Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 10 (017), 649 661 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa The split variational inequality problem and its algorithm iteration Yonghong Yao a, Xiaoxue Zheng a, Limin Leng a, Shin Min Kang b,c, a Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China. b Center for General Education, China Medical University, Taichung 4040, Taiwan. c Department of Mathematics and the RINS, Gyeongsang National University, Jinju 588, Korea. Communicated by X. Qin Abstract The split variational inequality problem under a nonlinear transformation has been considered. An iterative algorithm is presented to solve this split problem. Strong convergence results are obtained. c 017 All rights reserved. Keywords: Split variational inequality, iterative algorithm, nonlinear transformation. 010 MSC: 49J53, 49M37, 65K10, 90C5. 1. Introduction Let H be a real Hilbert space with its inner product, and norm. Let C H be a nonempty closed convex set. Let A : C H and ψ : C C be three nonlinear operators. Now we consider the following variational inequality of finding u C such that Au, ψ(v) ψ(u) 0, v C. (1.1) Denote the set of the solutions of (1.1) by VI(A, ψ, C). If ψ I, then (1.1) reduces to the variational inequality of finding u C such that Au, v u 0, v C. (1.) Denote the set of the solutions of (1.) by VI(A, C). Variational inequalities have played a critical and significant part in the study of several unrelated problems arising in physics, finance, economics, network analysis, elasticity, optimization, water resources, medical images and structural analysis. For some related work, please refer to Ceng et al. [5, 6], Cianciaruso et al. [1], Glowinski [13], Iusem [16], Korpelevič [17], Noor [1], Qin and Cho [19], Qin and Yao [0], Yao et al. [7, 9, 31, 3], Zegeye et al. [34], and Zhang et al. [35]. Corresponding author Email addresses: yaoyonghong@aliyun.com (Yonghong Yao), zhengxiaoxue1991@aliyun.com (Xiaoxue Zheng), lenglimin@aliyun.com (Limin Leng), smkang@gnu.ac.kr (Shin Min Kang) doi:10.436/jnsa.010.05.31 Received 016-1-6
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 650 Recently, the split feasibility problem has been studied extensively, see [ 4, 7 9, 4 6, 8, 33]. The split feasibility problem is formulated as finding ˆv such that ˆv C and ψ(ˆv) Q, (1.3) where C and Q are two closed convex subsets of two Hilbert spaces H 1 and H, respectively, and ψ : H 1 H is a bounded linear operator. Such problems arise in the field of intensity-modulated radiation therapy. Special cases. (i) If C = Fix(S) and Q = Fix(T), then (1.3) reduces to the split common fixed point problem which was first introduced by Censor and Segal [11]. The reader can refer to He and Du [14, 15] and Yao et al. [30]. (ii) If C = VI(A, D) and Q = VI(B, E), then (1.3) reduces to the split variational inequality problem which was studied in [10]. In the present manuscript, we focus on the following split variational inequality problem of finding a point ˆv such that ˆv VI(A, ψ, C) and ψ(ˆv) VI(B, C). (1.4) Remark 1.1. In the existing literature, the split problem that requires to find a point of an operator in one space whose image under a linear transformation is a point of another operator in the image space. However, in (1.4), the transformation ψ is nonlinear. In order to solve (1.4), we introduce a new iterative algorithm. Under some mild assumptions, we show the strong convergence of the presented algorithm.. Preliminaries Let C be a nonempty closed convex subset of a real Hilbert space H. Definition.1. An operator ϑ : C C is said to be L-Lipschitz continuous if there exists a constant L > 0 such that ϑ(u) ϑ(u ) L u u for all u, u C. Definition.. An operator A : C H is said to be (1) monotone if Au Au, u u 0, u, u C; () strongly monotone if there exists a constant δ > 0 such that Au Au, u u δ u u, u, u C; (3) inverse strongly monotone if there exists η > 0 such that Let ψ : C C be a nonlinear operator. Au Au, u u η Au Au, u, u C. Definition.3. An operator A : C H is said to be η-inverse strongly ψ-monotone iff for all u, u C and for some η > 0. Au Au, ψ(u) ψ(u ) η Au Au
