Pseudo Almost Periodic Solutions for HCNNs with Time-Varying Leakage Delays

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Multi-dimensional Central Limit Theorem

A Class of Orthohomological Triangles

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

α & β spatial orbitals in

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Every set of first-order formulas is equivalent to an independent set

Other Test Constructions: Likelihood Ratio & Bayes Tests

Matrices and Determinants

Congruence Classes of Invertible Matrices of Order 3 over F 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

LECTURE 4 : ARMA PROCESSES

Uniform Convergence of Fourier Series Michael Taylor

Phasor Diagram of an RC Circuit V R

Non polynomial spline solutions for special linear tenth-order boundary value problems

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Example Sheet 3 Solutions

2 Composition. Invertible Mappings

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Homework 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 8.3 Trigonometric Equations

Statistical Inference I Locally most powerful tests

1 Complete Set of Grassmann States

8.323 Relativistic Quantum Field Theory I

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Constant Elasticity of Substitution in Applied General Equilibrium

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Fractional Colorings and Zykov Products of graphs

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

Homomorphism in Intuitionistic Fuzzy Automata

ST5224: Advanced Statistical Theory II

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

C.S. 430 Assignment 6, Sample Solutions

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

The Simply Typed Lambda Calculus

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

EE512: Error Control Coding

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

arxiv: v1 [math.ca] 6 Dec 2012

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Finite Field Problems: Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

The one-dimensional periodic Schrödinger equation

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Second Order Partial Differential Equations

Tridiagonal matrices. Gérard MEURANT. October, 2008

SOME PROPERTIES OF FUZZY REAL NUMBERS

A Note on Intuitionistic Fuzzy. Equivalence Relation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

New bounds for spherical two-distance sets and equiangular lines

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

A General Note on δ-quasi Monotone and Increasing Sequence

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Math221: HW# 1 solutions

8.324 Relativistic Quantum Field Theory II

The challenges of non-stable predicates

D Alembert s Solution to the Wave Equation

Reminders: linear functions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Second Order RLC Filters

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

Solution Series 9. i=1 x i and i=1 x i.

Nonlinear problem with subcritical exponent in Sobolev space

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Approximation of distance between locations on earth given by latitude and longitude

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

Lecture 34 Bootstrap confidence intervals

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Partial Differential Equations in Biology The boundary element method. March 26, 2013

TMA4115 Matematikk 3

Lecture 21: Properties and robustness of LSE

Parametrized Surfaces

Srednicki Chapter 55

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

derivation of the Laplacian from rectangular to spherical coordinates

F19MC2 Solutions 9 Complex Analysis

On a four-dimensional hyperbolic manifold with finite volume

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Transcript:

DOI 1.763/s4956-15-4-7 Moroccan J. Pure and Appl. Anal.(MJPAA) Volume 1(1), 215, Pages 51 69 ISSN: 2351-8227 RESEARCH ARTICLE Pseudo Almost Perodc Solutons for HCNNs wth Tme-Varyng Leakage Delays Ceml Tunç Abstract. In ths paper, we consder a class of hgh-order cellular neural networks (HCNNs) model wth tme-varyng delays n the leakage terms. We gve some suffcent condtons whch guarantee the exponental stablty of pseudo almost perodc solutons for the model. The obtaned results complement wth some recent ones n the lteature.the technque of proof nvolves the exponental dchotomy theory and the fxed pont theorem. An llustratve example s gven wth an applcaton. 2 Mathematcs Subject Classfcaton. 34C25, 34D4. Key words and phrases. Hgh-order cellular neural network; pseudo almost perodc soluton; exponental stablty; tme-varyng delay; leakage term. 1. Introducton It s well known that retarded functonal dfferental equatons descrbe those systems or processes whose rate of change of state s determned by ther past and present states. These equatons are frequently encountered as mathematcal models of most dynamcal process n mechancs, control theory, physcs, chemstry, bology, medcne, economcs, atomc energy, nformaton theory, etc. For example, t follows from lterature that the hgh-order recurrent neural networks (HCNNs), whch nclude both the Cohen- Grossberg neural networks and the Hopfeld neural networks as specal cases, allow hgh-order nteractons between neurons, and therefore have stronger approxmaton property, faster convergence rate, greater storage capacty, and hgher fault tolerance than the tradtonal frst-order neural networks (see Dembo et al. [1]). Hence, n the past years, hgh-order neural networks have been successfully appled n many areas, Receved Aprl 8, 215 - Accepted June 28, 215. c The Author(s) 215.Ths artcle s publshed wth open access by Sd Mohamed Ben Abdallah Unversty Ths work was supported by.yuzuncu Yl Unversty, BAP-214-FEN-B198... Correspondng author. Tel.:(432)225186 ; fax:(432)225182. Department of Mathematcs, Faculty of Scences, Yüzüncü Yıl Unversty, 658, VanTurkey. 51.

