The Θ + Photoproduction in a Regge Model

Σχετικά έγγραφα
Hadronic Tau Decays at BaBar

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Three coupled amplitudes for the πη, K K and πη channels without data

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Second Order RLC Filters

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Space-Time Symmetries

EE512: Error Control Coding

Andreas Peters Regensburg Universtity

TMA4115 Matematikk 3

4.6 Autoregressive Moving Average Model ARMA(1,1)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

2 Composition. Invertible Mappings

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Second Order Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Matrices and Determinants

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Light Hadrons and New Enhancements in J/ψ Decays at BESII

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Solar Neutrinos: Fluxes

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Statistical Inference I Locally most powerful tests

Srednicki Chapter 55

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 3 Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Section 8.3 Trigonometric Equations

SPECIAL FUNCTIONS and POLYNOMIALS

Higher Derivative Gravity Theories

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Math 6 SL Probability Distributions Practice Test Mark Scheme

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Tridiagonal matrices. Gérard MEURANT. October, 2008

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

AdS black disk model for small-x DIS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

( ) 2 and compare to M.

derivation of the Laplacian from rectangular to spherical coordinates

Questions on Particle Physics

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Monolithic Crystal Filters (M.C.F.)

Derivation of Optical-Bloch Equations

Approximation of distance between locations on earth given by latitude and longitude

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ST5224: Advanced Statistical Theory II

CRASH COURSE IN PRECALCULUS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Areas and Lengths in Polar Coordinates

Lifting Entry (continued)

C.S. 430 Assignment 6, Sample Solutions

Instruction Execution Times

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

The challenges of non-stable predicates

Strain gauge and rosettes

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Large β 0 corrections to the energy levels and wave function at N 3 LO

the total number of electrons passing through the lamp.

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Local Approximation with Kernels

Partial Trace and Partial Transpose

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

UV fixed-point structure of the 3d Thirring model

Math221: HW# 1 solutions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Solutions to Exercise Sheet 5

Section 9.2 Polar Equations and Graphs

[1] P Q. Fig. 3.1

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Assalamu `alaikum wr. wb.

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Finite Field Problems: Solutions

An Inventory of Continuous Distributions

( y) Partial Differential Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Probability and Random Processes (Part II)

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

What happens when two or more waves overlap in a certain region of space at the same time?

Exercises to Statistics of Material Fatigue No. 5

Homework 8 Model Solution Section

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

D Alembert s Solution to the Wave Equation

The Simply Typed Lambda Calculus

Spherical Coordinates

Transcript:

The Θ + Photoproduction in a Regge Model Herry Kwee College of illiam and Mary Cascade 5 Jefferson Lab December 3, 5 1

1. Introduction. Photoproduction γn Θ + K for spin-1/ Θ + γp Θ + K for spin-1/ Θ + γn Θ + K for spin-3/ Θ + 3. Results Total cross sections (σ) Differential cross sections ( dσ dt ) Photon asymmetries (Σ) Decay angular distributions 4. Conclusions

Pentaquarks (q 4 q) QCD does not prohibit pentaquarks Known: Baryon (qqq) and Meson (q q) Other possibility: (qqq)(qqq), (q q)(q q), glueball, and Pentaquark (q 4 q) Questions: here should we look? How can we distinguish pentaquark from (qqq) resonance? and How stable? (width) Theoretical prediction: Diakanov et. al. (hep-ph/973373) lightest pentaquark: antidecuplet no ordinary baryon (qqq) has s = +1 mass around 153 MeV width 15 MeV 3

Hidden Strangeness: uudd s Θ + (153) P 5 = 3 uuds s + 1 3 uudd d Σ + 5 = 3 uuds d 1 + 3 uuss s Ξ 5 Ξ + (186?) 5 ddssū uuss d Figure 1: SU(3) F Antidecuplet for Pentaquark naively, m(ξ + 5 ) m(θ+ ) = m s 15 MeV. Mixing: effect only on N 5 and Σ 5. 4

Experimental Evidence First experimental sign: Nakano et. al. (LEP collaboration, hep-ex/31) mass 154 ± 1 MeV width less than 5 MeV Other experiment: V.V. Barmin et al. (hep-ex/344) very narrow width ( 9 MeV) Current experimental status: positive signal: 1 published experiments non-observing experiment: 11 published results LEP still see signal (see talk by Nakano at International Conference on QCD and Hadronic Physiscs, Beijing). 5

