28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Σχετικά έγγραφα
28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Spherical Coordinates

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

CURVILINEAR COORDINATES

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Homework 8 Model Solution Section

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

derivation of the Laplacian from rectangular to spherical coordinates

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Areas and Lengths in Polar Coordinates

Parametrized Surfaces

Areas and Lengths in Polar Coordinates

Approximation of distance between locations on earth given by latitude and longitude

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Strain gauge and rosettes

2 Composition. Invertible Mappings

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Second Order Partial Differential Equations

EE512: Error Control Coding

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Reminders: linear functions

Answer sheet: Third Midterm for Math 2339

Section 8.3 Trigonometric Equations

( ) 2 and compare to M.

Matrices and Determinants

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Solutions to Exercise Sheet 5

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Math221: HW# 1 solutions

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Section 7.6 Double and Half Angle Formulas

Homework 3 Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Example Sheet 3 Solutions

The Simply Typed Lambda Calculus

Srednicki Chapter 55

4.6 Autoregressive Moving Average Model ARMA(1,1)

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

CYLINDRICAL & SPHERICAL COORDINATES

Section 9.2 Polar Equations and Graphs

Orbital angular momentum and the spherical harmonics

Numerical Analysis FMN011

Section 8.2 Graphs of Polar Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

D Alembert s Solution to the Wave Equation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

[1] P Q. Fig. 3.1

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

the total number of electrons passing through the lamp.


CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CRASH COURSE IN PRECALCULUS

Variational Wavefunction for the Helium Atom

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ST5224: Advanced Statistical Theory II

Inverse trigonometric functions & General Solution of Trigonometric Equations

1 String with massive end-points

Tutorial problem set 6,

PARTIAL NOTES for 6.1 Trigonometric Identities

F-TF Sum and Difference angle

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

w o = R 1 p. (1) R = p =. = 1

(As on April 16, 2002 no changes since Dec 24.)

Laplace s Equation on a Sphere

Lecture 6 Mohr s Circle for Plane Stress

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Finite Field Problems: Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Second Order RLC Filters

Derivations of Useful Trigonometric Identities

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Trigonometric Formula Sheet

Capacitors - Capacitance, Charge and Potential Difference

C.S. 430 Assignment 6, Sample Solutions

( y) Partial Differential Equations

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Concrete Mathematics Exercises from 30 September 2016

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

6.3 Forecasting ARMA processes

Transcript:

Orthogonal Curvilinear Coordinates 28.3 Introduction The derivatives div, grad and curl from Section 28.2 can be carried out using coordinate systems other than the rectangular Cartesian coordinates. This Section shows how to calculate these derivatives in other coordinate systems. Two coordinate systems - cylindrical polar coordinates and spherical polar coordinates - will be illustrated. Prerequisites Before starting this Section you should... Learning Outcomes On completion you should be able to... be able to find the gradient, divergence and curl of a field in Cartesian coordinates be familiar with polar coordinates find the divergence, gradient or curl of a vector or scalar field expressed in terms of orthogonal curvilinear coordinates 37

. Orthogonal curvilinear coordinates The results shown in Section 28.2 have been given in terms of the familiar Cartesian (x, y, z) coordinate system. However, other coordinate systems can be used to better describe some physical situations. A set of coordinates u u(x, y, z), v v(x, y, z) and w w(x, y, z) where the directions at any point indicated by u, v and w are orthogonal (perpendicular) to each other is referred to as a set of orthogonal curvilinear coordinates. With each coordinate is associated a scale factor h u, h v or h w respectively where h u ( x u ) 2 + ( y u ) 2 + ( z u) 2 (with similar expressions for hv and h w ). The scale factor gives a measure of how a change in the coordinate changes the position of a point. Two commonly-used sets of orthogonal curvilinear coordinates are cylindrical polar coordinates and spherical polar coordinates. These are similar to the plane polar coordinates introduced in 7.2 but represent extensions to three dimensions. Cylindrical polar coordinates This corresponds to plane polar (, φ) coordinates with an added z-coordinate directed out of the xy plane. Normally the variables and φ are used instead of r and θ to give the three coordinates, φ and z. A cylinder has equation constant. The relationship between the coordinate systems is given by x cos φ y sin φ z z (i.e. the same z is used by the two coordinate systems). See Figure 20(a). z z ˆk ˆφ (x, y, z) (x, y, z) ˆ φ y φ y (a) x (b) x Figure 20: Cylindrical polar coordinates The scale factors h, h φ and h z are given as follows (x ) 2 ( ) 2 ( ) 2 y z h + + (cos φ) 2 + (sin φ) 2 + 0 (x ) 2 ( ) 2 ( ) 2 y z h φ + + ( sin φ) φ φ φ 2 + ( cos φ) 2 + 0 (x ) 2 ( ) 2 ( ) 2 y z h z + + (0 z z z 2 + 0 2 + 2 ) 38 Workbook 28: Differential Vector Calculus