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 651 Let A : H H be a set-valued operator. The effective domain of A is denoted by dom(a), that is, dom(a) = {x H : Ax }. Definition.4. A set-valued operator A is said to be monotone on H iff for all x, y dom(a), u Ax and v Ay. x y, u v 0 A monotone operator A on H is said to be maximal iff its graph is not strictly contained in the graph of any other monotone operator on H. For every point u H, there exists a unique nearest point in C, denoted by proj C [u] such that u proj C [u] u u for all u C. The mapping proj C is called the metric projection of H onto C. It is well-known that proj C is a typical firmly nonexpansive mapping and is characterized by the following property u proj C [u], u proj C [u] 0, u H, u C. (.1) Lemma.5 ([]). Let C be a nonempty closed convex subset of a real Hilbert space H and A : C H be a ξ-inverse strongly monotone mapping. Then, where δ > 0 is a constant. (I δa)u (I δa)u x y + δ(δ ξ) Au Au, u, u C, (.) Lemma.6 ([3]). Let {ϖ n } [0, ), {µ n } (0, 1), and {ρ n } be three sequences such that Assume the following restrictions are satisfied (i) n=1 µ n = ; (ii) lim n ρ n µ n 0 or n=1 ρ n <. Then lim n ϖ n = 0. ϖ n+1 (1 µ n )ϖ n + ρ n, n 1. Lemma.7 ([18]). Let {w n } be a sequence of real numbers. Assume {w n } does not decrease at infinity, that is, there exists at least a subsequence {w nk } of {w n } such that w nk w nk +1 for all k 0. For every n N 0, define an integer sequence {τ(n)} as τ(n) = max{i n : w ni < w ni +1}. Then τ(n) as n and for all n N 0 max{w τ(n), w n } w τ(n)+1. 3. Main results In this section, we study the split variational inequality problem and the convergence analysis of its iterative algorithm. Let H be a real Hilbert space and C H be a nonempty closed convex set. Let ψ : C C be a weakly continuous and δ-strongly monotone mapping such that its range R(ψ) = C. Let A : C H be an η-inverse strongly ψ-monotone mapping. Let B : C H be a ξ-inverse strongly monotone mapping.
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 65 Remark 3.1. For u, v C, since ψ is δ-strongly monotone, we get Then, δ u v ψ(u) ψ(v), u v ψ(u) ψ(v) u v. ψ(u) ψ(v) δ u v, u, v C. (3.1) In view of the assumptions on the operator ψ, we know ψ 1 is single-valued and Lipschitz continuous. Problem 3.. The split variational inequality problem is to find û such that û VI(A, ψ, C) and ψ(û) VI(B, C). (3.) Denote the set of solutions of (3.) by Λ, i.e., Λ = VI(A, ψ, C) ψ 1 (VI(B, C)). Throughout, we assume Λ. Algorithm 3.3. For given initial value x 0 C, define the sequence {x n } by the following form u n = proj C [ψ(x n ) ζ n Ax n ], v n = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )], ψ(x n+1 ) = ξ n ψ(x n ) + (1 ξ n )v n, n 0, (3.3) where ϑ : C H is an L-Lipschitz continuous mapping, {η n }, {ξ n }, and {δ n } are three real number sequences in [0, 1], {ζ n } is a real number sequence in (0, ), and 0 < µ < δ/l is a constant. Remark 3.4. The solution of the variational inequality of finding x Λ such that µϑ(x ) ψ(x ), ψ(x) ψ(x ) 0, x Λ (3.4) is unique. As a matter of fact, assume that both x and x solve (3.4). Then, µϑ(x ) ψ(x ), ψ( x) ψ(x ) 0 and µϑ( x) ψ( x), ψ(x ) ψ( x) 0. Adding up the above two inequalities, we deduce It follows that µϑ( x) ψ( x) µϑ(x ) + ψ(x ), ψ(x ) ψ( x) 0. ψ(x ) ψ( x) µ ϑ(x ) ϑ( x), ψ(x ) ψ( x) µ ϑ(x ) ϑ( x) ψ(x ) ψ( x). This together with (3.1) implies that δ x x ψ(x ) ψ( x) µ ϑ(x ) ϑ( x) µl x x. We get x = x immediately because of µl < δ. So, the variational inequality (3.4) has a unique solution denoted by û. Proposition 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C H be an η-inverse strongly ψ-monotone mapping. Then, Proof. In fact, (ψ(x) ζax) (ψ(y) ζay) ψ(x) ψ(y) + ζ(ζ η) Ax Ay, x, y C. (3.5) (ψ(x) ζax) (ψ(y) ζay) = ψ(x) ψ(y) ζ Ax Ay, ψ(x) ψ(y) + ζ Ax Ay ψ(x) ψ(y) ζη Ax Ay + ζ Ax Ay ψ(x) ψ(y) + ζ(ζ η) Ax Ay.