Quantum Numbers SU(3) F : 3 3 3 3 3 many possibilities (multiplets). Θ + (s = +1) can be member of 35plet, 7plet or antidecuplet. Antidecuplet?? isospin = (searches for θ ++ no result, J. Barth et al., hep-ex/3783) result has been ruled out by new CLAS g11 experiment also STAR see signal for Θ ++ (see talk by Huang at International Conference on QCD and Hadronic Physics, Beijing). The spin and parity of the Θ + is currently unknown 6

Θ + Photoproduction γ(q) + N(p N ) K(p K ) + Θ + (p Θ ) s (p N + q), t (q p K ), and u (q p Θ ) (M. Guidal, HJK, M.V. Polyakov, M. Vanderhaeghen, hep-ph/5718) 7

γn K Θ + : J P Θ = 1 ( ) + 1 8

M K = ( i) e g KNΘ P K Regge(s, t) ε µ (q, λ) [ F K (t) (p K q) µ Θ γ 5 N F Θ (u) (t m K) Θ γ µ (γ p u + M Θ ) u MΘ γ 5 N + p µ K ( ˆF (s, t, u) F K (t)) Θ γ 5 N ( ) ] t m K u m p µ Θ { ˆF (s, t, u) F Θ (u)} Θ γ 5 N Θ difference between (+) and (-) parity: only in γ 5 and (±, i) t- and u-channel reggeized the same way (required by gauge invariance) the last terms: required contact terms 9

Θ Decay and KNΘ Vertex J P = 1 l =, S-wave J P = 1 + l = 1, P-wave J P = 3 + l = 1, P-wave J P = 3 l =, D-wave 1

J P = 1 + KNΘ + vertex and Θ + idth L KNΘ = i g KNΘ K Θγ5 N + Nγ 5 ΘK Γ Θ KN = g KNΘ π p K M Θ q p K + M N M N «p K.67 GeV with Γ Θ KN = 1 MeV g KNΘ 1.56 J P = 1 L KNΘ = g KNΘ K ΘN + NΘK Γ Θ KN = g KNΘ π p K M Θ q «p K + M N + M N Γ Θ KN = 1 MeV g KNΘ.146 11

K Regge Exchange 4 α K 3 (.3) K 4 (.5) K (1.77) K 1 (1.7) K (.49) - m 4 6 K t (GeV ) - imagine K as a tube (rod) with quarks at the end rotate higher angular momentum higher-spin excitation of Kaons lie on K Regge trajectory K Regge trajectory for t-channel: α K (t) = α K + α K t trajectories can be either non-degenerate or degenerate 1

Non-degenerate Regge Trajectory 1 t m K = P K Regge(s, t) = s s «αk (t) S K + e iπα K (t) πα K sin(πα K (t)) 1 Γ(1 + α K (t)) s 1 GeV standard linear trajectory for K is: α K (t) =.7 (t m K) as t m K, α K and P K Regge(s, t) 1 t m K Γ(1 + α(t)) suppresses propagator poles in the unphysical region J P =,, 4,... correspond with S = +1 J P = 1 +, 3 +, 5 +,... correspond with S = 1 13

Degenerate Regge Trajectory Degenerate trajectory: obtained by adding or subtracting the two non-degenerate trajectories with the two opposite signatures 1. a constant (1) phase. a rotating (e iπα(t) ) phase: strong degeneracy assumption 1 t m K «αk (t) = PRegge(s, K s πα K t) = s sin(πα K (t)) e iπα K (t) 1 Γ(1 + α K (t)) 14

Regge vertex functions (Regge residues) away from the pole position, need form factors F K (t), F Θ (u), and ˆF. e choose monopole forms for F K and F u : ( F K (t) = 1 + t + ) 1 m K, F Θ (u) = Λ ( 1 + u + M Θ Λ where cut-off Λ is chosen to be 1 GeV, ) 1, and ˆF = F K (t) + F Θ (u) F K (t) F Θ (u) to cancel the poles in the contact terms. 15