Spherical polar coordinates In this system a point is referred to by its distance from the origin r and two angles φ and θ. The angle θ is the angle between the positive z-axis and the line from the origin to the point. The angle φ is the angle from the x-axis to the projection of the point in the xy plane. A useful analogy is of latitude, longitude and height on Earth. The variable r plays the role of height (but height measured above the centre of Earth rather than from the surface). The variable θ plays the role of latitude but is modified so that θ 0 represents the North Pole, θ 90 π 2 represents the equator and θ 80 π represents the South Pole. The variable φ plays the role of longitude. A sphere has equation r constant. The relationship between the coordinate systems is given by x r sin θ cos φ y r sin θ sin φ z r cos θ. See Figure 2. z (x, y, z) θ r φ y x, Figure 2: Spherical polar coordinates The scale factors h r, h θ and h φ are given by (x ) 2 ( ) 2 ( ) 2 y z h r + + (sin θ cos φ) r r r 2 + (sin θ sin φ) 2 + (cos θ) 2 (x ) 2 ( ) 2 ( ) 2 y z h θ + + (r cos θ cos φ) θ θ θ 2 + (r cos θ sin φ) 2 + ( r sin θ) 2 r (x ) 2 ( ) 2 ( ) 2 y z h φ + + ( r sin θ sin φ) φ φ φ 2 + (r sin θ cos φ) 2 + 0 r sin θ 39

2. Vector derivatives in orthogonal coordinates Given an orthogonal coordinate system u, v, w with unit vectors û, ˆv and ŵ and scale factors, h u, h v and h w, it is possible to find the derivatives f, F and F. It is found that grad f f h u f uû + h v f v ˆv + h w f w ŵ If F F u û + F vˆv + F w ŵ then div F F h u h v h w u (F uh v h w ) + v (F vh u h w ) + ] w (F wh u h v ) Also if F F u û + F vˆv + F w ŵ then h u û h vˆv h w ŵ curl F F h u h v h w u v w h u F u h v F v h w F w Key Point 6 In orthogonal curvilinear coordinates, the vector derivatives f, F and F include the scale factors h u, h v and h w. 3. Cylindrical polar coordinates In cylindrical polar coordinates (, φ, z), the three unit vectors are ˆ, ˆφ and ẑ (see Figure 20(b) on page 38) with scale factors h, h φ, h z. The quantities and φ are related to x and y by x cos φ and y sin φ. The unit vectors are ˆ cos φi + sin φj and ˆφ sin φi + cos φj. In cylindrical polar coordinates, grad f f f ˆ + f φ ˆφ + f z ẑ The scale factor is necessary in the φ-component because the derivatives with respect to φ are distorted by the distance from the axis 0. 40 Workbook 28: Differential Vector Calculus

If F F ˆ + F φ ˆφ + Fz ẑ then div F F (F ) + φ (F φ) + ] z (F z) ˆ ˆφ ẑ curl F F φ z. F F φ F z Example 20 Working in cylindrical polar coordinates, find f for f 2 + z 2 Solution If f 2 + z 2 then f 2,f φ 0 andf z 2z so f 2ˆ + 2zẑ. Example 2 Working in cylindrical polar coordinates find (a) f for f 3 sin φ (b) Show that the result for (a) is consistent with that found working in Cartesian coordinates. Solution (a) If f 3 sin φ then f 32 sin φ, f φ 3 cos φ and f z f 3 2 sin φˆ + 2 cos φ ˆφ. 0 and hence, (b) f 3 sin φ 2 sin φ (x 2 + y 2 )y x 2 y + y 3 so f 2xyi + (x 2 + 3y 2 )j. Using cylindrical polar coordinates, from (a) we have f 3 2 sin φˆ + 2 cos φ ˆφ 3 2 sin φ(cos φi + sin φj) + 2 cos φ( sin φi + cos φj) 3 2 sin φ cos φ 2 sin φ cos φ ] i + 3 2 sin 2 φ + 2 cos 2 φ ] j 2 2 sin φ cos φ ] i + 3 2 sin 2 φ + 2 cos 2 φ ] j 2xyi + (3y 2 + x 2 )j So the results using Cartesian and cylindrical polar coordinates are consistent. 4