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 653 Theorem 3.6. Assume the following conditions are satisfied: (C1): lim n η n = 0 and n η n = ; (C): 0 < lim n ξ n lim n ξ n < 1 and δ (Lµ, η); (C3): 0 < lim n ζ n lim n ζ n < η and 0 < lim n δ n lim n δ n < ξ. Then the sequence {x n } generated by (3.3) converges strongly to û Λ which solves the variational inequality (3.4). Proof. Note that û VI(A, ψ, C) and ψ(û) VI(B, C). Using (.1), we deduce ψ(û) = proj C [ψ(û) ζ n Aû] = proj C [ψ(û) δ n Bψ(û)] for all n 0. First, from (.), we have (u n δ n Bu n ) (ψ(û) δ n Bψ(û)) u n ψ(û) + δ n (δ n ξ) Bu n Bψ(û) u n ψ(û). By (3.5), we get u n ψ(û) = proj C [ψ(x n ) ζ n Ax n ] proj C [ψ(û) ζ n Aû] (ψ(x n ) ζ n Ax n ) (ψ(û) ζ n Aû) ψ(x n ) ψ(û) + ζ n (ζ n η) Ax n Aû ψ(x n ) ψ(û) and ψ(x n+1 ) ζ n+1 Ax n+1 (ψ(x n ) ζ n+1 Ax n ) ψ(x n+1 ) ψ(x n ) + ζ n+1 (ζ n+1 η) Ax n+1 Ax n. From (3.1), (3.3), (3.6), and (3.7), we have v n ψ(û) = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )] proj C [ψ(û) δ n Bψ(û)] η n (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )((u n δ n Bu n ) (ψ(û) δ n Bψ(û))) η n µϑ(x n ) µϑ(û) + η n µϑ(û) ψ(û) + δ n Bψ(û) + (1 η n ) (u n δ n Bu n ) (ψ(û) δ n Bψ(û)) η n µl x n û + η n µϑ(û) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) η n µl/δ ψ(x n ) ψ(û) + η n µϑ(û) ψ(û) + δ n Bψ(û) + (1 η n ) ψ(x n ) ψ(û) = [1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + η n µϑ(û) ψ(û) + δ n Bψ(û) [1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + η n ( µϑ(û) ψ(û) + ξ Bψ(û) ). (3.6) (3.7) (3.8) By combination of (3.6), (3.7), and (3.8), we obtain v n ψ(û) η n (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )((u n δ n Bu n ) (ψ(û) δ n Bψ(û))) η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) (u n δ n Bu n ) (ψ(û) δ n Bψ(û)) η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n )[ u n ψ(û) + δ n (δ n ξ) Bu n Bψ(û) ] η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n )[ ψ(x n ) ψ(û) + δ n (δ n ξ) Bu n Bψ(û) + ζ n (ζ n η) Ax n Aû ] η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) ψ(x n ) ψ(û). (3.9) According to (3.3) and (3.8), we have ψ(x n+1 ) ψ(û) ξ n ψ(x n ) ψ(û) + (1 ξ n ) v n ψ(û)
