...&vii Introduction&...&1 Chapter&1&...&3 Literature&Review&...&3 1.1#Fly#Ash#...#3 1.2#Granulated#Blast#Furnace#Slag#...#5 1.3 Methods#of#activation#...#6 1.4#Data#collected#...#6 Chapter&2&...&9 Experimental&Program&...&9 2.1#Materials#...#9 2.1.1PortlandCement...9 2.1.2Water...10 2.1.3Aggregates...10 2.1.3.1Fineaggregates...10 2.1.3.2CoarseAggregates(onlyforconcretemixtures)...10 2.1.4Admixtures...10 2.1.5SCMs...10 2.2#Mixing#and#Casting#Procedures#...#11 2.2.1MortarCubes...11 2.2.2Calorimetrytests...12 2.2.3PoreSqueezing...12 2.2.4ConcreteMixes...13 2.3#Curing#...#14 2.3.1Mortarcubes...14 2.3.2ConcreteMixtures...15 2.4#Specimen#Testing#...#15 2.4.1Calorimeter...15 2.4.2PoreSqueezing...15 2.4.3ElectricalResistivity...16 2.4.4Compressivetesting...16 Chapter&3:&...&17 Results&and&Discussion&...&17 3.1#Mortar#Cubes#Results#...#17 3.1.1LafargeSlag(S)...17 3.1.2HolcimSlag(S2)...19 3.1.3FlyAsh(F)...22 3.2#Concrete#Mixtures#...#25

iv 3.3##Calorimetry#...#26 3.3.1FlyAsh...26 3.3.2HolcimSlag...27 3.3.3LafargeSlag...28 3.4#Pore#solution#Analysis#...#29 3.4.1Flyash...29 3.4.2HolcimSlag...30 3.5Mortar#Cube#specimens#with#different#curing#solutions#...#31 Chapter&4&...&32 Conclusions&and&Recommendations&...&32 4.1#Conclusions#...#32 4.2#Recommendations#...#32 References&...&33 Appendix&A&...&37 Data&collected&From&the&Literature&...&37 Appendix&B&...&47 Mortar&Cube&Test&Results&...&47 Appendix&C&...&62 Concrete&Mixtures&Test&Results&...&62 Appendix&D&...&65 Pore&Squeezing&Data&...&65

v List&of&Figures& Figure1:Strengthratiosat1,3,7daystostrengthat28daysversuscementalkali content...7 Figure2:Strengthsat1,3,7daysasarationtostrengthat28daysversusflyash alkalicontentfromliterature...8 Figure3:Mixingofmortar...12 Figure4:Stainlesssteelcubemolds...12 Figure5:Poresqueezingapparatus...15 Figure6:Compressivestrengthdevelopmentfordifferentalkalicementsand50% LafargeSlag(S)...18 Figure7:Strengthsforthethreehighestearlyagestrengthforcementswith50% Lafargeslag...18 Figure8:Resistivitydevelopmentfordifferentalkalicementswith50%Lafarge slag...19 Figure9:Compressivestrengthdevelopmentforcementwith50%HolcimSlag(S2)...20 Figure10:Strengthswithstandarddeviationerrorbarsforthethreehighestearly agestrengthdevelopmentcementsforcementsblendedwith50%holcimslag...20 Figure11:Resistivitydevelopmentformixeswith50%Holcimslag...21 Figure12:Strengthdevelopmentwithalkalicontentatdifferentagesforallcements (bothslags)...21 Figure13:Strengthdevelopmentforcementshavingdifferentalitecontentat differentagesforallcements(bothslags)...22 Figure14:Strengthdevelopmentforallcementswith25%flyashreplacement...23 Figure15:Standarddeviationerrorbarsforthefourhighestearlyagestrength developmentcementsforcementswith25%flyash...23 Figure16:Strengthdevelopmentforcementswithdifferentalkalicontentat differentagesforallcementswithflyashreplacement...24 Figure17:Strengthdevelopmentwithalitecontentatdifferentagesforallcements withflyashreplacement...24 Figure18:StrengthDevelopmentovertimefor100%cementconcretemix...25 Figure19:StrengthDevelopmentfor50%Holcimslagconcretemix...25 Figure20:Powerchangewithtimeforflyashspecimens...26 Figure21:Energychangewithtimeforflyashspecimens...26 Figure22:PowerchangewithtimeforHolcimslagspecimens...27 Figure23:EnergychangewithtimeforHolcimslagspecimens...27 Figure24:PowerchangewithtimeforLafargeslagspecimens...28 Figure25:EnergychangewithtimeforLafargeslagspecimens...29 Figure26:Hydroxylconcentrationsof25%flyashconcretestohydroxyl concentrationofportlandcementcontrolforeachcementused...29 Figure27:Hydroxylionconcentrationof50%slagmixturestohydroxyl concentrationofportlandcementforeachcementalkalicontentused...30

vi Figure28:StrengthdevelopmentforSlagandcontrolmixeswithdifferentcuring solutions...31

List&of&Tables& Table1:Chemicalcompositionoftheeightcementsused...9 Table2:AggregateProperties...10 Table3:PropertiesofSCMsused...11 Table4:Mortarmixdesignfor6cubes...11 Table5:Concretemixturedesigns...13 Table6:Freshconcretemixtureproperties...14 vii

1 Introduction& Supplementarycementitousmaterials(SCM)areby?productmaterialsofindustrial processes.theyoftenhavelittleornocementitiousvalue,butwiththeadditionof cement,theyreactchemicallywithcalciumhydroxidefromthecement?water reactionatroomtemperaturetoformcompoundssimilarinstructuretothemain buildingcomponentsofconcrete. SCMshavebeenusedaspartialreplacementforcementinconcreteproductionin NorthAmericasincethe1970s.Notonlydotheyimprovestrength,durabilityand workabilityofconcretewithouthinderingitsperformancecharacteristics,butmay alsohelpreducethecostofconcreteandreducepollution(debrito2013). ThetwoSCMsfocusedoninthisprojectwereflyashandslag.Theybothare structurallymadeofglassymaterial.inordertochemicallyreactinconcrete, producingthedesiredmechanicalproperties,theglassystructureincreasestheir potentialfordissolutioninanalkalineenvironmentforthesubsequentproduction ofcalciumsilicatehydrates(diamond1981). Activationoftheflyashandslag,andstrengthdevelopment,areconsideredby researcherstobemainlybasedonthealkalinityoftheporesolutioninconcrete, whichisinfluencedbythealkalicontentofthecementsused(nixonandpage1987, Hobbs1981).Therefore,theuseoflow?alkalicementsinaconcretemixture,often usedtohelppreventdeteriorationduetoalkali?aggregatereaction,mightaffectthe activationoftheaforementionedscms. Thisprojectfocusedondeterminingwhetherthecementalkalicontentisthesole driverbehindtheactivationofscmsorifachangeinthemineralogicalcomposition (aliteandbelite)ofcementhasaneffectontheactivationaswell.withfactorslike, curingtemperatureconditionsandfinenessofcementkeptconstant,theproject wasundertakenintwophases;phaseoneinvolvedcastingofmortarcubesand PhaseTwoinvolvedcastingofconcrete.Moreover,calorimetryandporesolution extractionwerealsodonetoprovideinsightontheeffectofcementpropertieson heatofhydrationandalkalicontentofporesolution.

2 Eightdifferentcementswereused;fivefromdifferentcementplantsandthree blendsoftheotherfivecreatingarangeofdifferentcementalkalicontentsaswell asaliteandbelitecompositions.eachmixturewasusedwith25%flyash replacementofcementor50%replacementofcementwithholcimandlafarge slags.