52 CEMIL TUNÇ such as bologcal scence, pattern recognton and optmzaton (see Psalts et al.[2], Karayanns and Venetsanopoulos [3]). In partcular, some attenton has been pad to the convergence behavor for HRNNs wth delays n the leakage terms (see [4 6] and the references theren). Recently, Xu [7] and Zhang [8] consdered the exstence and exponental stablty of the ant-perodc solutons for the followng HCNNs wth tme-varyng delays n the leakage terms: x (t) = c (t)x (t η (t)) a j (t)f j (x j (t τ j (t))) b jl (t)g j (x j (t α jl (t)))g l (x l (t β jl (t))) d jl (t) σ jl (u)h j (x j (t u))du ν jl (u)h l (x l (t u))du I (t), = 1, 2,, n, (1.1) n whch n corresponds to the number of unts n a neural network, x (t) corresponds to the state vector of the th unt at the tme t, c (t) represents the rate wth whch the th unt wll reset ts potental to the restng state n solaton when dsconnected from the network and external nputs, a j (t), b jl (t) and d jl (t) are the frst and second order connecton weghts of the neural network, respectvely, η (t) corresponds to the tme-varyng leakage delays, α jl (t), β jl (t) and τ j (t) correspond to the transmsson delays, σ jl (u) and ν jl (u) correspond to the transmsson delay kernels, I (t) denotes the external nputs at tme t, f j, g j and h j are the actvaton functons of sgnal transmsson. On the other hand, the dynamcs of delayed neural networks s manly affected by the varaton of the envronment. As mentoned n [9, p87-9] and [1, p77-94], perodcally and almost perodcally varyng envronments are the fundamental bass of the theory of natural selecton. In contrast wth perodcal effects, almost perodc effects can be encountered more often, and pseudo almost perodc effects regulate many phenomena excellently. Hence, complex repettve phenomena can be consdered as almost perodc process and an ergodc component. Therefore, the study of the exstence and stablty of almost perodc solutons and pseudo almost perodc solutons for the frst order cellular neural networks (CNNs) models wth leakage delays takes great attenton (see [11-14] and the references theren). It should be noted that to the best of our knowledge from the lterature, there s no result on the exstence of pseudo almost perodc solutons of the HCNNs wth tmevaryng delays n the leakage terms. The am of ths work s to prove the exstence and global exponental stablty of the pseudo almost perodc solutons for HCNNs (1.1). Our approach s based on the exponental dchotomy theory and contracton mappng fxed pont theorem developed n [15]. The ntal condtons assocated wth system (1.1) are of the form x (s) = ϕ (s), x (s) = ϕ (s), s (, ], = 1, 2,, n, (1.2)

PSEUDO ALMOST PERIODIC SOLUTIONS 53 where ϕ ( ) and ϕ ( ) are real-valued bounded and contnuous functons defned on (, ]. For convenence, we denote by R n (R = R 1 ) the set of all ndmensonal real vectors (real numbers). Let J = {1, 2,, n} and {x } = (x 1, x 2,, x n ). For any {x } R n, we let x denote the absolute-value vector gven by x = { x }, and defne x = max J x. A matrx or vector A means that all entres of A are greater than or equal to zero. A > can be defned smlarly. For matrces or vectors A 1 and A 2, A 1 A 2 (resp. A 1 > A 2 ) means that A 1 A 2 (resp. A 1 A 2 > ). BC(R, R n ) denotes the set of bounded and contnues functons from R to R n. Note that (BC(R, R n ), ) s a Banach space, where denotes the sup norm f := sup t R f BC(R, R), we set f(t). For f = nf t R f(t), f = sup f(t). t R Defnton 1.1 (see [9, 1]). Let u(t) BC(R, R n ). u(t) s sad to be almost perodc on R f, for any ε >, the set T (u, ε) = {δ : u(tδ)u(t) < ε for all t R} s relatvely dense,.e., for any ε >, t s possble to fnd a real number l = l(ε) > wth the property that, for any nterval wth length l(ε), there exsts a number δ = δ(ε) n ths nterval such that u(t δ) u(t) < ε, for all t R. We denote by AP (R, R n ) the set of the almost perodc functons from R to R n. Precsely, defne the class of functons P AP (R, R n ) as follows: { f BC(R, R n 1 r ) lm f(t) dt = }. r 2r r A functon f BC(R, R n ) s called pseudo almost perodc f t can be expressed as f = h ϕ, where h AP (R, R n ) and ϕ P AP (R, R n ). The collecton of such functons wll be denoted by P AP (R, R n ). The functons h and ϕ n above defnton are respectvely called the almost perodc component and the ergodc perturbaton of the pseudo almost perodc functon f. Defnton 1.2. Let x (t) = (x 1(t), x 2(t),, x n(t)) T be the pseudo almost perodc soluton of system (1.1). If there exst constants α > and M > 1 such that for every soluton x(t) = (x 1 (t), x 2 (t),, x n (t)) T of system (1.1) wth any ntal value ϕ(t) = (ϕ 1 (t), ϕ 2 (t),, ϕ n (t)) T satsfyng (1.2), x(t)x (t) 1 = max {max{ x (t)x (t), x (t)x (t) }} M ϕx e αt, t >, =1, 2,, n where ϕ x = max{sup max ϕ (t) x (t), sup max t 1 n t 1 n ϕ (t) x (t) }, then x (t) s sad to be globally exponentally stable.