γp K Θ + : J P Θ = 1 ( ) + 1 M K = (i) e f K K γ f K NΘ PRegge(s, K t) ε µ (q, λ)» i σ ε µνλα q ν (q p K ) λ Θ αβ (q p K ) β γ 5 N (1) M N + M Θ f K K γ is determined from radiative K decay experiment similar term contributes to γn Θ + K if K is considered 16

J P = 1 L K NΘ + 1 = i f K NΘ Θ K NΘ + vertex» i σµν p ν K M N + M Θ γ 5 N V µ (p K ) + h.c. Using SU(3) symmetry for the vector meson couplings within the baryon octet and SU(6) symmetry between the baryon octet and antidecuplet g ρ pp + f ρ pp = 7 1 g φpp + f φpp = 1 1 f K Θ + p = V + 1 «V 1 + 1 V = 18.7(input) V + 1 «V 1 + 7 V = (input) 3 3 V V 1 1 V «17

g V NN (f V NN ): vector (tensor) coupling constants f K pθ + = (g ρ pp + f ρ pp) 3 3 1 4/5 r r + where r V 1 /V.35 is obtained in the chiral quark soliton model f K NΘ f K pθ + 5.9 rescaling r, corresponding to Θ + width of 1 MeV yields: f K NΘ f K pθ + 1.1 18

K Regge Exchange 1 t m K = P K Regge = s s «αk (t) 1 S K + e iπα K (t) πα K sin(πα K (t)) 1 Γ(α K (t)) Regge trajectory: α K (t) = α K + α K t standard linear trajectory for the K (89) is : α K (t) =.5 + α K t where α K =.83 GeV strong degeneracy assumption 19

γn K Θ + : J P Θ = 3 ( ) + 3 additional contact term: to preserve gauge invariance Θ Θ α (spin-3/): change the vertex and propagator structure

M K = ( ) (i) e g KNΘ m K P K Regge(s, t) ε µ (q, λ) ˆF K (t) (p K q) µ (p K q) α Θ α γ 5 N F Θ (u) (t m K) Θ α γ αβµ (γ p u + M Θ ) u M Θ S βν γ νσρ (p K ) σ (p u ) ρ M Θ γ 5 N with + (t m K) Θ α γ αµν (F Θ (u) p K + F K (t) p Θ ) ν M Θ γ 5 N + p µ K ( ˆF (s, t, u) F K (t)) p α K Θ γ 5 N «t m K p µ u m Θ { ˆF (s, t, u) F Θ (u)} p α K Θ γ 5 N Θ S βν = g βν γ β γ ν 3 (γ β (p u ) ν γ ν (p u ) β ) 3M Θ ((p u) β (p u ) ν ) 3M Θ again difference between (+) and (-) parity: only in γ 5 and (±, i) 1

KNΘ + vertex J P = 3 + L KNΘ = g KNΘ m K Γ Θ KN = g KNΘ π n Θα g αβ N β K + NΘ α g αβ β K o q «p K p K p M Θ 3m K + M N + M N K with Γ Θ KN = 1 MeV g KNΘ.4741 J P = 3 L KNΘ = g KNΘ m K n Θα γ 5 Ng αβ Γ Θ KN = g KNΘ π p K p K M Θ 3m K Γ Θ KN = 1 MeV g KNΘ 3.558 β K q p K + M N M N + Nγ 5 Θ α g αβ β K o «

Cross Section for γn Θ + K σ tot (nb).5..15.1 1/ - 1 1 8 6 4 3/ + K Regge K * Regge K + K * Regge K - K * Regge.5 σ tot (nb) 1.5 1/ + 6 5 4 3 3/ - 1 5 1 15 s (GeV ) 5 1 15 s (GeV ) Note the uncertainty in the sign of the coupling f K pθ + 3

Cross section for γp Θ + K.1.9 1/ - σ tot (nb).6.3 K * Regge σ tot (nb)..15.1 1/ +.5 5 1 15 s (GeV ) 4

Differential Cross section for γn Θ + K, s= 8.4 GeV.5 dσ/dt (nb/gev )..15.1.5 1/ - 1 5 3/ + K Regge K * Regge K + K * Regge K - K * Regge.8 1/ + 4 3/ - dσ/dt (nb/gev ).6.4. 3 1..4.6.8 1 -t (GeV )..4.6.8 1 -t (GeV ) spin-1/ has peak around t. GeV 5