3 Chapter&1& Literature&Review& Alkalisinconcretemainlyderivefromthecementiousmaterialsused,namely cementsandpozzolans.initially,ascementismixedwithwater,calciumandalkali sulfatesdissolveandreactwithtricalciumaluminate.solublealkalisalsogointo solution,causinganincreaseinthehydroxylconcentrationinthesystem,andthe poresolutionbecomessaturatedwithrespecttocalciumhydroxide.afterafew hours,thehydrationreactionsprogresscausingsulphatestodecreasein concentrationandafurtherincreaseinhydroxylsoccurs.afteroneday,calciumis reducedtoverylowamountsandtheresultantporesolutionisconstitutedmainly ofsodiumandpotassiumhydroxides(diamond1981). 1.1&Fly&Ash& FlyAshisamanmadesupplementarycementitiousmaterialwithpozzolanic propertiesproducedfromcoalcombustion.itisusedasapartialreplacementfor portlandcementcontentsinconcrete.asperastmc618,pozzolansaredefinedas: siliceous,orsiliceousandaluminousmaterials,whichinthemselvesposseslittleor nocementitiousvaluebutwill,infinelydividedformandinthepresenceof moisture,chemicallyreactwithcalciumhydroxideatordinarytemperaturestoform compoundspossessingcementitiousproperties. FlyAshismainlyconstitutedofveryfineglassyspherical?likeparticlesthatarefiner thanportlandcements.chemically,itismadeofmainlysilica(sio2),alumina (Al2O3),ironoxides(Fe2O3),andcalciumoxides(CaO)(JoshiandLohtia1997). Therecognitionofthispozzolanicmaterialdatesasfaras1914,withthefirst researchstudyreportedofitsuseinconcreteconductedbydavisandhisassociates attheuniversityofcaliforniain1937.datafromliteratureonflyashusein concrete,between1934and1959,wascollectedandcompiledbyabdunnurina

4 publicationin1961.severalpublicationsbyknownresearcherswereconducted afterthatsuchassynder1962,joshi1979,berryandmalhotra1986. Dependingontheorigin,chemicalandmineralogicalcompositionofflyash,itcanbe classifiedintotwomainclasses:low?calciumflyashesandhigh?calciumones.low? calciumflyashes,orastmc618classfaretypicallyusedforasrmitigation (Diamond1981). Theuseofflyashinconcreteproducesspecialpropertiesrequiredforstrengthand durabilityofconcreteforfieldapplications.generallyflyash,irrespectiveofits composition,reducesthewaterdemandofconcreteprovidingabetterresistanceto fluidmovementanddiffusionofharshions(gillot1975). Understandardcuringconditions,thepozzolanicreactionofthelowcalciumflyash issloweratearlyagesthanportlandcements.itisbelievedthatafteraperiodof weeks,thattheglassyparticlesarebrokendownbythealkalicontentofthepore solution,thisallowsthemtoreactwiththecalciumhydroxidesinthesystemfrom thecementhydration.thereactionproducesacalciumalkalisilicatehydratethatis verysimilarinstructuretothecalciumsilicatehydrateformedbyhydration reactionofcement.itisalsoassumedthattheslowerstrengthdevelopmentatearly agesmightbeduetothefactthatlesscementisavailableintheconcretewiththe replacement(diamond1981). Researcherssuggestthatflyashimprovethedurabilityofconcretebyseveralways: 1. Dilutionofcementalkalisbythefactthattheflyashisreplacing paretofthecementused(onlyincaseofcementalkali>flyash alkali),improvingdurabilityagainstalkali?aggregatereactions (Nixonetal1986) 2. Reductionoftheconcretepermeabilityanddiffusivitybythe productionofmorecsh(thepozzolanicreaction),therefore protectingagainstexternalaggressiveagents(massazza1998).

5 3. Theflyashreactswiththealkalispresentintheporesolutionto enhanceitsactivation.thisreducesthetotalalkalicontentinthe systemtopreventaar(hobbs1981,nixonandpage1987). Pointsoneandthreeassumethatalkaliintheporesolutionisthemainactivator behindtheflyash. AstudyconductedbyNixonandPage(1987)statesthatthreemainfactorsaffect thehydroxylionconcentrationintheporesolution:thealkalicontentofthecement, thereplacementamountandalkalicontentoftheflyash.theirresultsshowa decreaseinthehydroxylionconcentrationswithincreasinglevelofcement replacementwithflyash,albeitthecorrelationisnon?linear. Hobbs(1981)studiedtheeffectofusingclassFflyashinimprovingthedurabilityof concreteagainstaar.theresultshaveshownthatsampleswitha30?40%flyash replacementweremoredurablethanoneswith100%portlandcement.moreover, itwasconcludedthattheflyashneededalkalicontenttoreact. 1.2&Granulated&Blast&Furnace&Slag& Granulatedblastfurnaceslagisaproductofpigironproductionandisusedasa cementitiousmaterialintheconcreteindustry. ItwasfirstusedasanSCMbyEmilLangenin1868inGermany(Papadakisand Venuat1966). ThecompositionmainlyconstitutesofSiO2,Al2O3,CaO,andFe2O3.Unlikeandfly ash,slagshowshydraulicpropertieswhenusedwithcementinconcrete.slag s glassystructurereactswith,calciumsulphates,andalkalisinthesystem. Whenmixedwithwater,theslagparticlesreleasecalciumionsintosolution,andan impermeablelayerformsaroundtheslagparticle.uponthehydrationofcement andtheproductionofcalciumhydroxide,theaforementionedlayerisdestroyed. Theliberatedslagparticlesthenproceedtoreactwithcalciumsulphatesandalkalis toproducecalciumsilicatehydrate.similartoslag,theearlyagestrength developmentofslagisslowerthanthatofportlandcement(tanakaetal1983).

6 AstudyconductedbyDuchesneandBerube(2001)statedthattheglassystructures oftheflyashandslagusedinaconcretemixisbrokendownandactivatedfasterby thesolublealkalispresentinsolutionfromcement.theirfindingsshowthatthe alkalisareboundtothecshformedfromtheaddedscms. 1.3 &Methods&of&activation&& Othermethodsofactivationmentionedinstudieswere: 1. Mechanicalactivation(grindingofSCM) 2. Chemicalactivation 3. Thermalactivation Theactivationofflyashandslagwasinvestigatedwithadditionofsodium hydroxidesolution(naoh)tothesystem.witheverythingelsekeptconstant,the mainparametersvariedwere:curingtemperaturesandnaohconcentrations. Resultsshowedalinearcorrelationbetweenstrengthdevelopment,asignof activation,andnaohconcentrations.theincreaseincuringtemperature,however, improvedstrengthforthefirstfewdaysofhydration,buthadaworseeffectonlong termstrength(puertaselat2000). Otherstudies(Arjunan2001)examinedtheactivationofflyashwithacombined chemical/mechanicalmechanismfortheactivationprocess.severalcompounds wereusedalongwithflyashofdifferentfineness.whenusedtogether,theeffectsof chemicalactivatorsincludingsodiumhydroxide,sodiumcarbonate,andcalcium hydroxideactivationwereenhanced.withanychemicalactivatorused,finerashes wereactivatedmorethancoarserones. 1.4&Data&collected&& Inthissection,datafromtheliteraturewascombinedinagraphicalrepresentation inordertotryandfindacorrelationbetweencementalkalicontentandstrength development(asanindicatorofactivation)offlyash.initially,thecollecteddata includedarangeofflyashreplacements,curingconditionsandtemperatures.the informationwasthennarroweddowntocertainfactorssuchas,standardroom

7 temperatureconditions,similarcuringconditionstothoseusedthisproject,water? to?cementratiosnothigherthan0.55,andflyashreplacementlevelsbetween25 and30%.theselectedinformationwas: 1. Sodiumandpotassiumlevelsincement(%). 2. Cementcontent(kg/m 3 ). 3. Sodiumandpotassiumlevelsinflyash(%). 4. Flyashcontent(kg/m 3 ). 5. Watertocementratio. 6. Curingcondition. 7. Curingtemperature. 8. Strengthat1,3,7and28days(MPa). TwographswereplottedandareshowninFigure1andFigure2.Thecomplete tablewiththereferencesisprovidedinappendixa. 1.2 1 fc'/fc'&28days&(mpa)& 0.8 0.6 0.4 0.2 1day 3day 7day 0 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Cement&Alkali&Content&(%)& 1.10 1.20 Figure&1:&&Strength&ratios&at&1,&3&,&&&7&days&to&strength&at&28&days&versus&cement&alkali&content&

8 1.2 1 fc'/fc'&28days&(mpa)& 0.8 0.6 0.4 1day 3day 7day 0.2 0 0.00 1.00 2.00 3.00 4.00 5.00 FA&Alkali&Content&(%)& Figure&2:&Strengths&at&1,&3&,7&days&as&a&ratio&to&strength&at&28&days&versus&fly&ash&alkali&content&from& literature& & Strengthvalueswereplottedasstrengthateachtestingdaytostrengthat28days. Asexhibitedinbothfigures,nodistinctcorrelationwasdeduced.