54 CEMIL TUNÇ 2. Prelmnary Lemmas In ths secton, we shall frst recall some basc defntons, lemmas whch are used n what follows. Throughout ths paper, t wll be assumed that c : R (, ) s an almost perodc functon, η, τ j, α jl, β jl : R [, ) and I, a j, b jl, d jl : R R are pseudo almost perodc on R, where, j, l J. We also make the followng assumptons whch wll be used later. (H 1 ) there exst nonnegatve constants L f j, Lg j, Lh j, M g j and M j h such that f j (u) f j (v) L f j u v, g j(u) g j (v) L g j u v, h j(u) h j (v) L h j u v, and g j (u) M g j, h j(u) M h j, where u, v R, j J. (H 2 ) For, j, l J, the delay kernels σ jl, ν jl : [, ) R are contnuous, σ jl (t) e κt and ν jl (t) e κt are ntegrable on [, ) for a certan postve constant κ. (H 3 ) For each J, there exst constants α > and ξ >, such that and c c η ξ 1 α, d jl a j Lf j ξ j ξ 1 σ jl (u) du b jl (M g j Lg l ξ l M g l Lg j ξ j) ν jl (u) du(m h j L h l ξ l M h l L h j ξ j ) c α c (1 α c ) < 1. Lemma 2.1 (see [11, Lemma 2.3 ]). Let B = {f f, f P AP (R, R n )} equpped wth the nduced norm defned by f B = max{ f, f } = max{sup t R f(t), sup f (t) }, t R then, B s a Banach space. Lemma 2.2 (see [11, Lemma 3.1 ]. Assume that assumptons (H 1 ) and (H 2 ) hold. Then, for ϕ j, ϕ l P AP (R, R), σ jl (u)h j (ξ j ϕ j (t u))du, Defnton 2.1 (see [9,1]). defned on R. The lnear system ν jl (u)h l (ξ l ϕ l (t u))du P AP (R, R),, j, l J. (2.1) Let x R n and Q(t) be an n n contnuous matrx x (t) = Q(t)x(t) (2.2)

PSEUDO ALMOST PERIODIC SOLUTIONS 55 s sad to admt an exponental dchotomy on R f there exst postve constants k, α, projecton P and the fundamental soluton matrx X(t) of (2.2) satsfyng X(t)P X 1 (s) ke α(ts) for t s, X(t)(I P )X 1 (s) ke α(st) for t s. Lemma 2.3 (see [9]). Assume that Q(t) s an almost perodc matrx functon and g(t) P AP (R, R n ). If the lnear system (2.2) admts an exponental dchotomy, then pseudo almost perodc system has a unque pseudo almost perodc soluton x(t), and x(t) = Lemma 2.4 (see [9,1]). M[c ] = Then the lnear system x (t) = Q(t)x(t) g(t) (2.3) X(t)P X 1 (s)g(s)ds lm T t X(t)(I P )X 1 (s)g(s)ds. (2.4) Let c (t) be an almost perodc functon on R and 1 T T t c (s)ds >, = 1, 2,, n. x (t) = dag (c 1 (t), c 2 (t),, c n (t))x(t) admts an exponental dchotomy on R (It s worthwhle to menton that the exponental dchotomy n that case s wth P = I). 3. Exstence and unqueness of pseudo almost perodc solutons In ths secton, we establsh suffcent condtons on the exstence of pseudo almost perodc solutons of (1.1). Theorem 3.1. Let (H 1 ), (H 2 ) and (H 3 ) hold. Then, there exsts a unque contnuously dfferentable pseudo almost perodc soluton of system (1.1). Proof. Set x (t) = ξ 1 x (t), (3.1) then we can transform (1.1) nto the followng system x (t) = c (t) x (t η (t)) ξ 1 I (t) a j (t)f j (ξ j x j (t τ j (t))) b jl (t)g j (ξ j x j (t α jl (t)))g l (ξ l x l (t β jl (t))) d jl (t) σ jl (u)h j (ξ j x j (t u))du ν jl (u)h l (ξ l x l (t u))du

