Early&Age&Activation&of&SCMs&as&Influenced&by&Alkali& Content&of&Cement&& & & A&thesis&submitted&in&conformity&with&the& requirements& for&the°ree&of&master&of&applied&science& Department&of&Civil&Engineering& University&of&Toronto& & & by& & & & Mona&Qouqa& & & & & & & & & &Copyright&by&Mona&Qouqa&2015& & &
ii Early&Age&Activation&of&SCMs&as&Influenced&by&Alkali&Content&of&Cement& & & Master&of&Applied&Science& Department&of&Civil&Engineering& University&of&Toronto& Mona&Qouqa& Year&of&Convocation&2015& & Abstract& & AlotofresearchhasbeendoneontheactivationofSCMsinorderto guaranteemaximumperformanceofconcretewhetherthroughdurabilityor strength,especiallyatearlyage.theuseofscmsalongwithlow?alkali cementsmightbesuggestedasanapproachtoensureoptimalconcrete conditionsagainstextremedeteriorationmechanismssuchasalkali aggregatereactions.theissuewiththatisitisthoughtthatthescmsmaybe betteractivatedbyhighalkalicontentcements.thisprojectinvestigates otherdriversforactivation,mainlythecontentofalite.fromthetestresults itisconcludedthatalthoughhighalkalicementcontentwithaveragealite contentsampleshadhighstrength,sodidthelowestalkalicementwiththe highestalitecontent.
iii Table&of&Contents& Abstract&...&ii Table&of&Contents&...&iii List&of&Figures&...&v List&of&Tables&...&vii Introduction&...&1 Chapter&1&...&3 Literature&Review&...&3 1.1#Fly#Ash#...#3 1.2#Granulated#Blast#Furnace#Slag#...#5 1.3 Methods#of#activation#...#6 1.4#Data#collected#...#6 Chapter&2&...&9 Experimental&Program&...&9 2.1#Materials#...#9 2.1.1PortlandCement...9 2.1.2Water...10 2.1.3Aggregates...10 2.1.3.1Fineaggregates...10 2.1.3.2CoarseAggregates(onlyforconcretemixtures)...10 2.1.4Admixtures...10 2.1.5SCMs...10 2.2#Mixing#and#Casting#Procedures#...#11 2.2.1MortarCubes...11 2.2.2Calorimetrytests...12 2.2.3PoreSqueezing...12 2.2.4ConcreteMixes...13 2.3#Curing#...#14 2.3.1Mortarcubes...14 2.3.2ConcreteMixtures...15 2.4#Specimen#Testing#...#15 2.4.1Calorimeter...15 2.4.2PoreSqueezing...15 2.4.3ElectricalResistivity...16 2.4.4Compressivetesting...16 Chapter&3:&...&17 Results&and&Discussion&...&17 3.1#Mortar#Cubes#Results#...#17 3.1.1LafargeSlag(S)...17 3.1.2HolcimSlag(S2)...19 3.1.3FlyAsh(F)...22 3.2#Concrete#Mixtures#...#25
iv 3.3##Calorimetry#...#26 3.3.1FlyAsh...26 3.3.2HolcimSlag...27 3.3.3LafargeSlag...28 3.4#Pore#solution#Analysis#...#29 3.4.1Flyash...29 3.4.2HolcimSlag...30 3.5Mortar#Cube#specimens#with#different#curing#solutions#...#31 Chapter&4&...&32 Conclusions&and&Recommendations&...&32 4.1#Conclusions#...#32 4.2#Recommendations#...#32 References&...&33 Appendix&A&...&37 Data&collected&From&the&Literature&...&37 Appendix&B&...&47 Mortar&Cube&Test&Results&...&47 Appendix&C&...&62 Concrete&Mixtures&Test&Results&...&62 Appendix&D&...&65 Pore&Squeezing&Data&...&65
v List&of&Figures& Figure1:Strengthratiosat1,3,7daystostrengthat28daysversuscementalkali content...7 Figure2:Strengthsat1,3,7daysasarationtostrengthat28daysversusflyash alkalicontentfromliterature...8 Figure3:Mixingofmortar...12 Figure4:Stainlesssteelcubemolds...12 Figure5:Poresqueezingapparatus...15 Figure6:Compressivestrengthdevelopmentfordifferentalkalicementsand50% LafargeSlag(S)...18 Figure7:Strengthsforthethreehighestearlyagestrengthforcementswith50% Lafargeslag...18 Figure8:Resistivitydevelopmentfordifferentalkalicementswith50%Lafarge slag...19 Figure9:Compressivestrengthdevelopmentforcementwith50%HolcimSlag(S2)...20 Figure10:Strengthswithstandarddeviationerrorbarsforthethreehighestearly agestrengthdevelopmentcementsforcementsblendedwith50%holcimslag...20 Figure11:Resistivitydevelopmentformixeswith50%Holcimslag...21 Figure12:Strengthdevelopmentwithalkalicontentatdifferentagesforallcements (bothslags)...21 Figure13:Strengthdevelopmentforcementshavingdifferentalitecontentat differentagesforallcements(bothslags)...22 Figure14:Strengthdevelopmentforallcementswith25%flyashreplacement...23 Figure15:Standarddeviationerrorbarsforthefourhighestearlyagestrength developmentcementsforcementswith25%flyash...23 Figure16:Strengthdevelopmentforcementswithdifferentalkalicontentat differentagesforallcementswithflyashreplacement...24 Figure17:Strengthdevelopmentwithalitecontentatdifferentagesforallcements withflyashreplacement...24 Figure18:StrengthDevelopmentovertimefor100%cementconcretemix...25 Figure19:StrengthDevelopmentfor50%Holcimslagconcretemix...25 Figure20:Powerchangewithtimeforflyashspecimens...26 Figure21:Energychangewithtimeforflyashspecimens...26 Figure22:PowerchangewithtimeforHolcimslagspecimens...27 Figure23:EnergychangewithtimeforHolcimslagspecimens...27 Figure24:PowerchangewithtimeforLafargeslagspecimens...28 Figure25:EnergychangewithtimeforLafargeslagspecimens...29 Figure26:Hydroxylconcentrationsof25%flyashconcretestohydroxyl concentrationofportlandcementcontrolforeachcementused...29 Figure27:Hydroxylionconcentrationof50%slagmixturestohydroxyl concentrationofportlandcementforeachcementalkalicontentused...30
vi Figure28:StrengthdevelopmentforSlagandcontrolmixeswithdifferentcuring solutions...31
List&of&Tables& Table1:Chemicalcompositionoftheeightcementsused...9 Table2:AggregateProperties...10 Table3:PropertiesofSCMsused...11 Table4:Mortarmixdesignfor6cubes...11 Table5:Concretemixturedesigns...13 Table6:Freshconcretemixtureproperties...14 vii
1 Introduction& Supplementarycementitousmaterials(SCM)areby?productmaterialsofindustrial processes.theyoftenhavelittleornocementitiousvalue,butwiththeadditionof cement,theyreactchemicallywithcalciumhydroxidefromthecement?water reactionatroomtemperaturetoformcompoundssimilarinstructuretothemain buildingcomponentsofconcrete. SCMshavebeenusedaspartialreplacementforcementinconcreteproductionin NorthAmericasincethe1970s.Notonlydotheyimprovestrength,durabilityand workabilityofconcretewithouthinderingitsperformancecharacteristics,butmay alsohelpreducethecostofconcreteandreducepollution(debrito2013). ThetwoSCMsfocusedoninthisprojectwereflyashandslag.Theybothare structurallymadeofglassymaterial.inordertochemicallyreactinconcrete, producingthedesiredmechanicalproperties,theglassystructureincreasestheir potentialfordissolutioninanalkalineenvironmentforthesubsequentproduction ofcalciumsilicatehydrates(diamond1981). Activationoftheflyashandslag,andstrengthdevelopment,areconsideredby researcherstobemainlybasedonthealkalinityoftheporesolutioninconcrete, whichisinfluencedbythealkalicontentofthecementsused(nixonandpage1987, Hobbs1981).Therefore,theuseoflow?alkalicementsinaconcretemixture,often usedtohelppreventdeteriorationduetoalkali?aggregatereaction,mightaffectthe activationoftheaforementionedscms. Thisprojectfocusedondeterminingwhetherthecementalkalicontentisthesole driverbehindtheactivationofscmsorifachangeinthemineralogicalcomposition (aliteandbelite)ofcementhasaneffectontheactivationaswell.withfactorslike, curingtemperatureconditionsandfinenessofcementkeptconstant,theproject wasundertakenintwophases;phaseoneinvolvedcastingofmortarcubesand PhaseTwoinvolvedcastingofconcrete.Moreover,calorimetryandporesolution extractionwerealsodonetoprovideinsightontheeffectofcementpropertieson heatofhydrationandalkalicontentofporesolution.