9 Chapter&2& Experimental&Program& Understanding+the+activation+mechanisms+of+SCMs+in+a+concrete+matrix+is+imperative+for+ evaluating+the+adequacy+of+a+concrete+mix+and+the+materials+of+which+it+is+composed.+ The+following+program+investigates+the+activation+of+the+SCMs+through+the+mechanisms+ described+in+chapter+1.+the+methods+and+materials+used+are+of+high+importance+in+ achieving+good+and+reproducible+results.+ 2.1&Materials& This+section+provides+details+of+the+materials+used.++ 2.1.1&Portland&Cement& The+portland+cements+were+provided+by+Lafarge s+whitehall,+alpena,+and+ravena+plants,+ as+well+as+st+marys+bowmanville,+and+holcim+mississauga+plants.+the+cements+selected+ meet+astm+type+i+specifications+and+canadian+specification+can/csaka3001general+ use.+a+vkblender+was+used+at+35+rpm+to+blend+additional+three+cements+from+the+other+ five+plantkprovided+cements+to+form+a+range+of+alkali+contents+for+testing+purposes.+the+ chemical+compositions+for+all+cements+are+shown+in+table+1.+ Table&1:&Chemical&composition&of&the&eight&cements&used& Low& Alkali Whitehall Medium& Alkali St&Marys High Low+HighMed+low Med+& High Alkali&Content& (%) 0.54 0.90 0.60 1.07 1.00 0.77 0.57 0.80 C 3S&(%) 71.2 51.7 55.3 57.6 48.9 60.1 63.3 52.1 C 2S&(%) 1.6 14.6 14.2 11.9 19.2 10.4 7.9 16.7 C 3A&(%) 8.4 10.6 7.1 8.3 10.5 9.5 7.8 8.8

10 C 4AF&(%) 8.3 8.1 9.7 9.2 7.1 7.7 9.0 8.4 + 2.1.2&Water& The+water+used+in+the+concrete+mixtures+consisted+of+potable+tap+water.++ 2.1.3&Aggregates& 2.1.3.1+Fine+aggregates++ ASTM+C778+graded+Ottawa+sand+was+used+for+all+mortar+mixtures.+For+concrete,+natural+ glacial+sand+was+used.++the+physical+properties+are+provided+in+table+2.+ 2.1.3.2+Coarse+Aggregates+(only+for+concrete+mixtures)+ As+for+the+coarse+aggregates,+20mm+crushed+limestone+was+used.+The+physical+ properties+can+be+viewed+in+table2.+ Table&2:&Aggregate&Properties& Aggregate' Type' Relative'Density' Absorption'(%)' Fine+ Silica+ 2.68+ 0.53+ Coarse+ Limestone+ 2.65+ 2.00+ + 2.1.4&Admixtures&& WaterKreducing+admixtures+were+used+in+the+concrete+mixtures+in+order+to+achieve+the+ required+slump.+a+superplasticizer+was+also+used+to+increase+the+fluidity+to+obtain+ suffient+slump.++ + 2.1.5&SCMs& Two+supplementary+cementing+materials+were+used:+Fly+ash+(Lafarge,+Stoney+Creek+)+and+

11 Slag+(from+both+Holcim,+Mississauga+and+Lafarge,+Stoney+Creek).+The+Blaine+fineness+and+ alkali+contents+are+provided+in+table+3.+ Table&3:&Properties&of&SCMs&used& Holcim& Slag&& Lafarge& Slag&& Fly&Ash& Surface&Area& Blaine&(m²/kg)& 576 564 274 Alkali&Content& (%)& & & 2.2&Mixing&and&Casting&Procedures& + 0.58 0.15 2.97 2.2.1&Mortar&Cubes& Mortar+mixtures+were+designed+as+per+C109/C109M+.+A+water+to+cement+ratio+of+0.485+ was+used+for+the+mortar+cubes.++a+total+of+32+mixes+were+cast+which+were+a+combination+ of+the+8+cements:+8+with+100%+cement+(control),+8+with+25%+fly+ash,+8+with+50%+holcim+ slag,+and+8+with+50%+lafarge+slag.+the+mix+design+is+shown+in+table+4.+ Table&4:&Mortar&mix&design&for&6&cubes& Material& Quantity&(g)& CementitousMaterial 500 + Sand 1375 Water 242 A+mechanical+mixer+with+a+stainless+steel+bowl+with+a+stainless+steel+paddle+was+used+as+ per+astm+c305+(figure3).++after+mixing,+the+mortar+is+placed+in+stainless+steel+50mm+ cube+molds+(figure4)+and+covered+with+plastic+wrap+and+left+to+set+for+24+hours+in+a+ plastic+container+at+standard+conditionsofroomtemperatureat23.0±3.0 Cand

12 55%relativehumidity+before+deKmolding.++ + + Figure&3:&Mixing&of&mortar Figure&4:&Stainless&steel&cube&molds& 2.2.2&Calorimetry&tests& Sample+made+for+the+calorimetry+tests+were+designed+as+the+mortar+cubes+in+the+ previous+section.+samples+of+100g+of+mortar+are+placed+in+plastic+vials+and+inserted+in+ the+vial+holders+in+the+calorimeter+for+testing.++ 2.2.3&Pore&Squeezing&& Mortar+samples+for+the+pore+squeezing+tests+were+also+the+same+as+the+mortar+cubes+in+ the+preceding+section.+samples+were+cast+in+50mm+in+diameter+by+100mm+long+cylinders+ and+sealed+and+stored+under+standard+conditions+until+testing.++

13 2.2.4&Concrete&Mixtures& Only+six+concrete+mixtures+with+three+different+cements+where+selected+and+prepared+ for+this+experimental+investigation.+the+three+cements+included+low,+medium+and+high+ cement+alkali+contents.+a+0.43+water+to+cementitious+materials+ratio+was+selected+for+all+ mixtures.+the+individual+mixture+designs+are+detailed+in+table+5.+ Table&5:&Concrete&mixture&designs& Mixture& ID& 0.803:PC& 0.573:PC& 1.07:PC& 0.803:50S& 0.573:50S& 1.07:50S& W/CM& 0.43 0.43 0.43 0.43 0.43 0.43 Batch& Volume&(m 3 )& 0.019 0.019 0.019 0.019 0.019 0.019 Materials& Mass(kg/m 3 ) Cement& 360.0 360.0 360.0 180.0 180.0 180.0 Slag&??? 180.0 180.0 180.0 Water& 128.4 112.1 125.8 140.5 147.9 83.7 Fine& Aggregate& Coarse& Aggregate& Water& Reducer& ml/batch& Supere Plasticizer& ml/&batch& 913.7 935.3 912.6 901.6 899.5 962.1 1030 1025 1033 1030 1025 1026 13ml 18ml 15ml 20ml 15ml 15ml 10ml 10ml 10ml 20ml 15ml 5ml Aggregate+preparation+and+mixing+procedures+were+carried+out+as+per+the+ASTM+C172+ and+astm+c192+standards.+fresh+concrete+properties+were+measured+(table6).+ Concretes+were+cast+into+100+x+200+mm+(4+x+8+in)+cylindrical+specimens.++