56 CEMIL TUNÇ = c (t) x (t) c (t) x (s)ds ξ 1 tη (t) a j (t)f j (ξ j x j (t τ j (t))) b jl (t)g j (ξ j x j (t α jl (t)))g l (ξ l x l (t β jl (t))) d jl (t) σ jl (u)h j (ξ j x j (t u))du ν jl (u)h l (ξ l x l (t u))du I (t), J. (3.2) Let ϕ B. Obvously, the boundedness of ϕ mples that ϕ s a unformly contnuous functon on R for J. Set f(t, z) = ϕ (t z), ( J). By Theorem 5.3 n [9, p. 58] and Defnton 5.7 n [9, p. 59], we can obtan that f P AP (R Ω) and f s contnuous n z K and unformly n t R for all compact subset K of Ω R. Ths, together wth η P AP (R, R) and Theorem 5.11 n [9, p. 6], mples that Smlarly, we have ϕ (t η (t)) P AP (R, R), J. ϕ j (t τ j (t)), ϕ j (t α jl (t)), ϕ j (t β jl (t)) P AP (R, R),, j, l J. (3.3) From (3.3), (H 1 ) and Corollary 5.4 n [9, p. 58], we have f j (ξ j ϕ j (t τ j (t))), g j (ξ j ϕ j (t α jl (t))), g l (ξ l ϕ l (t β jl (t))) P AP (R, R),, j, l J, (3.4) whch, together wth Lemma 2.2 and the fact that ϕ (t η (t)) P AP (R, R), mples and c (t) ξ 1 tη (t) ϕ (s)ds = c (t)ϕ (t) c (t)ϕ (t η (t)) P AP (R, R), J, (3.5) a j (s)f j (ξ j ϕ j (t τ j (t))) b jl (t)g j (ξ j ϕ j (t α jl (t)))g l (ξ l ϕ l (t β jl (t))) d jl (t) σ jl (u)h j (ξ j ϕ j (t u))du ν jl (u)h l (ξ l ϕ l (t u))du I (t) P AP (R, R), J. (3.6) For ϕ B, we consder the pseudo almost perodc soluton x ϕ (t) of the followng nonlnear pseudo almost perodc dfferental equatons: x (t) = c (t) x (t) c (t) ϕ (s)ds ξ 1 a j (t)f j (ξ j ϕ j (t τ j (t))) tη (t)

PSEUDO ALMOST PERIODIC SOLUTIONS 57 b jl (t)g j (ξ j ϕ j (t α jl (t)))g l (ξ l ϕ l (t β jl (t))) d jl (t) σ jl (u)h j (ξ j ϕ j (t u))du ν jl (u)h l (ξ l ϕ l (t u))du I (t), = 1, 2,, n. (3.7) Then, notce that M[c ] >, = 1, 2,, n, t follows from Lemma 2.4 that the lnear system x (t) = c (t) x (t), J, (3.8) admts an exponental dchotomy on R. Thus, by (3.5), (3.6) and Lemma 2.3, we obtan that the system (3.7) has exactly one pseudo almost perodc soluton: x ϕ (t) = {x ϕ (t)} Let = { F (t) = c (t) e s c (u)du [c (s) s sη (s) ϕ (u)du ξ 1 a j (s)f j (ξ j ϕ j (s τ j (s))) b jl (s)g j (ξ j ϕ j (s α jl (s)))g l (ξ l ϕ l (s β jl (s))) d jl (s) I (s)]ds}. tη (t) ϕ (u)du ξ 1 σ jl (u)h j (ξ j ϕ j (s u))du a j (t)f j (ξ j ϕ j (t τ j (t))) b jl (t)g j (ξ j ϕ j (t α jl (t)))g l (ξ l ϕ l (t β jl (t))) d jl (t) I (t), J. σ jl (u)h j (ξ j ϕ j (t u))du Then, {F } P AP (R, R n ), and (3.9) mples that { From (3.5), (3.6) and (3.1), we get ν jl (u)h l (ξ l ϕ l (s u))du ν jl (u)h l (ξ l ϕ l (t u))du e s c (u)du F (s)ds} P AP (R, R n ). (3.1) (3.9) (x ϕ (t)) = {(x ϕ (t)) }