2 Eightdifferentcementswereused;fivefromdifferentcementplantsandthree blendsoftheotherfivecreatingarangeofdifferentcementalkalicontentsaswell asaliteandbelitecompositions.eachmixturewasusedwith25%flyash replacementofcementor50%replacementofcementwithholcimandlafarge slags.
3 Chapter&1& Literature&Review& Alkalisinconcretemainlyderivefromthecementiousmaterialsused,namely cementsandpozzolans.initially,ascementismixedwithwater,calciumandalkali sulfatesdissolveandreactwithtricalciumaluminate.solublealkalisalsogointo solution,causinganincreaseinthehydroxylconcentrationinthesystem,andthe poresolutionbecomessaturatedwithrespecttocalciumhydroxide.afterafew hours,thehydrationreactionsprogresscausingsulphatestodecreasein concentrationandafurtherincreaseinhydroxylsoccurs.afteroneday,calciumis reducedtoverylowamountsandtheresultantporesolutionisconstitutedmainly ofsodiumandpotassiumhydroxides(diamond1981). 1.1&Fly&Ash& FlyAshisamanmadesupplementarycementitiousmaterialwithpozzolanic propertiesproducedfromcoalcombustion.itisusedasapartialreplacementfor portlandcementcontentsinconcrete.asperastmc618,pozzolansaredefinedas: siliceous,orsiliceousandaluminousmaterials,whichinthemselvesposseslittleor nocementitiousvaluebutwill,infinelydividedformandinthepresenceof moisture,chemicallyreactwithcalciumhydroxideatordinarytemperaturestoform compoundspossessingcementitiousproperties. FlyAshismainlyconstitutedofveryfineglassyspherical?likeparticlesthatarefiner thanportlandcements.chemically,itismadeofmainlysilica(sio2),alumina (Al2O3),ironoxides(Fe2O3),andcalciumoxides(CaO)(JoshiandLohtia1997). Therecognitionofthispozzolanicmaterialdatesasfaras1914,withthefirst researchstudyreportedofitsuseinconcreteconductedbydavisandhisassociates attheuniversityofcaliforniain1937.datafromliteratureonflyashusein concrete,between1934and1959,wascollectedandcompiledbyabdunnurina
4 publicationin1961.severalpublicationsbyknownresearcherswereconducted afterthatsuchassynder1962,joshi1979,berryandmalhotra1986. Dependingontheorigin,chemicalandmineralogicalcompositionofflyash,itcanbe classifiedintotwomainclasses:low?calciumflyashesandhigh?calciumones.low? calciumflyashes,orastmc618classfaretypicallyusedforasrmitigation (Diamond1981). Theuseofflyashinconcreteproducesspecialpropertiesrequiredforstrengthand durabilityofconcreteforfieldapplications.generallyflyash,irrespectiveofits composition,reducesthewaterdemandofconcreteprovidingabetterresistanceto fluidmovementanddiffusionofharshions(gillot1975). Understandardcuringconditions,thepozzolanicreactionofthelowcalciumflyash issloweratearlyagesthanportlandcements.itisbelievedthatafteraperiodof weeks,thattheglassyparticlesarebrokendownbythealkalicontentofthepore solution,thisallowsthemtoreactwiththecalciumhydroxidesinthesystemfrom thecementhydration.thereactionproducesacalciumalkalisilicatehydratethatis verysimilarinstructuretothecalciumsilicatehydrateformedbyhydration reactionofcement.itisalsoassumedthattheslowerstrengthdevelopmentatearly agesmightbeduetothefactthatlesscementisavailableintheconcretewiththe replacement(diamond1981). Researcherssuggestthatflyashimprovethedurabilityofconcretebyseveralways: 1. Dilutionofcementalkalisbythefactthattheflyashisreplacing paretofthecementused(onlyincaseofcementalkali>flyash alkali),improvingdurabilityagainstalkali?aggregatereactions (Nixonetal1986) 2. Reductionoftheconcretepermeabilityanddiffusivitybythe productionofmorecsh(thepozzolanicreaction),therefore protectingagainstexternalaggressiveagents(massazza1998).
5 3. Theflyashreactswiththealkalispresentintheporesolutionto enhanceitsactivation.thisreducesthetotalalkalicontentinthe systemtopreventaar(hobbs1981,nixonandpage1987). Pointsoneandthreeassumethatalkaliintheporesolutionisthemainactivator behindtheflyash. AstudyconductedbyNixonandPage(1987)statesthatthreemainfactorsaffect thehydroxylionconcentrationintheporesolution:thealkalicontentofthecement, thereplacementamountandalkalicontentoftheflyash.theirresultsshowa decreaseinthehydroxylionconcentrationswithincreasinglevelofcement replacementwithflyash,albeitthecorrelationisnon?linear. Hobbs(1981)studiedtheeffectofusingclassFflyashinimprovingthedurabilityof concreteagainstaar.theresultshaveshownthatsampleswitha30?40%flyash replacementweremoredurablethanoneswith100%portlandcement.moreover, itwasconcludedthattheflyashneededalkalicontenttoreact. 1.2&Granulated&Blast&Furnace&Slag& Granulatedblastfurnaceslagisaproductofpigironproductionandisusedasa cementitiousmaterialintheconcreteindustry. ItwasfirstusedasanSCMbyEmilLangenin1868inGermany(Papadakisand Venuat1966). ThecompositionmainlyconstitutesofSiO2,Al2O3,CaO,andFe2O3.Unlikeandfly ash,slagshowshydraulicpropertieswhenusedwithcementinconcrete.slag s glassystructurereactswith,calciumsulphates,andalkalisinthesystem. Whenmixedwithwater,theslagparticlesreleasecalciumionsintosolution,andan impermeablelayerformsaroundtheslagparticle.uponthehydrationofcement andtheproductionofcalciumhydroxide,theaforementionedlayerisdestroyed. Theliberatedslagparticlesthenproceedtoreactwithcalciumsulphatesandalkalis toproducecalciumsilicatehydrate.similartoslag,theearlyagestrength developmentofslagisslowerthanthatofportlandcement(tanakaetal1983).
6 AstudyconductedbyDuchesneandBerube(2001)statedthattheglassystructures oftheflyashandslagusedinaconcretemixisbrokendownandactivatedfasterby thesolublealkalispresentinsolutionfromcement.theirfindingsshowthatthe alkalisareboundtothecshformedfromtheaddedscms. 1.3 &Methods&of&activation&& Othermethodsofactivationmentionedinstudieswere: 1. Mechanicalactivation(grindingofSCM) 2. Chemicalactivation 3. Thermalactivation Theactivationofflyashandslagwasinvestigatedwithadditionofsodium hydroxidesolution(naoh)tothesystem.witheverythingelsekeptconstant,the mainparametersvariedwere:curingtemperaturesandnaohconcentrations. Resultsshowedalinearcorrelationbetweenstrengthdevelopment,asignof activation,andnaohconcentrations.theincreaseincuringtemperature,however, improvedstrengthforthefirstfewdaysofhydration,buthadaworseeffectonlong termstrength(puertaselat2000). Otherstudies(Arjunan2001)examinedtheactivationofflyashwithacombined chemical/mechanicalmechanismfortheactivationprocess.severalcompounds wereusedalongwithflyashofdifferentfineness.whenusedtogether,theeffectsof chemicalactivatorsincludingsodiumhydroxide,sodiumcarbonate,andcalcium hydroxideactivationwereenhanced.withanychemicalactivatorused,finerashes wereactivatedmorethancoarserones. 1.4&Data&collected&& Inthissection,datafromtheliteraturewascombinedinagraphicalrepresentation inordertotryandfindacorrelationbetweencementalkalicontentandstrength development(asanindicatorofactivation)offlyash.initially,thecollecteddata includedarangeofflyashreplacements,curingconditionsandtemperatures.the informationwasthennarroweddowntocertainfactorssuchas,standardroom
7 temperatureconditions,similarcuringconditionstothoseusedthisproject,water? to?cementratiosnothigherthan0.55,andflyashreplacementlevelsbetween25 and30%.theselectedinformationwas: 1. Sodiumandpotassiumlevelsincement(%). 2. Cementcontent(kg/m 3 ). 3. Sodiumandpotassiumlevelsinflyash(%). 4. Flyashcontent(kg/m 3 ). 5. Watertocementratio. 6. Curingcondition. 7. Curingtemperature. 8. Strengthat1,3,7and28days(MPa). TwographswereplottedandareshowninFigure1andFigure2.Thecomplete tablewiththereferencesisprovidedinappendixa. 1.2 1 fc'/fc'&28days&(mpa)& 0.8 0.6 0.4 0.2 1day 3day 7day 0 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Cement&Alkali&Content&(%)& 1.10 1.20 Figure&1:&&Strength&ratios&at&1,&3&,&&&7&days&to&strength&at&28&days&versus&cement&alkali&content&
8 1.2 1 fc'/fc'&28days&(mpa)& 0.8 0.6 0.4 1day 3day 7day 0.2 0 0.00 1.00 2.00 3.00 4.00 5.00 FA&Alkali&Content&(%)& Figure&2:&Strengths&at&1,&3&,7&days&as&a&ratio&to&strength&at&28&days&versus&fly&ash&alkali&content&from& literature& & Strengthvalueswereplottedasstrengthateachtestingdaytostrengthat28days. Asexhibitedinbothfigures,nodistinctcorrelationwasdeduced.