Example 22 Find F for F F ˆ + F φ ˆφ + Fz ẑ 3 ˆ + z ˆφ + z sin φẑ. Show that the results are consistent with those found using Cartesian coordinates. Solution Here, F 3, F φ z and F z z sin φ so F (F ) + φ (F φ) + ] z (F z) (4 ) + φ (z) + ] z (2 z sin φ) 4 3 + 0 + 2 sin φ ] 4 2 + sin φ Converting to Cartesian coordinates, F F ˆ + F φ ˆφ + Fz ẑ 3 ˆ + z ˆφ + z sin φẑ 3 (cos φi + sin φj) + z( sin φi + cos φj) + z sin φk ( 3 cos φ z sin φ)i + ( 3 sin φ + z cos φ)j + z sin φk 2 ( cos φ) sin φz ] i + 2 ( sin φ) + cos φz ] j + sin φzk (x 2 + y 2 )x yz ] i + (x 2 + y 2 )y + xz ] j + yzk (x 3 + xy 2 yz)i + (x 2 y + y 3 + xz)j + yzk So F x (x3 + xy 2 yz) + y (x2 y + y 3 + xz) + z (yz) (3x 2 + y 2 ) + (x 2 + 3y 2 ) + y 4x 2 + 4y 2 + y 4(x 2 + y 2 ) + y 4 2 + sin φ So F is the same in both coordinate systems. 42 Workbook 28: Differential Vector Calculus

Example 23 Find F for F 2 ˆ + z sin φ ˆφ + 2z cos φẑ. Solution ˆ ˆφ ẑ F φ z F F φ F z ˆ ˆ ˆφ ẑ φ (2z cos φ) (z sin φ) z φ z 2 z sin φ 2z cos φ ] + ˆφ ˆ( 2z sin φ sin φ) + ˆφ(0) + ẑ(z sin φ) (2z sin φ + sin φ) ˆ + z sin φ ẑ z 2 (2z cos φ) ] ] +ẑ ]] (z sin φ) φ 2 Engineering Example 2 Divergence of a magnetic field Introduction A magnetic field B must satisfy B 0. An associated current is given by: I ( B) µ 0 Problem in words For the magnetic field (in cylindrical polar coordinates, φ, z) B B 0 + ˆφ + αẑ 2 show that the divergence of B is zero and find the associated current. Mathematical statement of problem We must (a) show that B 0 (b) find the current I ( B) µ 0 43

Mathematical analysis (a) Express B as (B, B φ, B z ); then B (B ) + φ (B φ) + ] z (B z) (0) + ( ) B 0 + z ] φ + (α) 2 0 + 0 + 0] 0 as required. (b) To find the current evaluate Interpretation I µ 0 ( B) µ 0 µ 0 µ 0 B 0 ˆ ˆφ ẑ ˆ ˆφ ẑ φ z φ z B B φ B z 2 0 B 0 α + 2 ( ) ] 0ˆ + 0 ˆφ 2 + B 0 ẑ + 2 2 ( + 2 ) 2 ] ẑ 2B 0 µ 0 ( + 2 ) 2 ẑ The magnetic field is in the form of a helix with the current pointing along its axis (Fig 22). Such an arrangement is often used for the magnetic containment of charged particles in a fusion reactor. Figure 22: The magnetic field forms a helix 44 Workbook 28: Differential Vector Calculus

Example 24 A magnetic field B is given by B 2 ˆφ + kẑ. Find B and B. Solution B (0) + φ ( 2 ) + ] z (k) 0 + 0 + 0] 0 ˆ ˆφ ẑ ˆ ˆφ ẑ B φ z φ z B B φ B z 0 k 3 ẑ All magnetic fields satisfy B 0 i.e. an absence of magnetic monopoles. Note that there is a class of magnetic fields known as potential fields that satisfy B 0 Task Using cylindrical polar coordinates, find f for f 2 z sin φ 2 z sin φ]ˆ + φ 2 z sin φ] ˆφ + z 2 z sin φ]ẑ 2z sin φˆ + z cos φ ˆφ + 2 sin φẑ 45