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 654 ξ n ψ(x n ) ψ(û) + (1 ξ n )[1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + (1 ξ n )η n ( µϑ(û) ψ(û) + ξ Bψ(û) ) = [1 (1 µl/δ)(1 ξ n )η n ] ψ(x n ) ψ(û) µϑ(û) ψ(û) + ξ Bψ(û) + (1 µl/δ)(1 ξ n )η n. 1 µl/δ By induction { ψ(x n ) ψ(û) max ψ(x 0 ) ψ(û), } µϑ(û) ψ(û) + ξ Bψ(û). 1 µl/δ It follows that x n û 1 δ ψ(x n) ψ(û) 1 δ max { ψ(x 0 ) ψ(û), } µϑ(û) ψ(û) + ξ Bψ(û). 1 µl/δ Hence, {ψ(x n )}, {x n }, {u n }, and {v n } are all bounded. From (3.3), we have ψ(x n+1 ) ψ(x n ) = (1 ξ n )(v n ψ(x n )). (3.10) Thus, Observe that ψ(x n+1 ) ψ(x n ), ψ(x n ) ψ(û) = (1 ξ n ) v n ψ(x n ), ψ(x n ) ψ(û). (3.11) ψ(x n+1 ) ψ(x n ), ψ(x n ) ψ(û) = ψ(x n+1 ) ψ(û) ψ(x n ) ψ(û) ψ(x n+1 ) ψ(x n ) (3.1) and v n ψ(x n ), ψ(x n ) ψ(û) = v n ψ(û) ψ(x n ) ψ(û) v n ψ(x n ). (3.13) By virtue of (3.11), (3.1), and (3.13), we deduce ψ(x n+1 ) ψ(û) ψ(x n ) ψ(û) ψ(x n+1 ) ψ(x n ) = (1 ξ n )[ v n ψ(û) ψ(x n ) ψ(û) v n ψ(x n ) ]. (3.14) Combining (3.9), (3.10) with (3.14), we have ψ(x n+1 ) ψ(û) ψ(x n ) ψ(û) = (1 ξ n )[ v n ψ(û) ψ(x n ) ψ(û) v n ψ(x n ) ] + (1 ξ n ) v n ψ(x n ) = (1 ξ n )[ v n ψ(û) ψ(x n ) ψ(û) ] ξ n (1 ξ n ) v n ψ(x n ) (1 ξ n )[η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) ψ(x n ) ψ(û) ] ξ n (1 ξ n ) v n ψ(x n ). (3.15) Returning to (3.8), we get v n ψ(û) [1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + (1 µl/δ)η n ( µϑ(û) ψ(û) + ξ Bψ(û) (1 µl/δ) ). (3.16) Next, we consider two possible cases. Case 1. Assume there exists some integer m > 0 such that { ψ(x n ) ψ(û) } is decreasing for all n m.
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 655 In this case, we know that lim n ψ(x n ) ψ(û) exists. From (3.15) and (3.16), we have ξ n (1 ξ n ) v n ψ(x n ) ψ(x n ) ψ(û) ψ(x n+1 ) ψ(û) + (1 ξ n )[ v n ψ(û) ψ(x n ) ψ(û) ] ψ(x n ) ψ(û) ψ(x n+1 ) ψ(û) + (1 µl/δ)η n ( µϑ(û) ψ(û) + ξ Bψ(û) (1 µl/δ) 0. ) This together with (C) implies that Furthermore, it follows from (3.10) that lim v n ψ(x n ) = 0. n By the convexity of the norm and (3.9), we have lim n ψ(x n+1) ψ(x n ) = 0. (3.17) ψ(x n+1 ) ψ(û) = ξ n (ψ(x n ) ψ(û)) + (1 ξ n )(v n ψ(û)) ξ n ψ(x n ) ψ(û) + (1 ξ n ) v n ψ(û) ξ n ψ(x n ) ψ(û) + η n (1 ξ n ) µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n )(1 ξ n ) ψ(x n ) ψ(û) + (1 η n )(1 ξ n )δ n (δ n ξ) Bu n Bψ(û) + (1 η n )(1 ξ n )ζ n (ζ n η) Ax n Aû ψ(x n ) ψ(û) + η n (1 ξ n ) µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n )(1 ξ n )δ n (δ n ξ) Bu n Bψ(û) + (1 η n )(1 ξ n )ζ n (ζ n η) Ax n Aû. (3.18) Thus, (1 η n )(1 ξ n )δ n (ξ δ n ) Bu n Bψ(û) + (1 η n )(1 ξ n )ζ n (η ζ n ) Ax n Aû ψ(x n ) ψ(û) ψ(x n+1 ) ψ(û) + η n (1 ξ n ) µϑ(x n ) ψ(û) + δ n Bψ(û) ( ψ(x n ) ψ(û) + ψ(x n+1 ) ψ(û) ) ψ(x n+1 ) ψ(x n ) + η n (1 ξ n ) µϑ(x n ) ψ(û) + δ n Bψ(û) 0 (by (C1) and (3.17)). Since lim inf n (1 ξ n )(1 η n )ζ n (η ζ n ) > 0 and lim inf n (1 η n )(1 ξ n )δ n (ξ δ n ) > 0, we obtain lim n Ax n Aû = 0 and lim n Bu n Bψ(û) = 0. (3.19) Set z n = ψ(x n ) ζ n Ax n (ψ(û) ζ n Aû) for all n. Using the property (.1) of projection, we get u n ψ(û) = proj C [ψ(x n ) ζ n Ax n ] proj C [ψ(û) ζ n Aû] z n, u n ψ(û) = 1 { zn + u n ψ(û) z n u n + ψ(û) } 1 { ψ(xn ) ψ(û) + u n ψ(û) ψ(x n ) u n ζ n (Ax n Aû) }
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 656 = 1 { ψ(xn ) ψ(û) + u n ψ(û) ψ(x n ) u n ζ n Ax n Aû + ζ n ψ(x n ) u n, Ax n Aû }. It follows that u n ψ(û) ψ(x n ) ψ(û) ψ(x n ) u n + ζ n ψ(x n ) u n Ax n Aû. (3.0) Set z n = u n δ n Bu n (ψ(û) δ n Bψ(û)) for all n. We also have v n ψ(û) = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )] proj C [ψ(û) δ n Bψ(û)] η n (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )z n, v n ψ(û) = 1 { ηn (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )z n + v n ψ(û) η n (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )z n v n + ψ(û) } 1 { ηn µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) + v n ψ(û) η n (µϑ(x n ) ψ(û) + δ n Bψ(û) z n) + u n v n δ n (Bu n Bψ(û)) } = 1 { ηn µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) + v n ψ(û) u n v n η n µϑ(x n ) ψ(û) + δ n Bψ(û) z n + δ n η n Bu n Bψ(û), µϑ(x n ) ψ(û) + δ n Bψ(û) z n δ n Bu n Bψ(û) + δ n u n v n, Bu n Bψ(û) η n u n v n, µϑ(x n ) ψ(û) + δ n Bψ(û) z n }. It follows that v n ψ(û) η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) + δ n η n Bu n Bψ(û) µϑ(x n ) ψ(û) + δ n Bψ(û) z n u n v n + δ n u n v n Bu n Bψ(û) + η n u n v n µϑ(x n ) ψ(û) + δ n Bψ(û) z n. (3.1) In the light of (3.18), (3.0), and (3.1), we derive ψ(x n+1 ) ψ(û) ξ n ψ(x n ) ψ(û) + (1 ξ n ) v n ψ(û) ψ(x n ) ψ(û) + η n µϑ(x n ) ψ(û) + δ n Bψ(û) (1 η n ) ψ(x n ) u n (1 ξ n ) u n v n + ζ n ψ(x n ) u n Ax n Aû + δ n u n v n Bu n Bψ(û) + δ n η n Bu n Bψ(û) µϑ(x n ) ψ(û) + δ n Bψ(û) z n + η n u n v n µϑ(x n ) ψ(û) + δ n Bψ(û) z n. Then, (1 η n ) ψ(x n ) u n + (1 ξ n ) u n v n ( ψ(x n ) ψ(û) + ψ(x n+1 ) ψ(û) ) ψ(x n+1 ) ψ(x n ) + ζ n ψ(x n ) u n Ax n Aû + δ n u n v n Bu n Bψ(û) + δ n η n Bu n Bψ(û) µϑ(x n ) ψ(û) + δ n Bψ(û) z n
