Kinetic Space Plasma Turbulence

Σχετικά έγγραφα
6.4 Superposition of Linear Plane Progressive Waves

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

4.4 Superposition of Linear Plane Progressive Waves

Forced Pendulum Numerical approach

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

D Alembert s Solution to the Wave Equation

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Derivation of Optical-Bloch Equations

Srednicki Chapter 55

Finite Field Problems: Solutions


The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Second Order Partial Differential Equations

Section 8.3 Trigonometric Equations

Numerical Analysis FMN011

4.6 Autoregressive Moving Average Model ARMA(1,1)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Low Frequency Plasma Conductivity in the Average-Atom Approximation

3+1 Splitting of the Generalized Harmonic Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Variational Wavefunction for the Helium Atom

ST5224: Advanced Statistical Theory II

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Homework 3 Solutions

w o = R 1 p. (1) R = p =. = 1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Probability and Random Processes (Part II)

2 Composition. Invertible Mappings

derivation of the Laplacian from rectangular to spherical coordinates

Oscillatory Gap Damping

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

1 String with massive end-points

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Local Approximation with Kernels

Approximation of distance between locations on earth given by latitude and longitude

Example Sheet 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Math221: HW# 1 solutions

Lifting Entry (continued)

Dr. D. Dinev, Department of Structural Mechanics, UACEG

CRASH COURSE IN PRECALCULUS

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

linear motions: surge, sway, and heave rotations: roll, pitch, and yaw

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 21: Scattering and FGR

[1] P Q. Fig. 3.1

Graded Refractive-Index

Areas and Lengths in Polar Coordinates

Homework 8 Model Solution Section

What happens when two or more waves overlap in a certain region of space at the same time?

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

1 (a) The kinetic energy of the rolling cylinder is. a(θ φ)

Note: Please use the actual date you accessed this material in your citation.

Areas and Lengths in Polar Coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

CE 530 Molecular Simulation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Differential equations

Uniform Convergence of Fourier Series Michael Taylor

Lecture 26: Circular domains

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Concrete Mathematics Exercises from 30 September 2016

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

( y) Partial Differential Equations

6.3 Forecasting ARMA processes

[Note] Geodesic equation for scalar, vector and tensor perturbations

Math 6 SL Probability Distributions Practice Test Mark Scheme

Matrices and Determinants

Part 4 RAYLEIGH AND LAMB WAVES

Inverse trigonometric functions & General Solution of Trigonometric Equations

Haddow s Experiment:

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

( ) 2 and compare to M.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

C.S. 430 Assignment 6, Sample Solutions

Second Order RLC Filters

PARTIAL NOTES for 6.1 Trigonometric Identities

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Optical Feedback Cooling in Optomechanical Systems

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Transcript:

Kinetic Space Plasma Turbulence PETER H. YOON 8the East-Asia School and Workshop on Laboratory, Space, and Astrophysical Plasmas July 30 (Mon) 2018 - August 3 (Fri) 2018, Chungnam National University, Korea

Motivation Nonthermal charged particle distribution function in space Kappa f Max e v2 /vt 2 1 f kappa (1 + v 2 /κvt 2 )κ+1 Maxwell

Motivation Solar flare-generated radio bursts

Fundamentals of Plasma Kinetic Theory 1D, field-free electrostatic Vlasov-Poisson equation ( t + v x + e ) ae f a = 0, m a v E x = 4πˆn e a dv f a. a Separation into Average and Fluctuation f a (x, v, t) = F a (v, t) + δf a (x, v, t), E(x, t) = δe(x, t). Rewrite the equations ( t + e a δe ) ( F a + m a v t + v x + e a δe ) δf a = 0, m a v x δe = 4πˆn e a dv δf a. a

Random phase approximation < δf a >= 0, < δe >= 0. Stationary and homogeneous turbulence, < δf a (x, v, t) δf b (x, v, t ) >= g( x x, t t, v, v ).