9 Chapter&2& Experimental&Program& Understanding+the+activation+mechanisms+of+SCMs+in+a+concrete+matrix+is+imperative+for+ evaluating+the+adequacy+of+a+concrete+mix+and+the+materials+of+which+it+is+composed.+ The+following+program+investigates+the+activation+of+the+SCMs+through+the+mechanisms+ described+in+chapter+1.+the+methods+and+materials+used+are+of+high+importance+in+ achieving+good+and+reproducible+results.+ 2.1&Materials& This+section+provides+details+of+the+materials+used.++ 2.1.1&Portland&Cement& The+portland+cements+were+provided+by+Lafarge s+whitehall,+alpena,+and+ravena+plants,+ as+well+as+st+marys+bowmanville,+and+holcim+mississauga+plants.+the+cements+selected+ meet+astm+type+i+specifications+and+canadian+specification+can/csaka3001general+ use.+a+vkblender+was+used+at+35+rpm+to+blend+additional+three+cements+from+the+other+ five+plantkprovided+cements+to+form+a+range+of+alkali+contents+for+testing+purposes.+the+ chemical+compositions+for+all+cements+are+shown+in+table+1.+ Table&1:&Chemical&composition&of&the&eight&cements&used& Low& Alkali Whitehall Medium& Alkali St&Marys High Low+HighMed+low Med+& High Alkali&Content& (%) 0.54 0.90 0.60 1.07 1.00 0.77 0.57 0.80 C 3S&(%) 71.2 51.7 55.3 57.6 48.9 60.1 63.3 52.1 C 2S&(%) 1.6 14.6 14.2 11.9 19.2 10.4 7.9 16.7 C 3A&(%) 8.4 10.6 7.1 8.3 10.5 9.5 7.8 8.8
10 C 4AF&(%) 8.3 8.1 9.7 9.2 7.1 7.7 9.0 8.4 + 2.1.2&Water& The+water+used+in+the+concrete+mixtures+consisted+of+potable+tap+water.++ 2.1.3&Aggregates& 2.1.3.1+Fine+aggregates++ ASTM+C778+graded+Ottawa+sand+was+used+for+all+mortar+mixtures.+For+concrete,+natural+ glacial+sand+was+used.++the+physical+properties+are+provided+in+table+2.+ 2.1.3.2+Coarse+Aggregates+(only+for+concrete+mixtures)+ As+for+the+coarse+aggregates,+20mm+crushed+limestone+was+used.+The+physical+ properties+can+be+viewed+in+table2.+ Table&2:&Aggregate&Properties& Aggregate' Type' Relative'Density' Absorption'(%)' Fine+ Silica+ 2.68+ 0.53+ Coarse+ Limestone+ 2.65+ 2.00+ + 2.1.4&Admixtures&& WaterKreducing+admixtures+were+used+in+the+concrete+mixtures+in+order+to+achieve+the+ required+slump.+a+superplasticizer+was+also+used+to+increase+the+fluidity+to+obtain+ suffient+slump.++ + 2.1.5&SCMs& Two+supplementary+cementing+materials+were+used:+Fly+ash+(Lafarge,+Stoney+Creek+)+and+
11 Slag+(from+both+Holcim,+Mississauga+and+Lafarge,+Stoney+Creek).+The+Blaine+fineness+and+ alkali+contents+are+provided+in+table+3.+ Table&3:&Properties&of&SCMs&used& Holcim& Slag&& Lafarge& Slag&& Fly&Ash& Surface&Area& Blaine&(m²/kg)& 576 564 274 Alkali&Content& (%)& & & 2.2&Mixing&and&Casting&Procedures& + 0.58 0.15 2.97 2.2.1&Mortar&Cubes& Mortar+mixtures+were+designed+as+per+C109/C109M+.+A+water+to+cement+ratio+of+0.485+ was+used+for+the+mortar+cubes.++a+total+of+32+mixes+were+cast+which+were+a+combination+ of+the+8+cements:+8+with+100%+cement+(control),+8+with+25%+fly+ash,+8+with+50%+holcim+ slag,+and+8+with+50%+lafarge+slag.+the+mix+design+is+shown+in+table+4.+ Table&4:&Mortar&mix&design&for&6&cubes& Material& Quantity&(g)& CementitousMaterial 500 + Sand 1375 Water 242 A+mechanical+mixer+with+a+stainless+steel+bowl+with+a+stainless+steel+paddle+was+used+as+ per+astm+c305+(figure3).++after+mixing,+the+mortar+is+placed+in+stainless+steel+50mm+ cube+molds+(figure4)+and+covered+with+plastic+wrap+and+left+to+set+for+24+hours+in+a+ plastic+container+at+standard+conditionsofroomtemperatureat23.0±3.0 Cand
12 55%relativehumidity+before+deKmolding.++ + + Figure&3:&Mixing&of&mortar Figure&4:&Stainless&steel&cube&molds& 2.2.2&Calorimetry&tests& Sample+made+for+the+calorimetry+tests+were+designed+as+the+mortar+cubes+in+the+ previous+section.+samples+of+100g+of+mortar+are+placed+in+plastic+vials+and+inserted+in+ the+vial+holders+in+the+calorimeter+for+testing.++ 2.2.3&Pore&Squeezing&& Mortar+samples+for+the+pore+squeezing+tests+were+also+the+same+as+the+mortar+cubes+in+ the+preceding+section.+samples+were+cast+in+50mm+in+diameter+by+100mm+long+cylinders+ and+sealed+and+stored+under+standard+conditions+until+testing.++
13 2.2.4&Concrete&Mixtures& Only+six+concrete+mixtures+with+three+different+cements+where+selected+and+prepared+ for+this+experimental+investigation.+the+three+cements+included+low,+medium+and+high+ cement+alkali+contents.+a+0.43+water+to+cementitious+materials+ratio+was+selected+for+all+ mixtures.+the+individual+mixture+designs+are+detailed+in+table+5.+ Table&5:&Concrete&mixture&designs& Mixture& ID& 0.803:PC& 0.573:PC& 1.07:PC& 0.803:50S& 0.573:50S& 1.07:50S& W/CM& 0.43 0.43 0.43 0.43 0.43 0.43 Batch& Volume&(m 3 )& 0.019 0.019 0.019 0.019 0.019 0.019 Materials& Mass(kg/m 3 ) Cement& 360.0 360.0 360.0 180.0 180.0 180.0 Slag&??? 180.0 180.0 180.0 Water& 128.4 112.1 125.8 140.5 147.9 83.7 Fine& Aggregate& Coarse& Aggregate& Water& Reducer& ml/batch& Supere Plasticizer& ml/&batch& 913.7 935.3 912.6 901.6 899.5 962.1 1030 1025 1033 1030 1025 1026 13ml 18ml 15ml 20ml 15ml 15ml 10ml 10ml 10ml 20ml 15ml 5ml Aggregate+preparation+and+mixing+procedures+were+carried+out+as+per+the+ASTM+C172+ and+astm+c192+standards.+fresh+concrete+properties+were+measured+(table6).+ Concretes+were+cast+into+100+x+200+mm+(4+x+8+in)+cylindrical+specimens.++
14 Table&6:&Fresh&concrete&mixture&properties& Mixture&ID& 0.803:PC& 0.573:PC& 1.07:PC& 0.803:50S& 0.573:50S& 1.07:50S& Slump&& (ASTM&C143)& Percent&Air&Content& (ASTM&C173)& 100mm 105mm 100mm 110mm 110mm 105mm 3% 2.7% 3% 3% 2.9% 2.9% Temperature&& (ASTM&C1064)& 25.2 O C 25.5 O C 25.1 O C 25.6 O C 25.5 O C 25.6 O C Unit&Weight&& 2355.6 2331.1 2378.1 2399.6 2355.6 2367.4 (ASTM&C138)& kg/m 3 kg/m 3 kg/m 3 kg/m 3 kg/m 3 kg/m 3 + 2.3&Curing& 2.3.1&Mortar&cubes&& Mortar+cubes+were+cured+in+limewater+until+the+required+testing+ages+of+1,+3,+7,+and+28+ days.+after+demolding,+samples+tested+at+one+day+were+immersed+in+limewater+for+20+ min+before+testing.+samples+are+removed+from+their+curing+basin+for+testing+at+the+same+ time+they+were+dekmolded+and+immersed+at+to+ensure+accuracy+and+reproducibility+of+ results.++ For+experimental+purposes,+three+mixtures+were+made+with+the+1.070%+alkali+content+ cement+and+were+immersed+in+three+other+curing+solutions:+ 1. Tap+water+ 2. 0.3%+Alkali+content+solution+ 3. 0.6%+Alkali+content+solution+ & &