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 657 Therefore, + η n u n v n µϑ(x n ) ψ(û) + δ n Bψ(û) z n + η n µϑ(x n ) ψ(û) + δ n Bψ(û) 0 (by (C1), (3.17), and (3.19)). lim n ψ(x n ) u n = 0 and lim n u n v n = 0. (3.) Now, we prove lim n µϑ(û) ψ(û), v n ψ(û) 0. Choose a subsequence {v ni } of {v n } such that lim n µϑ(û) ψ(û), v n ψ(û) = lim i µϑ(û) ψ(û), v ni ψ(û). (3.3) Since {x ni } is bounded, there exists a subsequence {x nij } of {x ni } which converges weakly to some point z C. Without loss of generality, we may assume that x ni z. This implies that ψ(x ni ) ψ(z) due to the weak continuity of ψ. Thus, v ni ψ(z) by (3.). Next, we show z VI(A, ψ, C). Set { Au + N C (u), u C, Ru =, u C. By [35], we know that R is maximal ψ-monotone. Let (u, w) G(R). Since w Bu N C (u) and x n C, we have ψ(u) ψ(x n ), w Au 0. Noting that u n = proj C [ψ(x n ) ζ n Ax n ], we get ψ(u) u n, u n (ψ(x n ) ζ n Ax n ) 0. It follows that Then, ψ(u) u n, u n ψ(x n ) ζ n + Ax n 0. ψ(u) ψ(x ni ), w ψ(u) ψ(x ni ), Av ψ(u) ψ(x ni ), Au ψ(u) u ni, u n i ψ(x ni ) ψ(u) u ni, Ax ni ζ ni = ψ(u) ψ(x ni ), Au Ax ni + ψ(u) ψ(x ni ), Ax ni ψ(u) u ni, u n i ψ(x ni ) ψ(u) u ni, Ax ni ζ ni ψ(u) u ni, u n i ψ(x ni ) ψ(x ni ) u ni, Ax ni. ζ ni (3.4) Since ψ(x ni ) u ni 0 and ψ(x ni ) ψ(z), we deduce that ψ(u) ψ(z), w 0 by taking i in (3.4). Thus, z R 1 0 by the maximal ψ-monotonicity of R. Hence, z VI(A, ψ, C). Next, we need to prove ψ(z) VI(B, C). Set { R Bv + N C (v), v C, v =, v C. By [1], we know that R is maximal monotone. Let (v, w) G(R ). Since w Bv N C (v) and v n C, we have v v n, w Bv 0. Noting that v n = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )], we get v v n, v n [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )] 0. It follows that v v n, v n u n + Bu n η n (µϑ(x n ) u n + δ n Bu n ) 0. δ n δ n
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 658 Then, v v ni, w v v ni, Bv v v ni, Bv v v ni, v n i u ni v v ni, Bu ni δ ni + η n i v v ni, µϑ(x ni ) u ni + δ ni Bu ni δ ni = v v ni, Bv Bv ni + v v ni, Bv ni v v ni, v n i u ni δ ni v v ni, Bu ni + η n i v v ni, µϑ(x ni ) u ni + δ ni Bu ni δ ni v v ni, v n i u ni v v ni, Bu ni Bv ni δ ni + η n i δ ni v v ni, µϑ(x ni ) u ni + δ ni Bu ni. (3.5) Since v ni u ni 0 and v ni ψ(z), we deduce that v ψ(z), w 0 by taking i in (3.5). Thus, ψ(z) R 1 0 by the maximal monotonicity of R. Hence, ψ(z) VI(B, C). Therefore, z Λ. From (3.3), we obtain lim n µϑ(û) ψ(û), v n ψ(û) = lim i µϑ(û) ψ(û), ψ(x ni ) ψ(û) = µϑ(û) ψ(û), ψ(z) ψ(û) 0. (3.6) Note that v n ψ(û) = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )] proj C [ψ(û) (1 η n )δ n Bψ(û)] It follows that Therefore, η n (µϑ(x n ) ψ(û)) + (1 η n )z n, v n ψ(û) η n µ ϑ(x n ) ϑ(û), v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û) + (1 η n ) u n δ n Bu n (ψ(û) δ n Bψ(û)) v n ψ(û) η n Lµ x n û v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û) + (1 η n ) u n ψ(û) v n ψ(û) η n (µl/δ) ψ(x n ) ψ(û) v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û) + (1 η n ) ψ(x n ) ψ(û) v n ψ(û) = [1 (1 Lµ/δ)η n ] ψ(x n ) ψ(û) v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û) 1 (1 Lµ/δ)η n ψ(x n ) ψ(û) + 1 v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û). v n ψ(û) [1 (1 Lµ/δ)η n ] ψ(x n ) ψ(û) + η n µϑ(û) ψ(û), v n ψ(û). ψ(x n+1 ) ψ(û) ξ n ψ(x n ) ψ(û) + (1 ξ n ) v n ψ(û) ξ n ψ(x n ) ψ(û) + (1 ξ n )[1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + (1 ξ n )η n µϑ(û) ψ(û), v n ψ(û) = [1 (1 µl/δ)(1 ξ n )η n ] ψ(x n ) ψ(û) (3.7) + (1 ξ n )η n µϑ(û) ψ(û), v n ψ(û) = [1 (1 µl/δ)(1 ξ n )η n ] ψ(x n ) ψ(û)
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 659 ( ) + (1 µl/δ)(1 ξ n )η n 1 µl/δ µϑ(û) ψ(û), v n ψ(û). We can apply Lemma.6 to (3.7) to conclude that ψ(x n ) ψ(û) and x n û. Case. Assume there exists an integer n 0 such that ψ(x n0 ) ψ(û) ψ(x n0 +1) ψ(û). At this case, we set ω n = { ψ(x n ) ψ(û) }. Then, we have ω n0 ω n0 +1. Define an integer sequence {τ n } for all n n 0 as follows: τ(n) = max{l N n 0 l n, ω l ω l+1 }. It is clear that τ(n) is a non-decreasing sequence satisfying and lim τ(n) = n ω τ(n) ω τ(n)+1, for all n n 0. By the similar argument as that of (3.6) and (3.7), we can prove that lim n µϑ(û) ψ(û), v τ(n) ψ(û) 0 (3.8) and ω τ(n)+1 [1 (1 µl/δ)(1 ξ τ(n))η τ(n) ]ω τ(n) ( ) + (1 µl/δ)(1 ξ τ(n) )η τ(n) 1 µl/δ µϑ(û) ψ(û), v τ(n) ψ(û). Since ω τ(n) ω τ(n)+1, we have from (3.9) that (3.9) ω τ(n) 1 µl/δ µϑ(û) ψ(û), v τ(n) ψ(û). (3.30) Combining (3.8) with (3.30), we have and hence From (3.8) and (3.9), we also obtain lim n ω τ(n) 0, lim ω τ(n) = 0. (3.31) n This together with (3.31) implies that Applying Lemma.7 we get lim n ω τ(n)+1 lim n ω τ(n). lim ω τ(n)+1 = 0. n 0 ω n max{ω τ(n), ω τ(n)+1 }. Therefore, ω n 0. That is, x n û. This completes the proof. Algorithm 3.7. For given initial value x 0 C, define the sequence {x n } by the following form u n = proj C [x n ζ n Ax n ], v n = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )], x n+1 = ξ n x n + (1 ξ n )v n, n 0, (3.3) where ϑ : C H is an L-Lipschitz continuous mapping, {η n }, {ξ n }, and {δ n } are three real number sequences in [0, 1], {ζ n } is a real number sequence in (0, ), and 0 < µ < 1/L is a constant.