( t + e a δe ) ( F a + m a v t + v x + e a δe ) δf a = 0, m a v Upon averaging we have the formal particle kinetic equation F a t = e a m a v δf a δe. Inserting to the original equation, we obtain the equation for the perturbed distribution, ( t + v ) δf a = e a δe F a x m a v e a m a v (δf a δe < δf a δe >).

Fourier-Laplace transformation: δf a (x, v, t) = δf a kω(v, t) = δe(x, t) = δe kω (t) = dk 1 (2π) 2 dk 1 (2π) 2 L (slow time) dω δf a kω(v, t) e ikx iωt, dx 0 dt δf a (x, v, t) e ikx+iωt, dω δe kω (t) e ikx iωt, L dx dt δe(x, t) e ikx+iωt, where L = ( + iσ, + + iσ) (σ > 0 and σ 0: causality). 0

δe kω (t) = i 4πˆne a dv δf k kω(v, a t), a F a (v, t) = e a dk dω t m a v < δe k, ω(t) δfkω(v, a t) >, ( ω kv + i ) δf a t kω(v, t) = i e a δe kω (t) F a(v, t) m a v i e a dk dω [ δek ω m a v (t) δf k k a ω ω (v, t) < δe k ω (t) δf k k a,ω ω (v, t) >].

Absorb slow time into ω (short-cut trick), Short-hand notations: ω + i t ω. K = (k, ω), E K = δe kω, f K = δfkω, a F = F a, dk = dk dω, g K = i e a m a 1 ω kv + i0 v. Equation for the perturbed particle distribution: f K = g K F E K + dk g K (E K f K K < E K f K K >).

Iterative solution: f K = f (1) K + f (2) (n) K +, (f K En K). f (1) K = g K F E K, f (2) K = dk g K (E K f (1) K K < E K f (1) K K >) = dk g K g K K F (E K E K K < E K E K K >). More simplified notations: = dk 1 dk 2 δ(k 1 + K 2 K), 1+2=K E 1 = E K1, E 2 = E K2, g 1 = g K1, g 2 = g K2.

Iterative solution for f K f K = g K F E K + Symmetrized version f K = g K F E K + 1+2=K 1+2=K g K g 2 F (E 1 E 2 < E 1 E 2 >). 1 2 g 1+2 (g 1 + g 2 ) F (E 1 E 2 < E 1 E 2 >). Insert f K to Poisson equation, E K = i a 4πˆne a k dv f K.

Linear and nonlinear susceptibility response functions, ɛ(k) = 1 + i 4πe aˆn dv g K F, k a χ (2) a (1 2) = i 4πe aˆn dv g 1+2 (g 1 + g 2 ) F. 2 k 1 + k 2 or explicitly ɛ(k) = 1 + a χ (2) (1 2) = i 2 a [( v ωpa 2 F a / v dv k ω kv + i0, ωpa 2 1 dv k 1 + k 2 ω 1 + ω 2 (k 1 + k 2 ) v + i0 ) ] 1 ω 1 k 1 v + i0 + 1 Fa. ω 2 k 2 v + i0 v e a m a

0 = ɛ(k) E K + 1+2=K χ (2) (1 2) (E 1 E 2 < E 1 E 2 >). Multiply E K and take ensemble average 0 = ɛ(k) < E K E K > + χ (2) (1 2) < E 1 E 2 E K >. 1+2=K Homogeneous and stationary turbulence (and spectral representation), < E(x, t) E(x, t ) >=< E 2 > x x,t t, < E kω E k ω >= δ(k + k ) δ(ω + ω ) < E 2 > kω. 0 = ɛ(k) < E 2 > K + χ (2) (1 2) < E 1 E 2 E K >. 1+2=K

Closure of Hierarchy If E K is linear eigenmode, then ɛ(k) E K = 0, and < E 1 E 2 E K >= 0, but for nonlinear system we write E K = E (0) K + E(1) K, where ɛ(k) E(0) K = 0. Then E (1) K 1 ( ) dk χ (2) (K K K ) E (0) K ɛ(k) E(0) K K < E(0) K E(0) K K >. Three-body correlation, < E K E K K E K > < E (0) K E (0) K K E (0) K }{{ > } + < E(1) 0 K E (0) K K E (0) K > + < E (0) K E (1) K K E (0) K > + < E(0) K E (0) K K E (1) K >.