15 2.3.2&Concrete&Mixtures& All+concrete+samples+are+cured+in+their+plastic+sealed+molds+for+24+hours+before+they+are+ immersed+in+limewater+solutions+at+standardized+conditions+until+day+of+testing.+day+one+ samples+are+immersed+in+solution+for+20+min+before+testing.++ 2.4&Specimen&Testing& Tests+included+compressive+strength+development+over+time,+electrical+resistivity,+ isothermal+calorimerty,+and+alkali+content+through+pore+squeezing.++ 2.4.1&Calorimeter& As+per+the+ASTM+C1679,+Standard'Practice'for'Measuring'Hydration'Kinetics'of'Hydraulic' Cementitious'Mixtures'Using'Isothermal'Calorimeter,+the+heat+released+by+the+hydration+ of+cementitious+materials+was+measured+over+a+period+of+seven+days.+ 2.4.2&Pore&Squeezing&& Pore+squeezing+was+done+at+1,+3,+7,+and+28+days+for+the+Holcim+slag,+fly+ash+and+control+ mixtures+for+three+different+cements+with+different+alkali+contents+(1.070%,+0.803%+and+ 0.773%).+Mortar+cylinders+were+prepared+in+50x100mm+molds+and+sealed+until+the+day+ of+testing.+fluid+is+extracted+out+of+the+hardened+samples+by+high+pressure+and+is+tested+ for+hydroxyl,+potassium+and+sodium+ion+concentrations.+figure+5+shows+a+schematic+of+ the+pore+squeezing+apparatus+(23).++ Figure&5:&Pore&squeezing&apparatus&'
16 2.4.3&Electrical&Resistivity& Electrical+resistivity+was+measured+and+calculated+as+per+ASTM+C1760,+Standard'Test' Method'for'Bulk'Electrical'Conductivity'of'Hardened'Concrete.+ + 2.4.4&Compressive&testing& The+compressive+strength+testing+of+concrete+was+done+as+per+ASTM+C39,+Standard'Test' Method'for'Compressive'Strength'of'Cylindrical'Concrete'Specimens.+As+for+the+mortar+ cube+samples,+the+procedure+followed+was+the+astm+c109/c109m,+standard'test' Method'for'Compressive'Strength'of'Hydraulic'Cement'Mortars.++ + +
17 Chapter&3& + Results&and&Discussion& 3.1&Mortar&Cubes&Results& Results+of+strength+and+resistivity+development+graphs+are+shown+in+this+section.+ Strength+development+was+plotted+against+time,+alkali+content+of+cement,+and+cement+ alite+content.+resistivity+was+monitored+over+time.++++ The+mix+codes+used+in+the+graphs+below+show+the+alkali+content+with+the+percent+of+ SCM+replacement+(alkali+content:+percent+replacement).++ + 3.1.1&Lafarge&Slag&(S)& Figure6+shows+that+the+highest+strength+development+at+1,+3,+and+7+days,+occurred+for+ the+highest+alkali+content+cement:+1.003%,+followed+closely+by+the+0.9%+and+the+0.543%+ one+both+at+almost+the+same+values.+chemical+analysis+in+table1+in+chapter+2,+also+ shows+that+the+0.54%+alkali+cement+also+had+the+highest+level+of+alite,+that+may+also+be+a+ cause+for+the+activation.+figure7+displays+strengths+for+the+three+cements+with+ standard+deviation+error+bars.+1,+3,+and+28+day+strengths+for+all+cements+have+very+small+ standard+deviation+values:+the+1.00%+and+0.54+%+cements+showed+standard+deviations+ of+2+mpa+at+7+days.+++ Resistivity+values+over+time+are+shown+in+Figure8.+It+is+observed+that+the+1.00%+and+ 0.9%+alkali+cements+had+the+highest+resistivity+values.++ +
18 60 Compressive&Strength&(MPa)& 50 40 30 20 10 0 0 5 10 15 20 25 Time&(Days)& 0.9:50S 1.003:50S 0.543:50S 0.603:50S 0.573:50S 0.773:50S 0.803:50S 1.07:50S + Figure&6:&Compressive&strength&development&for&different&alkali&cements&and&50%&Lafarge&Slag&(S)& 60 Compressive&Strength&(MPa)& 50 40 30 20 10 0.9:50S 1.003:50S 0.543:50S 0 0 5 10 15 20 25 Time&(Days)& Figure&7:&Strengths&for&the&three&highest&early&age&strength&for&cements&with&50%&Lafarge&slag&
19 180 160 Resistivity&(ohmem)& 140 120 100 80 60 40 20 1.003:50S 0.9:50S 0.543:50S 0.603:50S 0.573:50S 0.773:50S 1.07:50S 0.803:50S 0 0 5 10 15 20 25 30 Time&(days)& Figure&8:&Resistivity&development&for&different&alkali&cements&with&50%&Lafarge&slag& + 3.1.2&Holcim&Slag&(S2)& Results+in+Figure9+are+similar+to+that+for+the+Lafarge+slag+in+the+previous+section+where+ the+highest+early+age+strength+development+occurred+for+the+highest+alkali+content+ cements:+0.9%+and+1.00%,+as+well+as+the+lowest+alkali+content+one:+0.54%.+figure10+ displays+the+three+cements+with+standard+deviation+error+bars.+resistivity+values+over+ time+are+shown+in+figure11.+it+is+observed+that+the+1.00%+and+0.90%+alkali+cements+ show+the+highest+resistivity+values,+followed+closely+by+the+0.54%+one.++
20 50 Compressive&Strength&(MPa)& 40 30 20 10 0.9:50S2 1.003:50S2 0.543:50S2 0.603:50S2 0.573:50S2 0.773:50S2 0.803:50S2 1.07:50S2 0 0 5 10 15 20 25 30 Time&(Days)& Figure&9:&Compressive&strength&development&for&cement&with&50%&Holcim&Slag&(S2)& 50 Compressive&Strength&(MPa)& 40 30 20 10 0.9:50S2 1.003:50S2 0.543:50S2 0 0 5 10 15 20 25 Time&(Days)& Figure&10:&Strengths&with&standard&deviation&error&bars&for&the&three&highest&early&age&strength& development&cements&for&cements&blended&with&50%&holcim&slag&
21 120 100 Resistivity&(ohmem)& 80 60 40 20 1.003:50S2 0.9:50S2 0.543:50S2 0.603:50S2 0.573:50S2 0.773:50S2 1.07:50S2 0.803:50S2 0 0 5 10 15 20 25 30 Time&(days)& Figure&11:&Resistivity&development&for&mixes&with&50%&Holcim&slag& Compressive&Strength&(Mpa)& 60 50 40 30 20 10 S21day S23day S27day S228day S11day S13day S17day 0 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 Cement&Alkali&Content&(%)& S128day Figure&12:&Strength&development&with&alkali&content&at&different&ages&for&all&cements&(both&slags)'