14 Table&6:&Fresh&concrete&mixture&properties& Mixture&ID& 0.803:PC& 0.573:PC& 1.07:PC& 0.803:50S& 0.573:50S& 1.07:50S& Slump&& (ASTM&C143)& Percent&Air&Content& (ASTM&C173)& 100mm 105mm 100mm 110mm 110mm 105mm 3% 2.7% 3% 3% 2.9% 2.9% Temperature&& (ASTM&C1064)& 25.2 O C 25.5 O C 25.1 O C 25.6 O C 25.5 O C 25.6 O C Unit&Weight&& 2355.6 2331.1 2378.1 2399.6 2355.6 2367.4 (ASTM&C138)& kg/m 3 kg/m 3 kg/m 3 kg/m 3 kg/m 3 kg/m 3 + 2.3&Curing& 2.3.1&Mortar&cubes&& Mortar+cubes+were+cured+in+limewater+until+the+required+testing+ages+of+1,+3,+7,+and+28+ days.+after+demolding,+samples+tested+at+one+day+were+immersed+in+limewater+for+20+ min+before+testing.+samples+are+removed+from+their+curing+basin+for+testing+at+the+same+ time+they+were+dekmolded+and+immersed+at+to+ensure+accuracy+and+reproducibility+of+ results.++ For+experimental+purposes,+three+mixtures+were+made+with+the+1.070%+alkali+content+ cement+and+were+immersed+in+three+other+curing+solutions:+ 1. Tap+water+ 2. 0.3%+Alkali+content+solution+ 3. 0.6%+Alkali+content+solution+ & &

15 2.3.2&Concrete&Mixtures& All+concrete+samples+are+cured+in+their+plastic+sealed+molds+for+24+hours+before+they+are+ immersed+in+limewater+solutions+at+standardized+conditions+until+day+of+testing.+day+one+ samples+are+immersed+in+solution+for+20+min+before+testing.++ 2.4&Specimen&Testing& Tests+included+compressive+strength+development+over+time,+electrical+resistivity,+ isothermal+calorimerty,+and+alkali+content+through+pore+squeezing.++ 2.4.1&Calorimeter& As+per+the+ASTM+C1679,+Standard'Practice'for'Measuring'Hydration'Kinetics'of'Hydraulic' Cementitious'Mixtures'Using'Isothermal'Calorimeter,+the+heat+released+by+the+hydration+ of+cementitious+materials+was+measured+over+a+period+of+seven+days.+ 2.4.2&Pore&Squeezing&& Pore+squeezing+was+done+at+1,+3,+7,+and+28+days+for+the+Holcim+slag,+fly+ash+and+control+ mixtures+for+three+different+cements+with+different+alkali+contents+(1.070%,+0.803%+and+ 0.773%).+Mortar+cylinders+were+prepared+in+50x100mm+molds+and+sealed+until+the+day+ of+testing.+fluid+is+extracted+out+of+the+hardened+samples+by+high+pressure+and+is+tested+ for+hydroxyl,+potassium+and+sodium+ion+concentrations.+figure+5+shows+a+schematic+of+ the+pore+squeezing+apparatus+(23).++ Figure&5:&Pore&squeezing&apparatus&'

16 2.4.3&Electrical&Resistivity& Electrical+resistivity+was+measured+and+calculated+as+per+ASTM+C1760,+Standard'Test' Method'for'Bulk'Electrical'Conductivity'of'Hardened'Concrete.+ + 2.4.4&Compressive&testing& The+compressive+strength+testing+of+concrete+was+done+as+per+ASTM+C39,+Standard'Test' Method'for'Compressive'Strength'of'Cylindrical'Concrete'Specimens.+As+for+the+mortar+ cube+samples,+the+procedure+followed+was+the+astm+c109/c109m,+standard'test' Method'for'Compressive'Strength'of'Hydraulic'Cement'Mortars.++ + +

17 Chapter&3& + Results&and&Discussion& 3.1&Mortar&Cubes&Results& Results+of+strength+and+resistivity+development+graphs+are+shown+in+this+section.+ Strength+development+was+plotted+against+time,+alkali+content+of+cement,+and+cement+ alite+content.+resistivity+was+monitored+over+time.++++ The+mix+codes+used+in+the+graphs+below+show+the+alkali+content+with+the+percent+of+ SCM+replacement+(alkali+content:+percent+replacement).++ + 3.1.1&Lafarge&Slag&(S)& Figure6+shows+that+the+highest+strength+development+at+1,+3,+and+7+days,+occurred+for+ the+highest+alkali+content+cement:+1.003%,+followed+closely+by+the+0.9%+and+the+0.543%+ one+both+at+almost+the+same+values.+chemical+analysis+in+table1+in+chapter+2,+also+ shows+that+the+0.54%+alkali+cement+also+had+the+highest+level+of+alite,+that+may+also+be+a+ cause+for+the+activation.+figure7+displays+strengths+for+the+three+cements+with+ standard+deviation+error+bars.+1,+3,+and+28+day+strengths+for+all+cements+have+very+small+ standard+deviation+values:+the+1.00%+and+0.54+%+cements+showed+standard+deviations+ of+2+mpa+at+7+days.+++ Resistivity+values+over+time+are+shown+in+Figure8.+It+is+observed+that+the+1.00%+and+ 0.9%+alkali+cements+had+the+highest+resistivity+values.++ +

18 60 Compressive&Strength&(MPa)& 50 40 30 20 10 0 0 5 10 15 20 25 Time&(Days)& 0.9:50S 1.003:50S 0.543:50S 0.603:50S 0.573:50S 0.773:50S 0.803:50S 1.07:50S + Figure&6:&Compressive&strength&development&for&different&alkali&cements&and&50%&Lafarge&Slag&(S)& 60 Compressive&Strength&(MPa)& 50 40 30 20 10 0.9:50S 1.003:50S 0.543:50S 0 0 5 10 15 20 25 Time&(Days)& Figure&7:&Strengths&for&the&three&highest&early&age&strength&for&cements&with&50%&Lafarge&slag&

19 180 160 Resistivity&(ohmem)& 140 120 100 80 60 40 20 1.003:50S 0.9:50S 0.543:50S 0.603:50S 0.573:50S 0.773:50S 1.07:50S 0.803:50S 0 0 5 10 15 20 25 30 Time&(days)& Figure&8:&Resistivity&development&for&different&alkali&cements&with&50%&Lafarge&slag& + 3.1.2&Holcim&Slag&(S2)& Results+in+Figure9+are+similar+to+that+for+the+Lafarge+slag+in+the+previous+section+where+ the+highest+early+age+strength+development+occurred+for+the+highest+alkali+content+ cements:+0.9%+and+1.00%,+as+well+as+the+lowest+alkali+content+one:+0.54%.+figure10+ displays+the+three+cements+with+standard+deviation+error+bars.+resistivity+values+over+ time+are+shown+in+figure11.+it+is+observed+that+the+1.00%+and+0.90%+alkali+cements+ show+the+highest+resistivity+values,+followed+closely+by+the+0.54%+one.++

20 50 Compressive&Strength&(MPa)& 40 30 20 10 0.9:50S2 1.003:50S2 0.543:50S2 0.603:50S2 0.573:50S2 0.773:50S2 0.803:50S2 1.07:50S2 0 0 5 10 15 20 25 30 Time&(Days)& Figure&9:&Compressive&strength&development&for&cement&with&50%&Holcim&Slag&(S2)& 50 Compressive&Strength&(MPa)& 40 30 20 10 0.9:50S2 1.003:50S2 0.543:50S2 0 0 5 10 15 20 25 Time&(Days)& Figure&10:&Strengths&with&standard&deviation&error&bars&for&the&three&highest&early&age&strength& development&cements&for&cements&blended&with&50%&holcim&slag&

21 120 100 Resistivity&(ohmem)& 80 60 40 20 1.003:50S2 0.9:50S2 0.543:50S2 0.603:50S2 0.573:50S2 0.773:50S2 1.07:50S2 0.803:50S2 0 0 5 10 15 20 25 30 Time&(days)& Figure&11:&Resistivity&development&for&mixes&with&50%&Holcim&slag& Compressive&Strength&(Mpa)& 60 50 40 30 20 10 S21day S23day S27day S228day S11day S13day S17day 0 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 Cement&Alkali&Content&(%)& S128day Figure&12:&Strength&development&with&alkali&content&at&different&ages&for&all&cements&(both&slags)'