< E K E K K E K >= 1 dk χ (2) (K K K ) ɛ(k ) ( E K E K K E K K E K E K E K K E K K E K ) 1 dk χ (2) (K K K K ) ɛ(k K ) ( E K E K K K E K E K E K E K K K E K E K ) 1 dk χ (2) ( K K + K ) ɛ( K) ( E K E K K E K E K+K E K E K K E K E K+K ). where we dropped the superscript (0). To obtain < E 3 > one needs < E 4 >.

For homogeneous and stationary turbulence, < E K E K E K E K >= δ(k + K + K + K ) Useful symmetry relations: [ δ(k + K ) < E 2 > K < E 2 > K +δ(k + K ) < E 2 > K < E 2 > K + δ(k + K ) < E 2 > K < E 2 > K ] + < E 4 > K;K+K ;K+K +K. χ (2) ( 1 2) = χ (2) (1 2), χ (2) (1 2) = χ (2) (2 1), χ (2) (1 2) = χ (2) (2 1) = χ (2) (1 + 2 2).

Three-body cumulants: < E K E K K E K > = 2χ(2) (K K K ) ɛ(k ) + 2χ(2) (K K K ) ɛ(k K ) 2χ(2) (K K K ) ɛ (K) < E 2 > K K < E 2 > K < E 2 > K < E 2 > K < E 2 > K < E 2 > K K.

Spectral balance equation 0 = ɛ(k) < E 2 > K ( {χ +2 dk (2) (K K K )} 2 ɛ(k < E 2 > K K < E 2 > K ) + {χ(2) (K K K )} 2 ɛ(k K ) χ(2) (K K K ) 2 ɛ (K) < E 2 > K < E 2 > K < E 2 > K < E 2 > K K ).

Formal Wave Kinetic Equation Reintroduce the slow time dependence, ω ω + i t. This leads to ( ɛ(k, ω) < E 2 > kω ɛ k, ω + i ) < E 2 > kω t ( ɛ(k, ω) + i ) ɛ(k, ω) < E 2 > kω. 2 ω t

0 = i ɛ(k, ω) 2 ω t < E2 > kω +ɛ(k, ω) < E 2 > kω ( + 2 dk dω {χ (2) (k, ω k k, ω ω )} 2 ɛ(k, ω ) E 2 k k,ω ω E 2 kω + {χ(2) (k, ω k k, ω ω )} 2 ɛ(k k, ω ω ) χ(2) (k, ω k k, ω ω ) 2 ɛ (k, ω) E 2 k ω E 2 kω E 2 k ω E 2 ) k k,ω ω Real part leads to the dispersion relation, and imaginary part leads to the wave kinetic equation..

Particle kinetic equation For particles, leading order perturbed distribution is sufficient, F a = e a dk t m a v < E K fk a >, where F a t = Re i e2 a m 2 a f K = f (1) K + f (2) K +. dk dω v < E2 > kω F a ω kv + i0 v.

Particle Kinetic Equation F a t = Re i e2 a m 2 a v dk dω < E2 > kω F a ω kv + i0 v. Dispersion Relation Re ɛ(k, ω) < E 2 > kω = 0. For dispersion relation nonlinear terms are ignored.

Wave Kinetic Equation t < 2 Im ɛ(k, ω) E2 > kω = Re ɛ(k, ω)/ ω < E2 > kω 4 Re ɛ(k, ω)/ ω Im dk dω [ ( < E {χ (2) (k, ω k k, ω ω )} 2 2 > k k,ω ω ɛ(k, ω ) + < ) E2 > k ω ɛ(k k, ω ω < E 2 > kω ) χ(2) (k, ω k k, ω ω ) 2 ] ɛ < E 2 > k (k, ω) ω < E2 > k k,ω ω.