22 + Compressive&Strength&(Mpa)& 60 50 40 30 20 10 S21day S23day S27day S228day S11day S23day S17day 0 45 50 55 60 65 70 75 C3S&(%)& S128day Figure&13:&Strength&development&for&cements&having&different&alite&content&at&different&ages&for&all& cements&(both&slags)& + Figure12+and+Figure13+show+the+strength+development+data+for+different+cement+ alkali+content+and+alite+content+for+mixtures+made+with+both+slags.+the+results+match+ the+ones+mentioned+above+in+the+preceding+two+sections.+moreover,+both+slags+act+ similarly+at+early+ages+while+there+is+some+noise+in+the+data+at+the+28kday+results.++ & 3.1.3&Fly&Ash&(F)& + Results+in+Figure14+show+a+similar+outcome+to+that+of+the+slags+in+the+previous+sections+ where+the+highest+early+age+strength+development+occurred+for+the+highest+alkali+ content+cements:+0.9%+and+1.00%,+as+well+as+the+low+alkali+content+ones:+0.54%+and+ 0.60%.+Figure15+displays+strengths+for+these+four+cements+with+standard+deviation+ error+bars.+++
23 Figure16+and+Figure17+both+show+that+the+highest+strength+had+occurred+for+the+ 1.00%,+0.90%+and+0.54%+alkali+cements.+ & 60 Compressive&Strength&(MPa)& 50 40 30 20 10 0.9:25F 1.003:25F 0.543:25F 0.603:25F 0.773:25F 0.573:25F 0.803:25F 0 1.07:25F 0 5 10 15 20 25 30 Time&(Days)& Figure&14:&Strength&development&for&all&cements&with&25%&fly&ash&replacement& 60 Compressive&Strength&(MPa)& 50 40 30 20 10 0.9:25F 1.003:25F 0.543:25F 0.603:25F 0 0 5 10 15 20 25 30 Time&(Days)& Figure&15:&Standard&deviation&error&bars&for&the&four&highest&early&age&strength&development&cements& for&cements&with&25%&fly&ash&
24 60 50 Compressive&Strength&(Mpa)& 40 30 20 10 1day 3day 7day 28day 0 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 Alkali&Content&(%)& Figure&16:&Strength&development&&for&cements&with&different&&alkali&content&at&different&ages&for&all& cements&with&fly&ash&replacement& 60 Compressive&Strength&(Mpa)& 50 40 30 20 10 1day 3day 7day 28day 0 45 50 55 60 65 70 75 C3S&(%)& Figure&17:&Strength&development&with&alite&content&at&different&ages&for&all&cements&with&fly&ash& replacement&
25 3.2&Concrete&Mixtures& Thissectionshowstheresultsforthesixconcretemixturesselectedtoverifythat themortarcuberesultsareconsistentwithconcreteresults. Themixesonlyused50%Holcimslagreplacementsfortheconcreteswiththree differentalkalicements. Thethreecementsusedhad1.00%,0.80%and0.57%alkalicontents,chosento coverthealkalicontentrange. Compressive&Strength&(MPa)& 60 50 40 30 20 10 0 0 10 20 30 Time&(days)& 1.07:PC 0.803:PC 0.573:PC Figure&18:&Strength&Development&over&time&for&100%&cement&concrete&mix& Compressive&Strength&(MPa)& 60 50 40 30 1.07:50S2 20 0.803:50S2 10 0.573:50S 0 0 5 10 15 20 25 30 Time&(days)& Figure&19:&Strength&Development&for&50%&Holcim&slag&concrete&mix& &
26 3.3&&Calorimetry& Theisothermalcalorimetrytestresultsareshowninfollowingfigures. 3.3.1&Fly&Ash& Figure&20:&Power&change&with&time&for&25%&fly&ash&specimens& &Figure&21:&Energy&change&with&time&for&25%&fly&ash&specimens&
27 Figure20showsthepowerlevelchangesofthesampleswithtime.Thethree cementsthatproducedhigheststrengthresultsintheprecedingsectiondidnot matchuptothecalorimetryresultsshownhere.mediumalkalicontentcements producedthehighestenergy. 3.3.2&Holcim&Slag& Figure&22:&Power&change&with&time&for&50%&Holcim&slag&specimens& Figure&23:&Energy&change&with&time&for&50%&Holcim&slag&specimens&
28 Figure22showsthepowergraphfortheHolcimslagwithtime.Theresultsshows thatthehighestthreepeaksbelongtothe0.54%,0.90%and1.00%alkalicontent cements.thelowestalkalicontentcementhastheearliestpeakateighthours followedbythe0.9%and1.00%at14and16hoursrespectively.figure23shows similarresultswiththehighestlevelsofenergyreleasedwereforthe aforementionedcementsfollowedcloselybythe0.80%alkalicontentcement. & 3.3.3&Lafarge&Slag& Figure&24:&Power&change&with&time&for&50%&Lafarge&slag&specimens& Figure24showsthatthe0.54%alkalicementhadtheearliestpeak,butthe1.00% alkalicementhadthehighestpeak.figure25showsthatthehighestenergylevel belongstothe0.80%alkalicementfollowedcloselybythe0.54%one,withthe 1.00%alkalicementbeingthelowest.
29 Figure&25:&Energy&change&with&time&for&50%&Lafarge&slag&specimens& 3.4&Pore&solution&Analysis& Inthissectionthesamethreecementsselectedfortheconcretemixingwere usedforporesolutionanalysis. 3.4.1&Fly&ash& [OHe]&of&SCM&/&[OHe]&of&PC& 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1.07:25F 0.773:25F 0.573:25F Cement&Used& 1 3 7 Figure&26:&Hydroxyl&concentrationsof&25%&fly&ash&concretes&to&hydroxyl&concentration&of&portland& cement&control&for&each&cement&used&
30 Figure26showsthechangeinhydroxylionconcentrationswithtimeandwith cementalkalicontentdecreasefor25%flyashspecimens.withtime,thehydroxyl leveldropsforeachmix.somemixesdonothave28daymaterialbecausenofluid hasbeenabletobeextractedfromthespecimen. Moreover,asexpected,asthecementalkalicontentdecreasessodoesthelevelof hydroxylionconcentration.fromfigure16,itisalsoshownthatthestrength decreaseswithalkalicontentofcementforthosethreecementsandthereforeso doesthehydroxyl. & 3.4.2&Holcim&Slag& [OHe]&of&SCM&/&[OHe]&of&PC& 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 1.07:50S 0.773:50S 0.573:50S Cement&Used& Figure&27:&Hydroxyl&ion&concentration&of&50%&slag&mixtures&to&hydroxyl&ion&concentration&of&Portland& cement&for&each&cement&alkali&content&used& Figure27showsthatthelevelsofhydroxylionsdecreasewithtimeforeach mixture.thevaluesdonotchangealotbetweenthemixturesforages1and3,but showadecreaseofhydroxylwithdecreaseofalkalicontentfor7dayage.similarto themixtureswithflyash,figure12showsthatthesethreecementsexhibited reducedstrengthvalueswithincreasesincementalkalicontent. 1 3 7 28 &
31 3.5 &Mortar&Cube&specimens&with&different&curing&solutions& Inthissection,asinglecementwasselectedandtestedwithmultiplecuring solutions:limewater,tapwater,0.3%na2oalkaliequivalentand0.6%na2oalkali equivalenttocheckifthecuringsolutionaffectstheactivation.the1.07%alkali contentcementwasused,andtwomixeswerecast,onewith50%slagandtheother 100%Portlandcement. Figure&28:&Strength&development&for&50%&Slag&and&control&mixes&with&different&curing&solutions& Figure28showsthatthefastestactivationoccurredforthesamplescuringin limewateraswellasthe0.6%alkalisolution.