22 + Compressive&Strength&(Mpa)& 60 50 40 30 20 10 S21day S23day S27day S228day S11day S23day S17day 0 45 50 55 60 65 70 75 C3S&(%)& S128day Figure&13:&Strength&development&for&cements&having&different&alite&content&at&different&ages&for&all& cements&(both&slags)& + Figure12+and+Figure13+show+the+strength+development+data+for+different+cement+ alkali+content+and+alite+content+for+mixtures+made+with+both+slags.+the+results+match+ the+ones+mentioned+above+in+the+preceding+two+sections.+moreover,+both+slags+act+ similarly+at+early+ages+while+there+is+some+noise+in+the+data+at+the+28kday+results.++ & 3.1.3&Fly&Ash&(F)& + Results+in+Figure14+show+a+similar+outcome+to+that+of+the+slags+in+the+previous+sections+ where+the+highest+early+age+strength+development+occurred+for+the+highest+alkali+ content+cements:+0.9%+and+1.00%,+as+well+as+the+low+alkali+content+ones:+0.54%+and+ 0.60%.+Figure15+displays+strengths+for+these+four+cements+with+standard+deviation+ error+bars.+++

23 Figure16+and+Figure17+both+show+that+the+highest+strength+had+occurred+for+the+ 1.00%,+0.90%+and+0.54%+alkali+cements.+ & 60 Compressive&Strength&(MPa)& 50 40 30 20 10 0.9:25F 1.003:25F 0.543:25F 0.603:25F 0.773:25F 0.573:25F 0.803:25F 0 1.07:25F 0 5 10 15 20 25 30 Time&(Days)& Figure&14:&Strength&development&for&all&cements&with&25%&fly&ash&replacement& 60 Compressive&Strength&(MPa)& 50 40 30 20 10 0.9:25F 1.003:25F 0.543:25F 0.603:25F 0 0 5 10 15 20 25 30 Time&(Days)& Figure&15:&Standard&deviation&error&bars&for&the&four&highest&early&age&strength&development&cements& for&cements&with&25%&fly&ash&

24 60 50 Compressive&Strength&(Mpa)& 40 30 20 10 1day 3day 7day 28day 0 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 Alkali&Content&(%)& Figure&16:&Strength&development&&for&cements&with&different&&alkali&content&at&different&ages&for&all& cements&with&fly&ash&replacement& 60 Compressive&Strength&(Mpa)& 50 40 30 20 10 1day 3day 7day 28day 0 45 50 55 60 65 70 75 C3S&(%)& Figure&17:&Strength&development&with&alite&content&at&different&ages&for&all&cements&with&fly&ash& replacement&

25 3.2&Concrete&Mixtures& Thissectionshowstheresultsforthesixconcretemixturesselectedtoverifythat themortarcuberesultsareconsistentwithconcreteresults. Themixesonlyused50%Holcimslagreplacementsfortheconcreteswiththree differentalkalicements. Thethreecementsusedhad1.00%,0.80%and0.57%alkalicontents,chosento coverthealkalicontentrange. Compressive&Strength&(MPa)& 60 50 40 30 20 10 0 0 10 20 30 Time&(days)& 1.07:PC 0.803:PC 0.573:PC Figure&18:&Strength&Development&over&time&for&100%&cement&concrete&mix& Compressive&Strength&(MPa)& 60 50 40 30 1.07:50S2 20 0.803:50S2 10 0.573:50S 0 0 5 10 15 20 25 30 Time&(days)& Figure&19:&Strength&Development&for&50%&Holcim&slag&concrete&mix& &

26 3.3&&Calorimetry& Theisothermalcalorimetrytestresultsareshowninfollowingfigures. 3.3.1&Fly&Ash& Figure&20:&Power&change&with&time&for&25%&fly&ash&specimens& &Figure&21:&Energy&change&with&time&for&25%&fly&ash&specimens&

27 Figure20showsthepowerlevelchangesofthesampleswithtime.Thethree cementsthatproducedhigheststrengthresultsintheprecedingsectiondidnot matchuptothecalorimetryresultsshownhere.mediumalkalicontentcements producedthehighestenergy. 3.3.2&Holcim&Slag& Figure&22:&Power&change&with&time&for&50%&Holcim&slag&specimens& Figure&23:&Energy&change&with&time&for&50%&Holcim&slag&specimens&

28 Figure22showsthepowergraphfortheHolcimslagwithtime.Theresultsshows thatthehighestthreepeaksbelongtothe0.54%,0.90%and1.00%alkalicontent cements.thelowestalkalicontentcementhastheearliestpeakateighthours followedbythe0.9%and1.00%at14and16hoursrespectively.figure23shows similarresultswiththehighestlevelsofenergyreleasedwereforthe aforementionedcementsfollowedcloselybythe0.80%alkalicontentcement. & 3.3.3&Lafarge&Slag& Figure&24:&Power&change&with&time&for&50%&Lafarge&slag&specimens& Figure24showsthatthe0.54%alkalicementhadtheearliestpeak,butthe1.00% alkalicementhadthehighestpeak.figure25showsthatthehighestenergylevel belongstothe0.80%alkalicementfollowedcloselybythe0.54%one,withthe 1.00%alkalicementbeingthelowest.

29 Figure&25:&Energy&change&with&time&for&50%&Lafarge&slag&specimens& 3.4&Pore&solution&Analysis& Inthissectionthesamethreecementsselectedfortheconcretemixingwere usedforporesolutionanalysis. 3.4.1&Fly&ash& [OHe]&of&SCM&/&[OHe]&of&PC& 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1.07:25F 0.773:25F 0.573:25F Cement&Used& 1 3 7 Figure&26:&Hydroxyl&concentrationsof&25%&fly&ash&concretes&to&hydroxyl&concentration&of&portland& cement&control&for&each&cement&used&

30 Figure26showsthechangeinhydroxylionconcentrationswithtimeandwith cementalkalicontentdecreasefor25%flyashspecimens.withtime,thehydroxyl leveldropsforeachmix.somemixesdonothave28daymaterialbecausenofluid hasbeenabletobeextractedfromthespecimen. Moreover,asexpected,asthecementalkalicontentdecreasessodoesthelevelof hydroxylionconcentration.fromfigure16,itisalsoshownthatthestrength decreaseswithalkalicontentofcementforthosethreecementsandthereforeso doesthehydroxyl. & 3.4.2&Holcim&Slag& [OHe]&of&SCM&/&[OHe]&of&PC& 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 1.07:50S 0.773:50S 0.573:50S Cement&Used& Figure&27:&Hydroxyl&ion&concentration&of&50%&slag&mixtures&to&hydroxyl&ion&concentration&of&Portland& cement&for&each&cement&alkali&content&used& Figure27showsthatthelevelsofhydroxylionsdecreasewithtimeforeach mixture.thevaluesdonotchangealotbetweenthemixturesforages1and3,but showadecreaseofhydroxylwithdecreaseofalkalicontentfor7dayage.similarto themixtureswithflyash,figure12showsthatthesethreecementsexhibited reducedstrengthvalueswithincreasesincementalkalicontent. 1 3 7 28 &

31 3.5 &Mortar&Cube&specimens&with&different&curing&solutions& Inthissection,asinglecementwasselectedandtestedwithmultiplecuring solutions:limewater,tapwater,0.3%na2oalkaliequivalentand0.6%na2oalkali equivalenttocheckifthecuringsolutionaffectstheactivation.the1.07%alkali contentcementwasused,andtwomixeswerecast,onewith50%slagandtheother 100%Portlandcement. Figure&28:&Strength&development&for&50%&Slag&and&control&mixes&with&different&curing&solutions& Figure28showsthatthefastestactivationoccurredforthesamplescuringin limewateraswellasthe0.6%alkalisolution.