Linear and Nonlinear Suceptibilities χ a (k, ω) = ω2 pa k χ (2) a dv F a / v ω kv + i0, (k 1, ω 1 k 2, ω 2 ) = i e a ω 2 pa 2 m a k 1 + k 2 1 ω 1 + ω 2 (k 1 + k 2 )v + i0 v ( Fa / v ω 2 k 2 v + i0 + F a / v ω 1 k 1 v + i0 dv ).

Partial integrations, χ a (k, ω) = ω 2 pa dv F a (ω kv + i0) 2. χ (2) a (k 1, ω 1 k 2, ω 2 ) = k 1 k 2 (k 1 + k 2 ) dv F a (ω 1 k 1 v)(ω 2 k 2 v) ( 1 k 1 ω 1 + ω 2 (k 1 + k 2 )v ω 1 k 1 v ), + k 2 ω 2 k 2 v + k 1 + k 2 ω 1 + ω 2 (k 1 + k 2 )v where the small positive imaginary parts +i0 are implicit in the resonance denominators.

Symmetry Relations χ (2) (k 2, ω 2 k 1, ω 1 ) = χ (2) (k 1, ω 1 k 2, ω 2 ). ɛ( k, ω) = ɛ (k, ω), χ (2) ( k 1, ω 1 k 2, ω 2 ) = χ (2) (k 1, ω 1 k 2, ω 2 ). χ (2) (k 1, ω 1 k 2, ω 2 ) = χ (2) (k 2, ω 2 k 1, ω 1 ) = χ (2) (k 1 + k 2, ω 1 + ω 2 k 2, ω 2 ).

Linear Dielectric Susceptibility For fast wave ω kv a th, χ a (0, ω) = ω 2 pa/ω 2. ( ) χ a (k, ω) = ω2 pa ω 2 1 + 3k2 T a m a ω 2 iπ ω2 pa k dv F a v δ(ω kv). For slow wave ω kv a th χ a (k, ω) = 2ω2 pa k 2 vth a2 iπ ω2 pa k dv F a v δ(ω kv).

Nonlinear Susceptibility χ (2) a (0, ω 1 0, ω 2 ) = 0, χ (2) a (k 1, 0 k 2, 0) = ie a T a Fast-Wave Approximation ω 2 pa k 1 k 2 k 1 + k 2 ω 1 k 1 v a th, ω 2 k 2 v a th, ω 1 + ω 2 k 1 + k 2 v a th, 1 v a2 th. χ (2) a (k 1, ω 1 k 2, ω 2 ) = i 2 ( k1 e a m a ω 1 + k 2 ω 2 + k 1 + k 2 ω 1 + ω 2 ω 2 pa ω 1 ω 2 (ω 1 + ω 2 ) ).

Two Fast Waves and a Slow Wave ω 1 is arbitrary and ω 2 k 2 v a th, ω 1 + ω 2 k 1 + k 2 v a th, a (k 1, ω 1 k 2, ω 2 ) = i e a ωpa 2 2 m a ω 2 (ω 1 + ω 2 ) [k 2 dv F a/ v ω 1 k 1 v ( k2 + k ) ] 1 + k 2 F a ω 2 ω 1 + ω dv 2 ω 1 k 1 v, χ (2) where we have used the identity F a dv (ω 1 k 1 v) 2 = 1 k 1 dv F a/ v ω 1 k 1 v.

χ (2) e a a (k 1, ω 1 k 2, ω 2 ) = i k 1 2 m a ω 2 (ω 1 + ω 2 ) χ a(k 1, ω 1 ) e a ω 2 pa i 2 m a ω 2 (ω 1 + ω 2 ) ( 2 k 1 vth a2 iπ dv F ) a v δ(ω 1 k 1 v).