32 Chapter&4& Conclusions&and&Recommendations&& 4.1&Conclusions& Fromtheexperimentalresultsitisconcludedthat: 1. CementalkalicontentisanactivatorforSCMs.AstheresultsinChapter3 show,thevaluesforstrengthwerethehighestforthehighestalkalicontent cement(1.07%).thisprovesthatalkalisarebeneficialtoenablescmsto startreactingandformingcalciumsilicatehydrate?likeconstituents. 2. Highalitecontentinthecementhadalsobeenproventobeadriverforthe activationofscmsevenwithcementshavinglowalkalicontents.from Chapter3,itwasobservedthatstrengthvaluesofthelowestalkali/highest C3Scontentcement(0.543%)wereveryclosetothoseobtainedwiththehigh alkalicements(1.07%and0.9%).calorimetryvaluesalsoshowthatthere wasoftenanearlyhighspikeinpowervaluesforhighalitecement. 3. Curinginasolutionsimulatinghighalkalicementhelpspreventleachingof alkalisfromtheporesolutionintheconcrete,andresultsinincreased strength.fromthelastsectioninchapter3,itwasshownthatstrength developmentforearlyages(1,3,and7days)ofmortarcubeswasthehighest formixturesstoredinthe0.6%na2oalkaliequivalentcuringsolution.this provesthatthealkaliswereabsorbedintotheporewaterandusedin activatedthescmfaster. 4.2&Recommendations& Recommendationsforfurtherresearchincludeevaluationofcementswithawider rangeofalkaliandalitecontents.moreover,otherfactorsthatwerekeptconstant couldbeinvestigatedsuchascuringtemperaturesandadditionofalkaliactivators tothesystemduringthemixingprocess.
33 References& AbdunNur,E.A.(1961). FlyAshinConcrete,AnEvaluation, Highway#Research# Board#Bulletin,pp284. Arjunan,P.,Silsbee,M.R.andRoy,D.M.(2001). Chemicalactivationoflowcalcium flyashpart1:identificationofsuitableactivatorsandtheirdosage.international# Ash#Utilisation#Symposium,Kentucky. ASTMStandardC33, SpecificationforConcreteAggregates, ASTMInternational, WestConshohocken,PA. ASTMStandardC39, StandardTestMethodforCompressiveStrengthofCylindrical ConcreteSpecimens, ASTMInternational,WestConshohocken,PA. ASTMStandardC138, Standard#Test#Method#for#Density#(Unit#Weight),#Yield,#and#Air# Content#(Gravimetric)#of#Concrete, ASTMInternational,WestConshohocken,PA. ASTMStandardC143, TestMethodforSlumpofHydraulic?CementConcrete, ASTMInternational,WestConshohocken,PA. ASTMStandardC172, PracticeforSamplingFreshlyMixedConcrete, ASTM International,WestConshohocken,PA. ASTMStandardC173, StandardTestMethodforAirContentofFreshlyMixed ConcretebytheVolumetricMethod, ASTMInternational,WestConshohocken,PA. ASTMStandardC192, StandardPracticeforMakingandCuringConcreteTest SpecimensintheLaboratory, ASTMInternational,WestConshohocken,PA ASTMStandardC470, StandardSpecificationforMoldsforFormingConcreteTest CylindersVertically, ASTMInternational,WestConshohocken,PA. ASTMStandardC1064, StandardTestMethodforTemperatureofFreshlyMixed Hydraulic?CementConcrete, ASTMInternational,WestConshohocken,PA. ASTMStandardC109/C109M, StandardTestMethodforcompressivestrengthof hydrauliccementmortars(using2?in.or(50?mm)cubespecimens), ASTM International,WestConshohocken,PA. ASTMStandardC1679, StandardPracticeforMeasuringHydrationKineticsof HydraulicCementitiousMixturesUsingIsothermalCalorimeter, ASTM International,WestConshohocken,PA. ASTMStandardC305, StandardPracticeforMechanicalMixingofHydraulic
34 CementPastesandMortarsofPlasticConsistency, ASTMInternational,West Conshohocken,PA. ASTMStandardC778. StandardSpecificationforStandardSand, ASTM International,WestConshohocken,PA. Berry,E.E.,andMalhotra,V.M.(1986), FlyAshinConcrete, Special#Publication# SP85U3,#CANMET,#Energy,#Mines#and#Resources#Canada,178pp. Bilodeau,A.,Sivasundaram,V.,Painter,K.E.andMalhotra,V.M.,(1994), Durability ofconcreteincorporatinghighvolumesofflyashfromsourcesintheunited States, ACI#Materials#Journal,Vol.91pp.3?12 Cabrera,J.G.,Hopkins,C.J.,Woolley,G.R.,Lee,R.E.,Shaw,J.,PlowmanC.,andFox, H.(1986), EvaluationofthePropertiesofBritishPulverizedFuelAshesandTheir InfluenceontheStrengthofConcrete, ACI#Special#Publication,SP?91,pp.115?144. Caijun,S.,Jueshi,Q.,andZhi,W.(2001). ActivationofBlendedCementsContaining FlyAsh, Cement#and#Concrete#Research,#31(8),pp.1121 1127.# CAN/CSA?A3001?13, CementitiousMaterialsforUseinConcrete, Canadian StandardsAssociation,Mississauga,ON. Davis,R.E.,Carlson,R.W.,Kelly,J.W.,andDavis,A.G.(1937). PropertiesofCements AndConcretesContainingFlyAsh, Proceedings,#American#Concrete#Institute,33,pp. 577?612. DeBrito,J.andSaikia,N.(2013). RecycledAggregateinConcrete:UseofIndustrial, Construction.London.#SpringerUVerlag Diamond,S.,(1981). TheCharacterizationofFlyAshes, Materials#Research# Society In:#Effects#of#FlyUAsh#Incorporation#in#Cement#and#Concrete,Proceedings Symposium#N,#Annual#Meeting,Boston,pp.12?23. Duchesne,J.andBérubé,M.A.(2001). Long?TermEffectivenessOfSupplementary CementingMaterialsAgainstAlkali?SilicaReaction, Cement#and#Concrete#Research, 31,pp1057 1063. Gebler,S.H.,andKlieger,P.(1986). EffectofFlyAshonPhysicalPropertiesof Concrete.ACI#Special#Publications.#114.#Pp.#1U50.# Gillott,J.E.(1975). Alkali?AggregateReactionsinConcrete, in:engineering Geology,pp309 326. Hobbs,D.W.(1981). TheAlkaliSilicaReaction:Amodelforpredictingexpansionin mortar, Magazine#of#Concrete#Research,33,pp.208?220.
35 Joshi,R.C.andLohtia,R.P.(1997). FlyAshinConcreteProduction,Propertiesand Uses, Gordon#and#Breach#science#publishers,India. Liu,C.,Wen,Z.,(1995). MonographonDam?engineeringConcrete:Alkali aggregatesreactionsinconcrete.publications#by#south#china#university#of# Technology,pp.354 355 Nixon,P.J.,Page,C.L.,Bollinghaus,R.,andCanham,I.,(1986). TheEffectofaPFA withahightotalalkalicontentonporesolutioncompositionandalkalisilica Reaction, Magazine#of#Concrete#Research,#38,pp.30?35 Nixon,P.andPage,C.(1987)."PoreSolutionChemistryandAlkaliAggregate Reaction,"Concrete#Durability,#Katharine#and#Bryant#Mather#International# Conference,#JohnM.Scanlon,Ed.,ACISP?100,Vol.2,American#Concrete#Institute, Detroit.pp.1833?1862. Massazza,F.(1998). Pozzolanaandpozzolaniccements.In#Hewlett#P#V#(ed.),#Lea s# Chemistry#of#cement#and#concrete,4 th edition,london,arnoldpublishers,pp.471? 631. Plante,P.andBilodeau,A.(1989). RapidChlorideIonPermeabilityTest:Dataon ConcretesIncorporatingSupplementaryCementingMaterials, ACI#Special# Publication,SP?114,pp.625?644. Poon,C.S.,Lam,L.,andWong,Y.L.(2000). Astudyonhighstrengthconcrete preparedwithlargevolumesoflowcalciumflyash, Cement#and#Concrete#Research, 30,pp.447?455. Puertas,F.,MartõÂnez?RamõÂrez,S.,Alonso,S.,VaÂzquez,T.(2000). Alkali? activatedflyash/slagcement:strengthbehaviourandhydrationproducts, #Cement# and#concrete#research,#30,pp.1625 1632.# Ramezanianpour,A.A.,Malhotra,V.M.(1995). EffectofCuringontheCompressive Strength,ResistancetoChloride?IonPenetrationandPorosityofConcretes IncorporatingSlag,FlyAshorSilicaFume, Advanced#Concrete#Technology#Program,# Resource#Utilization#Laboratory,#Mineral#Sciences#Laboratories,#CANMET,Natural ResourcesCanada,Ottawa,Canada Ravindrarajah,R.SriandTam,C.T.(1989). PropertiesofConcreteContainingLow? CalciumFlyAshUnderHotandHumidClimate.ACI#Special#Publication,SP?114,pp. 139?156. Shi,C.,andDayR.L.(1995). AccelerationofTheReactivityofFlyAshByChemical Activation, #Cement#and#Concrete#Research,25(1),pp.15 21. SnyderM.J.(1962). Acriticalreviewofthetechnicalinformationontheutilization offlyash, Edison#Electric#Institute#Report.pp.62?902.