Task Using cylindrical polar coordinates, find f for f z sin 2φ z sin 2φ]ˆ + φ z sin 2φ] ˆφ + z z sin 2φ]ẑ 2 z cos 2φ ˆφ + sin 2φẑ Task Find F for F cos φˆ sin φ ˆφ + zẑ i.e. F cos φ, F φ sin φ, F z z (a) First find the derivatives F ], φ F φ], z F z]: 2 cos φ, cos φ, 2 (b) Now combine these to find F : 46 Workbook 28: Differential Vector Calculus

F (F ) + φ (F φ) + ] z (F z) (2 cos φ) + φ ( sin φ) + ] z (2 z) ] 2 cos φ cos φ + 2 cos φ + Task Find F for F F ˆ + F φ ˆφ + Fz ẑ 3 ˆ + z ˆφ + z sin φẑ. Show that the results are consistent with those found using Cartesian coordinates. (a) Find the curl F : ˆ ˆφ ẑ φ z 3 2 z z sin φ (z cos φ )ˆ z sin φ ˆφ + 2zẑ (b) Find F in Cartesian coordinates: Use ˆ cos φi+sin φj, ˆφ sin φi+cos φj to get F (x 3 +xy 2 yz)i+(x 2 y +y 3 +xz)j +yzk (c) Hence find F in Cartesian coordinates: (z x)i yj + 2zk 47

(d) Using ˆ cos φi + sin φj and ˆφ sin φi + cos φj, show that the solution to part (a) is equal to the solution for part (c): (z cos φ ) ˆ z sin φ ˆφ+2z ẑ (z cos φ )(cos φ i+sin φ j) z sin φ( sin φ i+cos φ j)+2z k zcos 2 φ cos φ + zsin 2 φ] i + zcos φsin φ sin φ zsin φcos φ] j + 2z k z cos φ] i sin φ j + 2z k (z x) i y j + 2z k Exercises. For F ˆ + ( sin φ + z) ˆφ + zẑ, find F and F. 2. For f 2 z 2 cos 2φ, find ( f). s. 2 + cos φ +, ˆ z ˆφ + (2 sin φ + z ) ẑ 2. 0 4. Spherical polar coordinates In spherical polar coordinates (r, θ, φ), the 3 unit vectors are ˆr, ˆθ and ˆφ with scale factors h r, h θ r, h φ r sin θ. The quantities r, θ and φ are related to x, y and z by x r sin θ cos φ, y r sin θ sin φ and z r cos θ. In spherical polar coordinates, grad f f f r ˆr + f r θ ˆθ + f r sin θ φ ˆφ If F F rˆr + F θ ˆθ + Fφ ˆφ then div F F curl F F r (r2 sin θf r ) + θ (r sin θf θ) + ˆr rˆθ r sin θ ˆφ r θ φ F r rf θ r sin θf φ ] φ (rf φ) 48 Workbook 28: Differential Vector Calculus

Example 25 In spherical polar coordinates, find f for (a) f r (b) f (c) f r 2 sin(φ + θ) r Note: parts (a) and (b) relate to Exercises 2(a) and 2(c) on page 22.] Solution (a) f f r ˆr + f r θ ˆθ + (r) r ˆr + r ˆr ˆr f φ ˆφ r sin θ (r) θ ˆθ + r sin θ (r) φ ˆφ (b) f f r ˆr + f r θ ˆθ + ( r ) r ˆr + r r 2 ˆr f φ ˆφ r sin θ ( ) r θ ˆθ + r sin θ ( r ) φ ˆφ (c) f f r ˆr + f r θ ˆθ + f r sin θ φ ˆφ (r sin(φ + θ)) ˆr + r r (r sin(φ + θ)) ˆθ + θ r sin θ (r 2 sin(φ + θ)) φ 2r sin(φ + θ)ˆr + r r2 cos(φ + θ)ˆθ + r sin θ r2 cos(φ + θ) ˆφ 2r sin(φ + θ)ˆr + r cos(φ + θ)ˆθ + r cos(φ + θ) sin θ ˆφ ˆφ 49