Re ɛ(k, ω) < E 2 > kω = 0, F a = Re i e2 a t m 2 dk dω < E2 > kω F a a v ω kv + i0 v, t < 2 Im ɛ(k, ω) E2 > kω = Re ɛ(k, ω)/ ω < E2 > kω 4 Re ɛ(k, ω)/ ω Im dk dω [ ( < E {χ (2) (k, ω k k, ω ω )} 2 2 > k k,ω ω ɛ(k, ω ) + < ) E2 > k ω ɛ(k k, ω ω < E 2 > kω ) ] χ(2) (k, ω k k, ω ω ) 2 ɛ < E 2 > k (k, ω) ω < E2 > k k,ω ω.

Re ɛ(k, ω) < E 2 > kω = 0, ω = ωk α (α = L, S). < E 2 > kω = [ I +α k δ(ω ωk α ) + I α k δ(ω + ωk α ) ] α = Ik σα δ(ω σωk α ). σ=±1 α

Langmuir (α = L) and ion-sound wave (α = S) ωk L = ω pe (1 + 3 ) ( 2 k2 λ 2 De = ω pe 1 + 3 k 2 v 2 ) T e 4 ωpe 2, ω k L = ωk L, ω S k = kc S (1 + 3T i /T e ) 1/2 (1 + k 2 λ 2 De )1/2, ω S k = ω S k. Particle kinetic equation, F a t D = πe2 a m 2 a ( D F a v = v σ=±1 α ), dk Ik σα δ(σωα k kv).

< E 2 > kω = σ=±1 α=l,s < E 2 > k ω = σ =±1 β=l,s < E 2 > k k,ω ω = I σα k δ(ω σω α k ), σ =±1 γ=l,s I σ β k δ(ω σ ω β k ), I σ γ k k δ(ω ω σ ω γ k k ). 1 ɛ(k, ω) = P 1 ɛ(k, ω) α=l,s σ=±1 1 ɛ (k, ω) = P 1 ɛ (k, ω) + α=l,s σ=±1 iπ δ(ω σωk α) Re ɛ(k, σωk α, )/ σωα k iπ δ(ω σωk α) Re ɛ(k, σωk α. )/ σωα k

Ik σα 2 Im ɛ(k, σωk α ) = t Re ɛ(k, σωk α)/ σωα k 4 Im dk Re ɛ(k, σωk α)/ σωα k + σ =±1 σ =±1 β γ I σα k P {χ(2) (k, σω α k σ ω γ k k k k, σ ω γ k k )} 2 ɛ(k, σω α k σ ω γ k k ) P {χ(2) (k, σ ω β k k k, σω α k σ ω β k )} 2 ɛ(k k, σω α k σ ω β k ) I σ β k ] Ik σα I σ γ k k I σα k

4π + Re ɛ(k, σωk α)/ σωα k σ,σ =±1 β,γ [ Im dk {χ (2) (k, σ ω β k k k, σ ω γ k k )} 2 ( I σ γ k k I σα k Re ɛ(k, σ ω β k )/ σ ω β + k + χ(2) (k, σ ω β k k k, σ ω γ k k ) 2 Re ɛ(k, σω α k )/ σωα k δ(σω α k σ ω β k σ ω γ k k ). I σ β k I σα k Re ɛ(k k, σ ω γ k k )/ σ ω γ k k ] I σ β k I σ γ k k )

Ik σl = 2 Im ɛ(k, σωl k ) t ɛ (k, σωk L) 4 ɛ (k, σωk L) Im 8π + ɛ (k, σωk L) σ =±1 σ,σ =±1 I σl k ( I σ L k Iσ S S k k ɛ (k, σωk L) Iσ k k IσL k ɛ (k, σ ω L k ) δ(σω L k σ ω L k σ ω S k k ) ], [ ] dk A σ,σ L,L (k, k ) I σ L k + Aσ,σ L,S (k, k ) I σ S k Ik σl dk [ χ (2) (k, σ ω L k k k, σω L k σ ω L k ) 2 I σ L k IσL k ɛ (k k, σ ω S k k ) )