32 Chapter&4& Conclusions&and&Recommendations&& 4.1&Conclusions& Fromtheexperimentalresultsitisconcludedthat: 1. CementalkalicontentisanactivatorforSCMs.AstheresultsinChapter3 show,thevaluesforstrengthwerethehighestforthehighestalkalicontent cement(1.07%).thisprovesthatalkalisarebeneficialtoenablescmsto startreactingandformingcalciumsilicatehydrate?likeconstituents. 2. Highalitecontentinthecementhadalsobeenproventobeadriverforthe activationofscmsevenwithcementshavinglowalkalicontents.from Chapter3,itwasobservedthatstrengthvaluesofthelowestalkali/highest C3Scontentcement(0.543%)wereveryclosetothoseobtainedwiththehigh alkalicements(1.07%and0.9%).calorimetryvaluesalsoshowthatthere wasoftenanearlyhighspikeinpowervaluesforhighalitecement. 3. Curinginasolutionsimulatinghighalkalicementhelpspreventleachingof alkalisfromtheporesolutionintheconcrete,andresultsinincreased strength.fromthelastsectioninchapter3,itwasshownthatstrength developmentforearlyages(1,3,and7days)ofmortarcubeswasthehighest formixturesstoredinthe0.6%na2oalkaliequivalentcuringsolution.this provesthatthealkaliswereabsorbedintotheporewaterandusedin activatedthescmfaster. 4.2&Recommendations& Recommendationsforfurtherresearchincludeevaluationofcementswithawider rangeofalkaliandalitecontents.moreover,otherfactorsthatwerekeptconstant couldbeinvestigatedsuchascuringtemperaturesandadditionofalkaliactivators tothesystemduringthemixingprocess.

33 References& AbdunNur,E.A.(1961). FlyAshinConcrete,AnEvaluation, Highway#Research# Board#Bulletin,pp284. Arjunan,P.,Silsbee,M.R.andRoy,D.M.(2001). Chemicalactivationoflowcalcium flyashpart1:identificationofsuitableactivatorsandtheirdosage.international# Ash#Utilisation#Symposium,Kentucky. ASTMStandardC33, SpecificationforConcreteAggregates, ASTMInternational, WestConshohocken,PA. ASTMStandardC39, StandardTestMethodforCompressiveStrengthofCylindrical ConcreteSpecimens, ASTMInternational,WestConshohocken,PA. ASTMStandardC138, Standard#Test#Method#for#Density#(Unit#Weight),#Yield,#and#Air# Content#(Gravimetric)#of#Concrete, ASTMInternational,WestConshohocken,PA. ASTMStandardC143, TestMethodforSlumpofHydraulic?CementConcrete, ASTMInternational,WestConshohocken,PA. ASTMStandardC172, PracticeforSamplingFreshlyMixedConcrete, ASTM International,WestConshohocken,PA. ASTMStandardC173, StandardTestMethodforAirContentofFreshlyMixed ConcretebytheVolumetricMethod, ASTMInternational,WestConshohocken,PA. ASTMStandardC192, StandardPracticeforMakingandCuringConcreteTest SpecimensintheLaboratory, ASTMInternational,WestConshohocken,PA ASTMStandardC470, StandardSpecificationforMoldsforFormingConcreteTest CylindersVertically, ASTMInternational,WestConshohocken,PA. ASTMStandardC1064, StandardTestMethodforTemperatureofFreshlyMixed Hydraulic?CementConcrete, ASTMInternational,WestConshohocken,PA. ASTMStandardC109/C109M, StandardTestMethodforcompressivestrengthof hydrauliccementmortars(using2?in.or(50?mm)cubespecimens), ASTM International,WestConshohocken,PA. ASTMStandardC1679, StandardPracticeforMeasuringHydrationKineticsof HydraulicCementitiousMixturesUsingIsothermalCalorimeter, ASTM International,WestConshohocken,PA. ASTMStandardC305, StandardPracticeforMechanicalMixingofHydraulic

34 CementPastesandMortarsofPlasticConsistency, ASTMInternational,West Conshohocken,PA. ASTMStandardC778. StandardSpecificationforStandardSand, ASTM International,WestConshohocken,PA. Berry,E.E.,andMalhotra,V.M.(1986), FlyAshinConcrete, Special#Publication# SP85U3,#CANMET,#Energy,#Mines#and#Resources#Canada,178pp. Bilodeau,A.,Sivasundaram,V.,Painter,K.E.andMalhotra,V.M.,(1994), Durability ofconcreteincorporatinghighvolumesofflyashfromsourcesintheunited States, ACI#Materials#Journal,Vol.91pp.3?12 Cabrera,J.G.,Hopkins,C.J.,Woolley,G.R.,Lee,R.E.,Shaw,J.,PlowmanC.,andFox, H.(1986), EvaluationofthePropertiesofBritishPulverizedFuelAshesandTheir InfluenceontheStrengthofConcrete, ACI#Special#Publication,SP?91,pp.115?144. Caijun,S.,Jueshi,Q.,andZhi,W.(2001). ActivationofBlendedCementsContaining FlyAsh, Cement#and#Concrete#Research,#31(8),pp.1121 1127.# CAN/CSA?A3001?13, CementitiousMaterialsforUseinConcrete, Canadian StandardsAssociation,Mississauga,ON. Davis,R.E.,Carlson,R.W.,Kelly,J.W.,andDavis,A.G.(1937). PropertiesofCements AndConcretesContainingFlyAsh, Proceedings,#American#Concrete#Institute,33,pp. 577?612. DeBrito,J.andSaikia,N.(2013). RecycledAggregateinConcrete:UseofIndustrial, Construction.London.#SpringerUVerlag Diamond,S.,(1981). TheCharacterizationofFlyAshes, Materials#Research# Society In:#Effects#of#FlyUAsh#Incorporation#in#Cement#and#Concrete,Proceedings Symposium#N,#Annual#Meeting,Boston,pp.12?23. Duchesne,J.andBérubé,M.A.(2001). Long?TermEffectivenessOfSupplementary CementingMaterialsAgainstAlkali?SilicaReaction, Cement#and#Concrete#Research, 31,pp1057 1063. Gebler,S.H.,andKlieger,P.(1986). EffectofFlyAshonPhysicalPropertiesof Concrete.ACI#Special#Publications.#114.#Pp.#1U50.# Gillott,J.E.(1975). Alkali?AggregateReactionsinConcrete, in:engineering Geology,pp309 326. Hobbs,D.W.(1981). TheAlkaliSilicaReaction:Amodelforpredictingexpansionin mortar, Magazine#of#Concrete#Research,33,pp.208?220.

35 Joshi,R.C.andLohtia,R.P.(1997). FlyAshinConcreteProduction,Propertiesand Uses, Gordon#and#Breach#science#publishers,India. Liu,C.,Wen,Z.,(1995). MonographonDam?engineeringConcrete:Alkali aggregatesreactionsinconcrete.publications#by#south#china#university#of# Technology,pp.354 355 Nixon,P.J.,Page,C.L.,Bollinghaus,R.,andCanham,I.,(1986). TheEffectofaPFA withahightotalalkalicontentonporesolutioncompositionandalkalisilica Reaction, Magazine#of#Concrete#Research,#38,pp.30?35 Nixon,P.andPage,C.(1987)."PoreSolutionChemistryandAlkaliAggregate Reaction,"Concrete#Durability,#Katharine#and#Bryant#Mather#International# Conference,#JohnM.Scanlon,Ed.,ACISP?100,Vol.2,American#Concrete#Institute, Detroit.pp.1833?1862. Massazza,F.(1998). Pozzolanaandpozzolaniccements.In#Hewlett#P#V#(ed.),#Lea s# Chemistry#of#cement#and#concrete,4 th edition,london,arnoldpublishers,pp.471? 631. Plante,P.andBilodeau,A.(1989). RapidChlorideIonPermeabilityTest:Dataon ConcretesIncorporatingSupplementaryCementingMaterials, ACI#Special# Publication,SP?114,pp.625?644. Poon,C.S.,Lam,L.,andWong,Y.L.(2000). Astudyonhighstrengthconcrete preparedwithlargevolumesoflowcalciumflyash, Cement#and#Concrete#Research, 30,pp.447?455. Puertas,F.,MartõÂnez?RamõÂrez,S.,Alonso,S.,VaÂzquez,T.(2000). Alkali? activatedflyash/slagcement:strengthbehaviourandhydrationproducts, #Cement# and#concrete#research,#30,pp.1625 1632.# Ramezanianpour,A.A.,Malhotra,V.M.(1995). EffectofCuringontheCompressive Strength,ResistancetoChloride?IonPenetrationandPorosityofConcretes IncorporatingSlag,FlyAshorSilicaFume, Advanced#Concrete#Technology#Program,# Resource#Utilization#Laboratory,#Mineral#Sciences#Laboratories,#CANMET,Natural ResourcesCanada,Ottawa,Canada Ravindrarajah,R.SriandTam,C.T.(1989). PropertiesofConcreteContainingLow? CalciumFlyAshUnderHotandHumidClimate.ACI#Special#Publication,SP?114,pp. 139?156. Shi,C.,andDayR.L.(1995). AccelerationofTheReactivityofFlyAshByChemical Activation, #Cement#and#Concrete#Research,25(1),pp.15 21. SnyderM.J.(1962). Acriticalreviewofthetechnicalinformationontheutilization offlyash, Edison#Electric#Institute#Report.pp.62?902.