Engineering Example 3 Electric potential Introduction There is a scalar quantity V, called the electric potential, which satisfies V E where E is the electric field. It is often easier to handle scalar fields rather than vector fields. It is therefore convenient to work with V and then derive E from it. Problem in words Given the electric potential, find the electric field. Mathematical statement of problem For a point charge, Q, the potential V is given by V Q 4πɛ 0 r Verify, using spherical polar coordinates, that E V Mathematical analysis In spherical polar coordinates: V V r ˆr + V r θ ˆθ + V r sin θ φ ˆφ Interpretation So E V r ˆr r as the other partial derivatives are zero ] Q ˆr 4πɛ 0 r Q 4πɛ 0 r 2 ˆr Q 4πɛ 0 r 2 ˆr as required. Q 4πɛ 0 r 2 ˆr This is a form of Coulomb s Law. A positive charge will experience a positive repulsion radially outwards in the field of another positive charge. 50 Workbook 28: Differential Vector Calculus

Example 26 Using spherical polar coordinates, find F for the following vector functions. (a) F rˆr (b) F ˆr (c) F r sin θ ˆr +r 2 sin φ ˆθ +r cos θ ˆφ Solution (a) F r (r2 sin θf r ) + θ (r sin θf θ) + ] φ (rf φ) r (r2 sin θ r) + ] (r sin θ 0) + (r 0) θ φ r (r3 sin θ) + θ (0) + ] φ (0) 3 + 0 + 0 ] 3 (b) Note :- in Cartesian coordinates, the corresponding vector is F xi + yj + zk with F + + 3 (hence consistency). F r (r2 sin θ F r ) + θ (r sin θ F θ) + ] φ (rf φ) r (r2 sin θ ) + ] (r sin θ 0) + (r 0) θ φ r (r4 sin 2 θ) + θ (0) + ] φ (0) 4r 3 sin 2 θ + 0 + 0 ] 4r sin θ (c) F r (r2 sin θ F r ) + θ (r sin θ F θ) + ] φ (rf φ) r (r2 sin θ r sin θ) + θ (r sin θ r2 sin φ) + ] (r r cos θ) φ r (r3 sin 2 θ) + θ (r3 sin θ sin φ) + ] φ (r2 cos θ) 3r 2 sin 2 θ + r 3 cos θ sin φ + 0 ] 3 sin θ + r cot θ sin φ 5

Example 27 Using spherical polar coordinates, find F for the following vector fields F. (a) F r kˆr, where k is a constant (b) F r 2 cos θ ˆr + sin θ ˆθ + sin 2 θ ˆφ Solution (a) F ˆr rˆθ r sin θ ˆφ r θ φ F r rf θ r sin θf φ ˆr rˆθ r sin θ ˆφ r θ φ r k r 0 r sin θ 0 ( θ (0) ) φ (0) ˆr + ( + r (0) ) ] θ (rk ) r sin θ ˆφ 0 ˆr + 0 ˆθ + 0 ˆφ 0 ( φ (rk ) r (0) ) rˆθ (b) F ˆr rˆθ r sin θ ˆφ ˆr rˆθ r sin θ ˆφ r θ φ r θ φ F r rf θ r sin θf φ r 2 cos θ r sin θ r sin θ sin 2 θ ( θ (r sin3 θ) ) ( (r sin θ) ˆr + φ φ (r2 cos θ) ) r (r sin3 θ) rˆθ ( + r (r sin θ) ) ] θ (r2 cos θ) r sin θ ˆφ (3r sin 2 θ cos θ + 0 ) ˆr + ( 0 sin 3 θ ) rˆθ + ( sin θ + ) ˆφ] r sin θ 3 sin θ cos θ ˆr sin2 θ ˆθ + ( + r2 ) sin θ r r r ˆφ 52 Workbook 28: Differential Vector Calculus

Task Using spherical polar coordinates, find f for (a) f r 4 (b) f r r 2 + (c) f r 2 sin 2θ cos φ (a) 4r 3ˆr, (b) r 2 ( + r 2 ) 2 ˆr, (c) r (r2 sin 2θ cos φ)ˆr + r θ (r2 sin 2θ cos φ) ˆφ + r sin θ φ (r2 sin 2θ cos φ) 2r sin 2θ cos φ ˆr + 2r cos 2θ cos φ ˆθ 2r cos θ sin φ ˆφ Exercises. For F r sin θˆr + r cos φˆθ + r sin φ ˆφ, find F and F. 2. For F r 4 cos θˆr + r 4 sin θˆθ, find F and F. 3. For F r 2 cos θˆr + cos φˆθ find ( F ). s. cos φ(cot θ + cosecθ) + 3 sin θ, cot θ 2 sin φˆr 2 sin φˆθ + (2 cos φ cos θ) ˆφ 2. 0, 2r 5 sin θ ˆφ 3. 0 53