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 660 Corollary 3.8. Assume the following conditions are satisfied: (C1): lim n η n = 0 and n η n = ; (C): 0 < lim n ξ n lim n ξ n < 1; (C3): 0 < lim n ζ n lim n ζ n < η and 0 < lim n δ n lim n δ n < ξ. Then the sequence {x n } generated by (3.3) converges strongly to û VI(A, C) VI(B, C) which solves the following variational inequality µϑ(û) û, ˆv û 0, ˆv VI(A, C) VI(B, C). References [1] M. Aslam Noor, Some developments in general variational inequalities, Appl. Math. Comput., 15 (004), 199 77. 1 [] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 0 (004), 103 10. 1 [3] L.-C. Ceng, Q. H. Ansari, J.-C. Yao, An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 64 (01), 633 64. [4] L.-C. Ceng, Q. H. Ansari, J.-C. Yao, Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem, Nonlinear Anal., 75 (01), 116 15. 1 [5] L.-C. Ceng, M. Teboulle, J.-C. Yao, Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems, J. Optim. Theory Appl., 146 (010), 19 31. 1 [6] L.-C. Ceng, J.-C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math., 10 (006), 193 1303. 1 [7] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (006), 353 365. 1 [8] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 1 39. [9] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 1 (005), 071 084. 1 [10] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (01), 301 33. ii [11] Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (009), 587 600. i [1] F. Cianciaruso, G. Marino, L. Muglia, Y.-H. Yao, On a two-step algorithm for hierarchical fixed point problems and variational inequalities, J. Inequal. Appl., 009 (009), 13 pages. 1 [13] R. Glowinski, Numerical methods for nonlinear variational problems, Springer Series in Computational Physics, Springer-Verlag, New York, (1984). 1 [14] Z.-H. He, W.-S. Du, On hybrid split problem and its nonlinear algorithms, Fixed Point Theory Appl., 013 (013), 0 pages. i [15] Z.-H. He, W.-S. Du, On split common solution problems: new nonlinear feasible algorithms, strong convergence results and their applications, Fixed Point Theory Appl., 014 (014), 16 pages. i [16] A. N. Iusem, An iterative algorithm for the variational inequality problem, Mat. Apl. Comput., 13 (1994), 103 114. 1 [17] G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, (Russian) Ékonom. i Mat. Metody, 1 (1976), 1 (1976), 747 756. 1 [18] P. E. Mainge, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 35 (007), 469 479..7 [19] X.-L. Qin, S. Y. Cho, Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., 37 (017), 488 50. 1 [0] X.-L. Qin, J.-C. Yao, Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators, J. Inequal. Appl., 016 (016), 9 pages. 1 [1] R.-T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14 (1976), 877 898. 3 [] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (003), 417 48..5 [3] H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., (00), 40 56..6 [4] H.-K. Xu, A variable Krasnoselskiĭ-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, (006), 01 034. 1 [5] H.-K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Problems, 6 (010), 17 pages. [6] Y.-H. Yao, R. P. Agarwal, M. Postolache, Y.-C. Liou, Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem, Fixed Point Theory Appl., 183 (014), 14 pages. 1
Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), 649 661 661 [7] Y.-H. Yao, R.-D. Chen, H.-K. Xu, Schemes for finding minimum-norm solutions of variational inequalities, Nonlinear Anal., 7 (010), 3447 3456. 1 [8] Y.-H. Yao, W. Jigang, Y.-C. Liou, Regularized methods for the split feasibility problem, Abstr. Appl. Anal., 01 (01), 13 pages. 1 [9] Y.-H. Yao, Y.-C. Liou, S. M. Kang, Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, Comput. Math. Appl., 59 (010), 347 3480. 1 [30] Y.-H. Yao, Y.-C. Liou, J.-C. Yao, Split common fixed point problem for two quasi-pseudo-contractive operators and its algorithm construction, Fixed Point Theory Appl., 015 (015), 19 pages. i [31] Y.-H. Yao, M. A. Noor, Y.-C. Liou, Strong convergence of a modified extragradient method to the minimum-norm solution of variational inequalities, Abstr. Appl. Anal., 01 (01), 9 pages. 1 [3] Y.-H. Yao, M. A. Noor, Y.-C. Liou, S. M. Kang, Iterative algorithms for general multivalued variational inequalities, Abstr. Appl. Anal., 01 (01), 10 pages. 1 [33] Y.-H. Yao, M. Postolache, Y.-C. Liou, Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory Appl., 013 (013), 1 pages. 1 [34] H. Zegeye, N. Shahzad, Y.-H. Yao, Minimum-norm solution of variational inequality and fixed point problem in Banach spaces, Optimization, 64 (015), 453 471. 1 [35] L. J. Zhang, J. M. Chen, Z. B. Hou, Viscosity approximation methods for nonexpansive mappings and generalized variational inequalities, (Chinese) Acta Math. Sinica (Chin. Ser.), 53 (010), 691 698. 1, 3