36 Swamy,P.N.(1990). Alkalisilicareactionandconcretestructures, Structural# Engineering#Review,2,pp.89?103. Tanaka,H.,Totani,Y.andSaito,Y.(1983). Structuresofthehydratedglassy blastfurnaceslaginconcrete,aci#spu79,pp.963?977. Thomas,M.D.A.,Matthews,J.D.andHaynes,C.A.(1989). EffectofCuringonthe StrengthandPermeabilityofPFAConcrete.ACI#Special#Publication,SP?114,pp. 191?218. Thomas,M.D.A.,Shehata,M.H.andShashiprakash,S.G.(1999). Useofternary cementitioussystemscontainingsilicafumeandflyashinconcrete,cement,# Concrete#and#Aggregates,29,pp.1207 1214. Whiting,D.(1989). DeicerScalingResistanceofLeanConcretesContainingFly Ash.ACI#Special#Publications.114pp349?372. Whiting,D.(1987). DurabilityofHighStrengthConcrete,.ACI#Special#Publication, SP?100,Vol.1,pp.169?186. #

37 Appendix(A( Data(collected(From(the(Literature( Reference(( K2O( of( PC((( (%)( Na2O( of(pc(((( (%)( Na2O( equ( of(pc( (%)( Amoun t(of(pc( (kg/m3 )( Amount(of(( Fly(Ash( (kg/m3)( Curing( condition( w/c( TempeI rature( ( o C)( Na2O( of(fa(((( (%)( K2O(of( FA((( (%)( Na2O( equ(of( Fly(Ash( (%)( F'c(at( 1d((((( (Mpa)( F'c(at( 3d( (Mpa )( F'c(at( 7d( (Mpa )( F'c(( at( 28d( (Mpa )( %Fly( Ash( f'c1/f' c28( f'c3/f'c 28( f'c7/f'c 28( Thomas(et(al( 96( 0.73 0.15 0.63 250.00 0.00 Prisms demoulded at24hours andthen curedat20 degrees 0.68 20 0.65 3.18 2.83 < < < 32.50 0.00 < < < (( 0.73 0.15 0.63 202.30 86.70 Prisms demoldedat 24hours andthen curedat20 degrees 0.58 20 0.65 3.18 2.83 < < < 34.50 30.00 < < < Poon(et(al( 2000( < < 0.40 637.00 0.00 Water immersed 0.24 27.00 < < 0.14 < < 74.70 103.7 0.00 < < 0.72 < < 0.40 475.00 158.00 Water immersed 0.24 27.00 < < 0.14 < < 69.50 99.50 25.00 < < 0.70 ( (

38 ( 0.54 0.05 0.42 554.00 0.00 Water immersed 0.27 23.00 0.06 2.84 2.01 < < 58.00 75.00 0.00 < < 0.77 (( 0.54 0.05 0.42 416.00 138.00 Water immersed 0.27 23.00 0.06 2.84 2.01 < < 70.00 80.00 25.00 < < 0.88 Ramezanianpo Iur(and( Malhotra(1995( 0.86 0.19 0.78 372.00 0.00 moist 0.50 23.00 0.56 1.44 1.55 16.90 26.00 31.60 39.30 0.00 0.43 0.66 0.80 (( 0.86 0.19 0.78 280.00 92.00 moist 0.50 23.00 0.56 1.44 1.55 9.60 17.90 22.70 31.50 25.00 0.30 0.57 0.72 (( 0.86 0.19 0.78 372.00 0.00 roomtemp after demoulding 0.50 23.00 0.56 1.44 1.55 16.90 25.60 29.60 32.60 0.00 0.52 0.79 0.91 (( 0.86 0.19 0.78 280.00 92.00 roomtemp after demoulding 0.50 23.00 0.56 1.44 1.55 9.60 15.30 18.60 23.00 25.00 0.42 0.67 0.81 Thomas(et(al( 1989( ( 0.73 0.15 0.63 300.00 0.00 waterstored 0.63 20.00 < < < 8.99 21.83 32.53 42.80 0.00 0.21 0.51 0.76

39 ( 0.73 0.15 0.63 242.00 104.00 waterstored 0.50 20.00 0.65 3.18 2.74 7.84 23.05 33.65 46.10 30.00 0.17 0.50 0.73 (( 0.73 0.15 0.63 300.00 0.00 curedfor1 daythenair stored, rh=65 0.63 20.00 < < < 8.99 20.97 27.82 35.10 0.00 0.26 0.60 0.79 (( 0.73 0.15 0.63 242.00 104.00 curedfor1 daythenair stored, rh=65 0.50 20.00 0.79 1.83 1.99 7.38 17.52 23.97 30.89 30.00 0.24 0.57 0.78 (( 0.73 0.15 0.63 242.00 104.00 curedfor2 daysthenair stored, rh=65 0.50 20.00 0.79 1.83 1.99 < 19.36 27.20 43.80 30.00 < 0.44 0.62 (( 0.73 0.15 0.63 242.00 104.00 curedfor3 daysthenair stored, rh=65 0.50 20.00 0.79 1.83 1.99 < 17.98 29.50 36.88 30.00 < 0.49 0.80 (( 0.73 0.15 0.63 242.00 104.00 curedfor7 daysthenair stored, rh=65 0.50 20.00 0.79 1.83 1.99 < < 27.20 39.65 30.00 < < 0.69 Plante(and( Bilodeau(1989( 0.92 0.23 1.07 280.00 0.00 wetburlap atroom tempforday 1thenmoist room100% rh 0.55 24.00 0.54 3.16 2.62 9.40 < 25.40 32.10 0.00 0.29 < 0.79

40 (( 0.92 0.23 1.07 210.00 70.00 wetburlap atroom tempforday 1thenmoist room100% rh 0.55 24.00 0.54 3.16 2.62 8.00 < 19.10 27.00 25.00 0.30 < 0.71 Gebler(and( Klieger(1986( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.42 23.00 1.04 1.63 2.11 7.31 14.27 20.62 32.89 25.00 0.22 0.43 0.63 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.42 23.00 1.75 0.91 2.35 8.27 16.27 22.34 35.44 25.00 0.23 0.46 0.63 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.45 23.00 0.37 3.19 2.47 5.86 11.24 16.75 25.65 25.00 0.23 0.44 0.65 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.41 23.00 1.79 1.19 2.57 8.55 16.00 21.99 34.54 25.00 0.25 0.46 0.64 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.44 23.00 0.49 2.24 1.96 6.21 12.20 17.51 28.61 25.00 0.22 0.43 0.61 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.43 23.00 0.53 2.23 2.00 6.55 13.17 17.31 24.68 25.00 0.27 0.53 0.70

41 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.42 23.00 1.04 1.63 2.11 8.89 13.38 17.58 21.17 25.00 0.42 0.63 0.83 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.42 23.00 1.75 0.91 2.35 7.72 14.55 17.37 19.37 25.00 0.40 0.75 0.90 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.45 23.00 0.37 3.19 2.47 5.93 10.41 13.93 15.65 25.00 0.38 0.67 0.89 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.41 23.00 1.79 1.19 2.57 8.34 14.89 19.99 21.37 25.00 0.39 0.70 0.94 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.44 23.00 0.49 2.24 1.96 5.93 10.89 16.41 16.06 25.00 0.37 0.68 1.02 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.43 23.00 0.53 2.23 2.00 6.83 13.10 17.24 17.93 25.00 0.38 0.73 0.96 Cabrera(et(al( 1986( 0.80 0.20 0.93 239.00 121.00 water immersed 0.48 20.00 1.15 2.66 2.90 < 21.87 29.30 41.42 30.00 < 0.53 0.71