36 Swamy,P.N.(1990). Alkalisilicareactionandconcretestructures, Structural# Engineering#Review,2,pp.89?103. Tanaka,H.,Totani,Y.andSaito,Y.(1983). Structuresofthehydratedglassy blastfurnaceslaginconcrete,aci#spu79,pp.963?977. Thomas,M.D.A.,Matthews,J.D.andHaynes,C.A.(1989). EffectofCuringonthe StrengthandPermeabilityofPFAConcrete.ACI#Special#Publication,SP?114,pp. 191?218. Thomas,M.D.A.,Shehata,M.H.andShashiprakash,S.G.(1999). Useofternary cementitioussystemscontainingsilicafumeandflyashinconcrete,cement,# Concrete#and#Aggregates,29,pp.1207 1214. Whiting,D.(1989). DeicerScalingResistanceofLeanConcretesContainingFly Ash.ACI#Special#Publications.114pp349?372. Whiting,D.(1987). DurabilityofHighStrengthConcrete,.ACI#Special#Publication, SP?100,Vol.1,pp.169?186. #
37 Appendix(A( Data(collected(From(the(Literature( Reference(( K2O( of( PC((( (%)( Na2O( of(pc(((( (%)( Na2O( equ( of(pc( (%)( Amoun t(of(pc( (kg/m3 )( Amount(of(( Fly(Ash( (kg/m3)( Curing( condition( w/c( TempeI rature( ( o C)( Na2O( of(fa(((( (%)( K2O(of( FA((( (%)( Na2O( equ(of( Fly(Ash( (%)( F'c(at( 1d((((( (Mpa)( F'c(at( 3d( (Mpa )( F'c(at( 7d( (Mpa )( F'c(( at( 28d( (Mpa )( %Fly( Ash( f'c1/f' c28( f'c3/f'c 28( f'c7/f'c 28( Thomas(et(al( 96( 0.73 0.15 0.63 250.00 0.00 Prisms demoulded at24hours andthen curedat20 degrees 0.68 20 0.65 3.18 2.83 < < < 32.50 0.00 < < < (( 0.73 0.15 0.63 202.30 86.70 Prisms demoldedat 24hours andthen curedat20 degrees 0.58 20 0.65 3.18 2.83 < < < 34.50 30.00 < < < Poon(et(al( 2000( < < 0.40 637.00 0.00 Water immersed 0.24 27.00 < < 0.14 < < 74.70 103.7 0.00 < < 0.72 < < 0.40 475.00 158.00 Water immersed 0.24 27.00 < < 0.14 < < 69.50 99.50 25.00 < < 0.70 ( (
38 ( 0.54 0.05 0.42 554.00 0.00 Water immersed 0.27 23.00 0.06 2.84 2.01 < < 58.00 75.00 0.00 < < 0.77 (( 0.54 0.05 0.42 416.00 138.00 Water immersed 0.27 23.00 0.06 2.84 2.01 < < 70.00 80.00 25.00 < < 0.88 Ramezanianpo Iur(and( Malhotra(1995( 0.86 0.19 0.78 372.00 0.00 moist 0.50 23.00 0.56 1.44 1.55 16.90 26.00 31.60 39.30 0.00 0.43 0.66 0.80 (( 0.86 0.19 0.78 280.00 92.00 moist 0.50 23.00 0.56 1.44 1.55 9.60 17.90 22.70 31.50 25.00 0.30 0.57 0.72 (( 0.86 0.19 0.78 372.00 0.00 roomtemp after demoulding 0.50 23.00 0.56 1.44 1.55 16.90 25.60 29.60 32.60 0.00 0.52 0.79 0.91 (( 0.86 0.19 0.78 280.00 92.00 roomtemp after demoulding 0.50 23.00 0.56 1.44 1.55 9.60 15.30 18.60 23.00 25.00 0.42 0.67 0.81 Thomas(et(al( 1989( ( 0.73 0.15 0.63 300.00 0.00 waterstored 0.63 20.00 < < < 8.99 21.83 32.53 42.80 0.00 0.21 0.51 0.76
39 ( 0.73 0.15 0.63 242.00 104.00 waterstored 0.50 20.00 0.65 3.18 2.74 7.84 23.05 33.65 46.10 30.00 0.17 0.50 0.73 (( 0.73 0.15 0.63 300.00 0.00 curedfor1 daythenair stored, rh=65 0.63 20.00 < < < 8.99 20.97 27.82 35.10 0.00 0.26 0.60 0.79 (( 0.73 0.15 0.63 242.00 104.00 curedfor1 daythenair stored, rh=65 0.50 20.00 0.79 1.83 1.99 7.38 17.52 23.97 30.89 30.00 0.24 0.57 0.78 (( 0.73 0.15 0.63 242.00 104.00 curedfor2 daysthenair stored, rh=65 0.50 20.00 0.79 1.83 1.99 < 19.36 27.20 43.80 30.00 < 0.44 0.62 (( 0.73 0.15 0.63 242.00 104.00 curedfor3 daysthenair stored, rh=65 0.50 20.00 0.79 1.83 1.99 < 17.98 29.50 36.88 30.00 < 0.49 0.80 (( 0.73 0.15 0.63 242.00 104.00 curedfor7 daysthenair stored, rh=65 0.50 20.00 0.79 1.83 1.99 < < 27.20 39.65 30.00 < < 0.69 Plante(and( Bilodeau(1989( 0.92 0.23 1.07 280.00 0.00 wetburlap atroom tempforday 1thenmoist room100% rh 0.55 24.00 0.54 3.16 2.62 9.40 < 25.40 32.10 0.00 0.29 < 0.79
40 (( 0.92 0.23 1.07 210.00 70.00 wetburlap atroom tempforday 1thenmoist room100% rh 0.55 24.00 0.54 3.16 2.62 8.00 < 19.10 27.00 25.00 0.30 < 0.71 Gebler(and( Klieger(1986( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.42 23.00 1.04 1.63 2.11 7.31 14.27 20.62 32.89 25.00 0.22 0.43 0.63 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.42 23.00 1.75 0.91 2.35 8.27 16.27 22.34 35.44 25.00 0.23 0.46 0.63 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.45 23.00 0.37 3.19 2.47 5.86 11.24 16.75 25.65 25.00 0.23 0.44 0.65 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.41 23.00 1.79 1.19 2.57 8.55 16.00 21.99 34.54 25.00 0.25 0.46 0.64 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.44 23.00 0.49 2.24 1.96 6.21 12.20 17.51 28.61 25.00 0.22 0.43 0.61 (( 0.66 0.25 0.82 230.25 76.75 Moistinfog room 0.43 23.00 0.53 2.23 2.00 6.55 13.17 17.31 24.68 25.00 0.27 0.53 0.70
41 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.42 23.00 1.04 1.63 2.11 8.89 13.38 17.58 21.17 25.00 0.42 0.63 0.83 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.42 23.00 1.75 0.91 2.35 7.72 14.55 17.37 19.37 25.00 0.40 0.75 0.90 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.45 23.00 0.37 3.19 2.47 5.93 10.41 13.93 15.65 25.00 0.38 0.67 0.89 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.41 23.00 1.79 1.19 2.57 8.34 14.89 19.99 21.37 25.00 0.39 0.70 0.94 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.44 23.00 0.49 2.24 1.96 5.93 10.89 16.41 16.06 25.00 0.37 0.68 1.02 (( 0.66 0.25 0.82 230.25 76.75 50%rh 0.43 23.00 0.53 2.23 2.00 6.83 13.10 17.24 17.93 25.00 0.38 0.73 0.96 Cabrera(et(al( 1986( 0.80 0.20 0.93 239.00 121.00 water immersed 0.48 20.00 1.15 2.66 2.90 < 21.87 29.30 41.42 30.00 < 0.53 0.71