I σs k t = 2 Im ɛ(k, σωs k ) ɛ (k, σωk S) 4 ɛ (k, σωk S) Im + 4π ɛ (k, σω S k ) σ =±1 σ,σ =±1 I σs k ( I σ L k Iσ L L k k ɛ (k, σωk S) Iσ k k IσS k ɛ (k, σ ω L k ) δ(σω S k σ ω L k σ ω L k k ) ], [ ] dk A σ,σ S,L (k, k ) I σ L k + Aσ,σ S,S (k, k ) I σ S k Ik σs dk [ χ (2) (k, σ ω L k k k, σω S k σ ω L k ) 2 I σ L k IσS k ɛ (k k, σ ω L k k ) ) A σ,σ α,β (k, k ) = 2 {χ (2) (k, σ ω β k k k, σω α k σ ω β k )} 2 P 1 ɛ(k k, σω α k σ ω β k ).

See the following references for details: P. H. Yoon, Generalized weak turbulence theory, POP, 7, 4858 (2000) L. F. Ziebell, R. Gaelzer, and P. H. Yoon, Nonlinear development of weak beam-plasma instability, POP, 8, 3982 (2001) P. H. Yoon, Effects of spontaneous fluctuations on the generalized weak turbulence theory, POP, 12, 042306 (2005) P. H. Yoon, T. Rhee, and C.-M. Ryu, Effects of spontaneous thermal fluctuations on nonlinear beam-plasma interaction, POP, 12, 062310 (2005)

Induced Emission: Linear Wave-Particle Resonance Ik σl t = π σωk L ind. emiss. Ik σs t = π µ k σωk L ind. emiss. µ k µ k = k 3 λ 3 De ω 2 pe k ω 2 pe k ( F e + me me dv δ(σω L k kv) Fe F i m i m i k, v IσL dv δ(σω S k kv) v ) I σs k µ k, 1 + 3Ti T e.

Decay/Coalescence: Nonlinear Three-Wave Resonance I σl k t [ = π decay 2 σω L k I σ L k e 2 σω L Te 2 k σ,σ =±1 I σ S k k µ k k ( σ ω L k δ(σω L k σ ω L k σ ω S k k ), dk µ k k (k k ) 2 I σ ) S k k + σ ω L L k k µ Iσ k Ik σl k k Ik σs t = π e 2 σω S decay µ k 4 Te 2 k dk µ k k 2 σ,σ =±1 [ ( σωk L I σ L L k Iσ k k σ ω L L k Iσ k k + σ ω L L k k Iσ k δ(σω S k σ ω L k σ ω L k k ). ) ] I σs k µ k ]

Induced Scattering: Nonlinear Wave-Particle Resonance I σl k t = σωk L scatt. π ω 2 pe e 2 m e m i σ =±1 dk (k k ) F i v δ[σωl k σ ωk L (k k ) v] Ik σ dv L IσL k.

Adding effects of spontaneous thermal fluctuation This tutorial is too short to discuss in detail but in general, induced processes must be balanced by spontaneous processes. F e t A i = = ( ) F e A i F e + D ij, v i v j e 2 dk k i 4πm e k 2 σωk L δ(σωk L k v), D ij = πe2 m 2 e dk k i k j k 2 σ=±1 σ=±1 δ(σω L k k v) I σl k.