42 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.47 20.00 1.19 3.69 3.62 < 22.44 30.15 40.47 30.00 < 0.55 0.74 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.46 20.00 1.24 3.49 3.54 < 22.61 30.89 43.94 30.00 < 0.51 0.70 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.47 20.00 1.66 2.25 3.14 < 22.98 30.04 41.94 30.00 < 0.55 0.72 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.45 20.00 1.37 2.35 2.92 < 24.11 32.35 45.06 30.00 < 0.54 0.72 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.44 20.00 1.49 2.66 3.24 < 25.47 34.49 48.48 30.00 < 0.53 0.71 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.50 20.00 1.75 2.36 3.30 < 19.90 26.79 39.65 30.00 < 0.50 0.68 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.44 20.00 1.52 3.64 3.92 < 20.07 26.91 37.57 30.00 < 0.53 0.72

43 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.51 20.00 1.61 2.19 3.05 < 18.13 24.63 37.03 30.00 < 0.49 0.67 ( 0.85 0.15 0.73 372.00 0.00 2dmoist thenroom temp 0.55 23.00 0.55 1.40 1.51 16.90 26.00 32.70 37.30 0.00 0.45 0.70 0.88 (( 0.85 0.15 0.73 280.00 92.00 2dmoist thenroom temp 0.55 23.00 0.55 1.40 1.51 9.60 17.90 21.50 29.90 25.00 0.32 0.60 0.72 Whiting(1989( 0.72 0.35 0.84 404.00 0.00 moist 0.40 25.00 < < < < < 31.00 38.10 0.00 < < 0.81 (( 0.72 0.35 0.84 373.00 0.00 moist 0.45 25.00 0.26 2.32 1.85 < < 28.10 34.60 25.00 < < 0.81 (( 0.72 0.35 0.84 302.00 101.00 moist 0.35 25.00 0.26 2.32 1.85 < < 31.00 42.10 25.00 < < 0.74 Whiting(1987( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 0.77 2.58 2.54 < 23.48 31.51 43.60 30.00 < 0.54 0.72

44 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 1.09 3.76 3.67 < 23.78 31.76 46.07 30.00 < 0.52 0.69 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.43 20.00 1.15 3.76 3.73 < 23.96 32.29 43.78 30.00 < 0.55 0.74 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.43 20.00 1.17 3.78 3.76 < 24.36 32.53 44.51 30.00 < 0.55 0.73 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.43 20.00 1.19 3.51 3.59 < 24.66 31.90 44.86 30.00 < 0.55 0.71 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.46 20.00 1.14 3.46 3.51 < 23.12 30.99 43.17 30.00 < 0.54 0.72 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 1.38 3.25 3.61 < 24.52 31.49 44.46 30.00 < 0.55 0.71 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.43 20.00 0.82 3.72 3.37 < 24.33 31.90 45.24 30.00 < 0.54 0.71

45 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 0.99 3.81 3.60 < 26.85 35.03 48.52 30.00 < 0.55 0.72 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 0.98 2.39 2.62 < 28.36 37.26 50.35 30.00 < 0.56 0.74 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 1.15 2.66 2.97 < 20.33 27.89 40.81 30.00 < 0.50 0.68 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.46 20.00 1.19 3.69 3.72 < 24.44 33.36 45.19 30.00 < 0.54 0.74 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.46 20.00 1.24 3.39 3.56 < 24.22 32.13 43.07 30.00 < 0.56 0.75 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 1.66 2.25 3.20 < 28.01 32.41 50.02 30.00 < 0.56 0.65 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.42 20.00 1.37 2.35 2.98 < 28.51 37.55 51.41 30.00 < 0.55 0.73

46 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.45 20.00 1.49 2.66 3.31 < 28.21 36.69 52.36 30.00 < 0.54 0.70

47 Appendix(B( Mixture(ID( 1.070:PC 1.070:25F Cube( FrequI ency( (khz)( ResistI ance( (Ω)( Resistivity( (Ω m)( 1 1 268 13.4 Mortar(Cube(Test(Results( Average(Resistivity((((((((((((((((((((((( (Ω m)( 1(Day(( 3(Day( 7(Day( 28(day( ϕ(((((( ( )((((( Compressi Load(((((( ve( (kn)( Strength(((( (MPa)( 1 52 20.8 Average(Compressive( Strength(((((((((((((((((((( (MPa)( 2 1 240 12.0 12.4 1 51 20.4 20.5 1( Day(( 3( Day( 7( Day( 28( day( 3 1 233 11.7 1 51 20.4 4 1 516 25.8 1 69 27.6 5 1 523 26.2 25.4 1 68 27.2 26.9 6 1 485 24.3 1 65 26.0 7 1 575 28.8 1 74 29.6 8 1 566 28.3 28.3 1 80 32.0 30.7 9 1 555 27.8 1 76 30.4 10 1 749 37.5 1 90 36.0 11 1 732 36.6 37.1 1 87 34.8 12 1 744 37.2 1 85 34.0 1 1 183 9.2 1 37 14.8 2 1 186 9.3 9.2 1 38 15.2 15.2 34.9 3 1 180 9.0 1 39 15.6 4 1 327 16.4 16.7 1 54 21.6 21.5

48 1.070:S 1.070:S2 5 1 323 16.2 1 53 21.2 6 1 351 17.6 1 54 21.6 7 1 456 22.8 1 70 28.0 8 1 438 21.9 22.8 1 69 27.6 27.9 9 1 474 23.7 1 70 28.0 10 1 1250 62.5 0 106 42.4 11 1 1270 63.5 64.5 1 106 42.4 42.4 12 1 1350 67.5 1 106 42.4 1 1 149 7.5 2 19 7.60 2 1 141 7.1 7.1 2 18 7.20 7.30 3 1 137 6.9 2 18 7.20 4 1 270 13.5 1 42 16.8 5 1 257 12.9 13.3 1 39 15.6 15.9 6 1 268 13.4 1 38 15.2 7 1 541 27.1 1 60 24.0 8 1 511 25.6 26.2 1 63 25.2 23.9 9 1 521 26.1 1 56 22.4 10 1 2000 100.0 0 108 43.2 11 1 2010 100.5 99.3 0 109 43.6 44.5 12 1 1950 97.5 1 117 46.8 1 1 153 7.7 2 18 7.20 2 1 145 7.3 7.4 2 18 7.20 7.30 3 1 147 7.4 2 19 7.60 4 1 371 18.6 1 39 15.6 5 1 363 18.2 18.4 1 40 16.0 15.7 6 1 372 18.6 1 39 15.6 7 1 598 29.9 29.9 1 63 25.2 25.5

49 1.003:PC 1.003:25F 8 1 598 29.9 1 63 25.2 9 1 597 29.9 1 65 26.0 10 1 1670 83.5 1 116 46.4 11 1 1700 85.0 84.8 0 115 46.0 47.3 12 1 1720 86.0 0 124 49.6 1 1 375 18.8 1 54 21.6 2 1 361 18.1 18.3 1 53 21.2 21.3 3 1 361 18.1 1 53 21.2 4 1 560 28.0 1 74 29.6 5 1 577 28.9 28.3 1 73 29.2 30.1 6 1 561 28.1 1 79 31.6 7 1 744 37.2 0 100 40.0 8 1 725 36.3 37.5 0 101 40.4 40.4 9 1 780 39.0 0 102 40.8 10 1 933 46.7 0 130 52.0 11 1 937 46.9 47.0 0 129 51.6 52.1 12 1 952 47.6 0 132 52.8 1 1 304 15.2 1 48.5 19.4 2 1 341 17.1 16.5 1 49 19.6 19.4 3 1 345 17.3 1 48 19.2 4 1 591 29.6 1 73 29.2 5 1 573 28.7 29.1 1 71.5 28.6 28.4 6 1 582 29.1 1 68.5 27.4 7 1 935 46.8 1 90 36.0 8 1 1006 50.3 49.0 1 87 34.8 35.2 9 1 1001 50.1 1 87 34.8 10 1 2080 104.0 101.8 0 123 49.2 50.5