42 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.47 20.00 1.19 3.69 3.62 < 22.44 30.15 40.47 30.00 < 0.55 0.74 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.46 20.00 1.24 3.49 3.54 < 22.61 30.89 43.94 30.00 < 0.51 0.70 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.47 20.00 1.66 2.25 3.14 < 22.98 30.04 41.94 30.00 < 0.55 0.72 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.45 20.00 1.37 2.35 2.92 < 24.11 32.35 45.06 30.00 < 0.54 0.72 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.44 20.00 1.49 2.66 3.24 < 25.47 34.49 48.48 30.00 < 0.53 0.71 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.50 20.00 1.75 2.36 3.30 < 19.90 26.79 39.65 30.00 < 0.50 0.68 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.44 20.00 1.52 3.64 3.92 < 20.07 26.91 37.57 30.00 < 0.53 0.72
43 (( 0.80 0.20 0.93 239.00 121.00 water immersed 0.51 20.00 1.61 2.19 3.05 < 18.13 24.63 37.03 30.00 < 0.49 0.67 ( 0.85 0.15 0.73 372.00 0.00 2dmoist thenroom temp 0.55 23.00 0.55 1.40 1.51 16.90 26.00 32.70 37.30 0.00 0.45 0.70 0.88 (( 0.85 0.15 0.73 280.00 92.00 2dmoist thenroom temp 0.55 23.00 0.55 1.40 1.51 9.60 17.90 21.50 29.90 25.00 0.32 0.60 0.72 Whiting(1989( 0.72 0.35 0.84 404.00 0.00 moist 0.40 25.00 < < < < < 31.00 38.10 0.00 < < 0.81 (( 0.72 0.35 0.84 373.00 0.00 moist 0.45 25.00 0.26 2.32 1.85 < < 28.10 34.60 25.00 < < 0.81 (( 0.72 0.35 0.84 302.00 101.00 moist 0.35 25.00 0.26 2.32 1.85 < < 31.00 42.10 25.00 < < 0.74 Whiting(1987( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 0.77 2.58 2.54 < 23.48 31.51 43.60 30.00 < 0.54 0.72
44 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 1.09 3.76 3.67 < 23.78 31.76 46.07 30.00 < 0.52 0.69 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.43 20.00 1.15 3.76 3.73 < 23.96 32.29 43.78 30.00 < 0.55 0.74 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.43 20.00 1.17 3.78 3.76 < 24.36 32.53 44.51 30.00 < 0.55 0.73 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.43 20.00 1.19 3.51 3.59 < 24.66 31.90 44.86 30.00 < 0.55 0.71 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.46 20.00 1.14 3.46 3.51 < 23.12 30.99 43.17 30.00 < 0.54 0.72 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 1.38 3.25 3.61 < 24.52 31.49 44.46 30.00 < 0.55 0.71 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.43 20.00 0.82 3.72 3.37 < 24.33 31.90 45.24 30.00 < 0.54 0.71
45 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 0.99 3.81 3.60 < 26.85 35.03 48.52 30.00 < 0.55 0.72 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 0.98 2.39 2.62 < 28.36 37.26 50.35 30.00 < 0.56 0.74 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 1.15 2.66 2.97 < 20.33 27.89 40.81 30.00 < 0.50 0.68 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.46 20.00 1.19 3.69 3.72 < 24.44 33.36 45.19 30.00 < 0.54 0.74 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.46 20.00 1.24 3.39 3.56 < 24.22 32.13 43.07 30.00 < 0.56 0.75 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.44 20.00 1.66 2.25 3.20 < 28.01 32.41 50.02 30.00 < 0.56 0.65 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.42 20.00 1.37 2.35 2.98 < 28.51 37.55 51.41 30.00 < 0.55 0.73
46 (( 0.20 0.80 0.94 239.00 121.00 water immersed 0.45 20.00 1.49 2.66 3.31 < 28.21 36.69 52.36 30.00 < 0.54 0.70
47 Appendix(B( Mixture(ID( 1.070:PC 1.070:25F Cube( FrequI ency( (khz)( ResistI ance( (Ω)( Resistivity( (Ω m)( 1 1 268 13.4 Mortar(Cube(Test(Results( Average(Resistivity((((((((((((((((((((((( (Ω m)( 1(Day(( 3(Day( 7(Day( 28(day( ϕ(((((( ( )((((( Compressi Load(((((( ve( (kn)( Strength(((( (MPa)( 1 52 20.8 Average(Compressive( Strength(((((((((((((((((((( (MPa)( 2 1 240 12.0 12.4 1 51 20.4 20.5 1( Day(( 3( Day( 7( Day( 28( day( 3 1 233 11.7 1 51 20.4 4 1 516 25.8 1 69 27.6 5 1 523 26.2 25.4 1 68 27.2 26.9 6 1 485 24.3 1 65 26.0 7 1 575 28.8 1 74 29.6 8 1 566 28.3 28.3 1 80 32.0 30.7 9 1 555 27.8 1 76 30.4 10 1 749 37.5 1 90 36.0 11 1 732 36.6 37.1 1 87 34.8 12 1 744 37.2 1 85 34.0 1 1 183 9.2 1 37 14.8 2 1 186 9.3 9.2 1 38 15.2 15.2 34.9 3 1 180 9.0 1 39 15.6 4 1 327 16.4 16.7 1 54 21.6 21.5
48 1.070:S 1.070:S2 5 1 323 16.2 1 53 21.2 6 1 351 17.6 1 54 21.6 7 1 456 22.8 1 70 28.0 8 1 438 21.9 22.8 1 69 27.6 27.9 9 1 474 23.7 1 70 28.0 10 1 1250 62.5 0 106 42.4 11 1 1270 63.5 64.5 1 106 42.4 42.4 12 1 1350 67.5 1 106 42.4 1 1 149 7.5 2 19 7.60 2 1 141 7.1 7.1 2 18 7.20 7.30 3 1 137 6.9 2 18 7.20 4 1 270 13.5 1 42 16.8 5 1 257 12.9 13.3 1 39 15.6 15.9 6 1 268 13.4 1 38 15.2 7 1 541 27.1 1 60 24.0 8 1 511 25.6 26.2 1 63 25.2 23.9 9 1 521 26.1 1 56 22.4 10 1 2000 100.0 0 108 43.2 11 1 2010 100.5 99.3 0 109 43.6 44.5 12 1 1950 97.5 1 117 46.8 1 1 153 7.7 2 18 7.20 2 1 145 7.3 7.4 2 18 7.20 7.30 3 1 147 7.4 2 19 7.60 4 1 371 18.6 1 39 15.6 5 1 363 18.2 18.4 1 40 16.0 15.7 6 1 372 18.6 1 39 15.6 7 1 598 29.9 29.9 1 63 25.2 25.5
49 1.003:PC 1.003:25F 8 1 598 29.9 1 63 25.2 9 1 597 29.9 1 65 26.0 10 1 1670 83.5 1 116 46.4 11 1 1700 85.0 84.8 0 115 46.0 47.3 12 1 1720 86.0 0 124 49.6 1 1 375 18.8 1 54 21.6 2 1 361 18.1 18.3 1 53 21.2 21.3 3 1 361 18.1 1 53 21.2 4 1 560 28.0 1 74 29.6 5 1 577 28.9 28.3 1 73 29.2 30.1 6 1 561 28.1 1 79 31.6 7 1 744 37.2 0 100 40.0 8 1 725 36.3 37.5 0 101 40.4 40.4 9 1 780 39.0 0 102 40.8 10 1 933 46.7 0 130 52.0 11 1 937 46.9 47.0 0 129 51.6 52.1 12 1 952 47.6 0 132 52.8 1 1 304 15.2 1 48.5 19.4 2 1 341 17.1 16.5 1 49 19.6 19.4 3 1 345 17.3 1 48 19.2 4 1 591 29.6 1 73 29.2 5 1 573 28.7 29.1 1 71.5 28.6 28.4 6 1 582 29.1 1 68.5 27.4 7 1 935 46.8 1 90 36.0 8 1 1006 50.3 49.0 1 87 34.8 35.2 9 1 1001 50.1 1 87 34.8 10 1 2080 104.0 101.8 0 123 49.2 50.5