Langmuir Wave Kinetic Equation I σl k t + 2 = πω2 pe k 2 σ,σ =±1 σω L k ˆn e2 dv δ(σωk L k v) π Fe }{{} dk π e 2 4 Te 2 spont. emission µ k k (k k ) 2 k 2 k 2 k k 2 + σωk L Ik σl }{{} δ(σωk L σ ω L k σ ω S k k ( ) ) σωk L I σ L S k Iσ k k }{{} σ ω L S k Iσ k k IσL k σ ω L L k k Iσ k IσL k }{{} spont. decay induced decay k Fe v induced emission

πe2 m 2 e ωpe 2 σ =±1 dk dv (k k ) 2 k 2 k 2 δ[σω L k σ ω L k (k k ) v] ˆn e2 σω L ( πωpe 2 k σ ω L k IσL k σωk L I σ L) k (Fe + F i) }{{} spontaneous scattering ( ) + I σ L k IσL k (k k ) (σωk L σ ω L me k ) Fe (σωk L ) F i. v m i }{{} induced scattering

Forward/backward-Ion-sound Wave Kinetic Equation I σs k t = πµ kω 2 pe k 2 ˆn e2 dv δ(σω S k k v) ( k (Fe + Fi) + σωk L Ik σs F i } π {{} v m i }{{} spont. emission σ,σ =±1 σω L k induced emission )( F e + me ) dk π e 2 µ k [k (k k )] 2 δ(σω S 4 Te 2 k 2 k 2 k k 2 k σ ω L k σ ω L k k ) ) ( σωk L I σ L L k Iσ k k }{{} σ ω L L k Iσ k k IσS k σ ω L L k k Iσ k IσS k }{{} spont. decay induced decay.

Beam-Plasma Instability and Langmuir Turbulence Quasi-stationary ions F i = e v2 /v 2 T i π 1/2 v T i. Initial beam plus background electron distribution F e (v, 0) = (1 δ) e v2 /v 2 T e π 1/2 v T e + δ e (v v0)2/v2 T e π 1/2 v T e.

Beam-Plasma Instability and Langmuir Turbulence

Beam-Plasma Instability and Langmuir Turbulence

Beam-Plasma Instability and Langmuir Turbulence

Beam-Plasma Instability and Langmuir Turbulence

Beam-Plasma Instability and Langmuir Turbulence

Beam-Plasma Instability and Langmuir Turbulence

Beam-Plasma Instability and Langmuir Turbulence f kappa 1 (1 + v 2 /κvt 2, κ = 2.25 )κ+1

Quiet Time Solar Wind Electrons f kappa 1 (1 + v 2 /κv 2 T )κ+1, FAST WIND e L SUN SLOW WIND EARTH As solar wind expands, f e approaches f κ with κ approaching κ 2.25.

Turbulent Equilibrium and Kappa Distribution

Turbulent Equilibrium and Kappa Distribution [ v 2 ] κ 1 f e (v) 1 + ( ) κ 3, 2 v 2 T e ( ) I(k) = T e κ 3 ω 2 pe 2 4π 2 1 + ( ) κ + 1 κ 3. 2 (kvt e ) 2 T e T i κ 3/2 κ + 1, and κ = 9 4 = 2.25.

Quiet Time Solar Wind Electron Distribution f(v) (s 3 m -6 ) 10-10 10-15 10-20 10-25 f(v) (s 3 m -6 ) 10-23 10-24 10-25 10-26 10-27 10-28 STEREO B ~v -5.31 ~v -6.32 10 7 v (m/s) 10 8 2007 Jan 9 T=9.81 ev (Core) 2007 Nov 30 STEREO A STEREO A ~v -7.33 WIND EESA-L STEREO B ~v -7.27 10 5 10 6 10 7 10 8 v (m/s) WIND EESA-H Kappa=7.02 (Halo) Theory: f e (v) 1 v 2κ+2 ~ v 6.5. Observa/on: (Super Halo) f e (v) v 5.5 v 7.5

Conclusion QUiet-time solar wind electrons feature inverse power-law tail population f(v) v α, where α is close to 6.5. This is explained by kappa distribution with index κ = 2.25, which corresponds to an asymptotic state of Langmuir turbulence. Kinetic plasma turbulence theory successfully explains a long standing problem of the physical origin of nonthermal electron velocity distribution.