Differential Cross section γp Θ + K, s = 8.4 GeV.4 dσ/dt (nb/gev ).3..1 K * Regge 1/ - dσ/dt (nb/gev ).3..1 1/ +..4.6.8 1 -t (GeV ) γp has peak(from K )around t.4.5gev 6

Photon Asymmetries for γn Θ + K, s= 8.4 GeV 1.5 1/ - 1.8 3/ + Σ -.5.6.4. K Regge K * Regge K + K * Regge K - K * Regge -1.5 1/ +.8 3/ - Σ.6.4 -.5. -1..4.6.8 1 -t (GeV )..4.6.8 -t (GeV ) Σ = σ σ σ +σ K(K ) exchange dominant, Σ go to -1(1) 7

Photon Asymmetries for γp Θ + K, s = 8.4 GeV 1 Σ.8.6.4 1/ - K * Regge..8.6 1/ + Σ.4...4.6.8 1 -t (GeV ) 8

Decay Angular Distribution 9

angular distribution of Θ + K + n (θ, φ) = ˆR sf,s θ ρ sθ,s (Θ+ ) ˆR θ s f,s θ s f,s f ;s θ,s θ = s θ,s θ { ˆR 1,s θ ρ s θ,s θ + ˆR 1,s θ ρ s θ,s θ ˆR 1,s θ ˆR 1,s θ + ˆR 1,s θ ρ s θ,s θ + ˆR 1,s θ ρ s θ,s θ ˆR 1,s θ ˆR 1,s θ } The transition operator ˆR sf,s θ n, s f, P θ p ˆt Θ +, s θ, P θ = ρ sθ,s : the photon density matrix elements in the Θ+ θ production 3

1. in.15.1.5.1.5.1.5.1.5 φ = 1/ - 1/ + 3/ + 3/ - φ = π/4 φ = π/ -1 -.5.5 1 -.5.5 1 -.5.5 1 Figure : γn Θ + K, α =, s= 8.4 GeV, t =.1 GeV 31

..15.1.5.15.1.5.15.1.5.15.1.5-1 -.5.5 1 1. in φ = 1/ - φ = π/4 φ = π/ 1/ + 3/ + 3/ - -.5.5 1 -.5.5 1 Figure 3: γn Θ + K, α = 1, s= 8.4 GeV, t =.1 GeV 3

..15.1.5.15.1.5.15.1.5.15.1.5-1 -.5.5 1 1. in φ = 1/ - φ = π/4 φ = π/ 1/ + 3/ + 3/ - -.5.5 1 -.5.5 1 Figure 4: γn Θ + K, α =, s= 8.4 GeV, t =.1 GeV 33

..15.1.5.15.1.5.15.1.5.15.1.5-1 -.5.5 1 1. in φ = 1/ - φ = π/4 φ = π/ 1/ + 3/ + 3/ - -.5.5 1 -.5.5 1 Figure 5: γn Θ + K, α = 3, pol γ = 1, s= 8.4 GeV, t =.1 GeV 34

..15.1.5.15.1.5.15.1.5.15.1.5-1 -.5.5 1 1. in φ = 1/ - φ = π/4 φ = π/ 1/ + 3/ + 3/ - -.5.5 1 -.5.5 1 Figure 6: γn Θ + K, α = 3, pol γ = 1, s= 8.4 GeV, t =.1 GeV 35

1. in.15.1 φ = 1/ - φ = π/4 φ = π/.5.1 1/ +.5-1 -.5.5 1 -.5.5 1 -.5.5 1 Figure 7: γp Θ + K, α = 3, pol γ = 1, s = 8.4 GeV, t =.1 GeV 36

1. in.15 φ = 1/ - φ = π/4 φ = π/.1.5 1/ +.1.5-1 -.5.5 1 -.5.5 1 -.5.5 1 Figure 8: γp Θ + K, α = 3, pol γ = 1, s = 8.4 GeV, t =.1 GeV 37

Some observable of the (decay angular distribution): more variation in: γn K Θ + circular polarization hard to miss spin-3/ characteristic φ = π/ mostly not interesting 38

Conclusion theoretically both parity assignment of the Θ + are allowed the spin of the Θ + can be 1/ or 3/ photoproduction experiments: good place to determine the spin and parity of the Θ + if statistics allow, decay angular distribution is even better to determine the spin and parity of the Θ + 39