58 CEMIL TUNÇ = {F (t) c (t) e s c (u)du F (s)ds} P AP (R, R n ). Thus, x ϕ B. Now, we defne a mappng T : B B by settng (T ϕ)(t) = x ϕ (t), ϕ B. We next prove that the mappng T s a contracton mappng of the B. In fact, n vew of (3.9), (H 1 ) and (H 3 ), for ϕ, ψ B, we have = { ((T ϕ)(t) (T ψ)(t)) } { e s c(u)du {c (s) s sη (s) (ϕ (u) ψ (u))du a j (s)(f j (ξ j ϕ j (s τ j (s))) f j (ξ j ψ j (s τ j (s)))) b jl (s)[(g j (ξ j ϕ j (s α jl (s)))g l (ξ l ϕ l (s β jl (s))) g j (ξ j ϕ j (s α jl (s)))g l (ξ l ψ l (s β jl (s)))) (g j (ξ j ϕ j (s α jl (s)))g l (ξ l ψ l (s β jl (s))) g j (ξ j ψ j (s α jl (s)))g l (ξ l ψ l (s β jl (s))))] d jl (s)[( σ jl (u)h j (ξ j ϕ j (s u))du ( { σ jl (u)h j (ξ j ϕ j (s u))du σ jl (u)h j (ξ j ϕ j (s u))du σ jl (u)h j (ξ j ψ j (s u))du e s c (u)du [c (s) s sη (s) ν jl (u)h l (ξ l ψ l (s u))du) ν jl (u)h l (ξ l ϕ l (s u))du ν jl (u)h l (ξ l ψ l (s u))du } ν jl (u)h l (ξ l ψ l (s u))du)]}ds ϕ (u) ψ (u) du a j (s) L f j ξ j ϕ j (s τ j (s)) ψ j (s τ j (s)) b jl (s) [M g j Lg l ξ l ϕ l (s β jl (s)) ψ l (s β jl (s)) M g l Lg j ξ j ϕ j (s α jl (s)) ψ j (s α jl (s)) ]

PSEUDO ALMOST PERIODIC SOLUTIONS 59 d jl (s) [ σ jl (u) dum h j σ jl (u) L h j ξ j ϕ j (s u) ψ j (s u) du { e s c(u)du [c η ξ 1 a j Lf j ξ j b jl (M g j Lg l ξ l M g l Lg j ξ j) { { e d jl σ jl (u) du } s c(u)du (c (s) α )ds ϕ ψ B e s c(u)du d( {1 α { 1 α c s c (u)du) α ν jl (u) L h l ξ l ϕ l (s u)) ψ l (s u) du } ν jl (u) duml h ]}ds } ν jl (u) du(mj h L h l ξ l Ml h L h j ξ j )]ds ϕ ψ B ) } e s c(u)du ds ϕ ψ B } e s c du ds ϕ ψ B } ϕ ψ B, (3.12) and = { ((T ϕ) (t) (T ψ) (t)) } { [c (t) (ϕ (u) ψ (u))du tη 1 (t) a j (t)(f j (ξ j ϕ j (t τ j (t))) f j (ξ j ψ j (t τ j (t)))) b jl (t)(g j (ξ j ϕ j (t α jl (t)))g l (ξ l ϕ l (t β jl (t))) g j (ξ j ψ j (t α jl (t)))g l (ξ l ψ l (t β jl (t)))) d jl (t)( σ jl (u)h j (ξ j ϕ j (t u))du c (t) σ jl (u)h j (ξ j ψ j (t u))du ν jl (u)h l (ξ l ψ l (t u))du)] e s t s c(u)du [c (s) (ϕ (u) ψ (u))du sη (s) ν jl (u)h l (ξ l ϕ l (t u))du

6 CEMIL TUNÇ a j (s)(f j (ξ j ϕ j (s τ j (s))) f j (ξ j ψ j (s τ j (s)))) b jl (s)(g j (ξ j ϕ j (s α jl (s)))g l (ξ l ϕ l (s β jl (s))) g j (ξ j ψ j (s α jl (s)))g l (ξ l ψ l (s β jl (s)))) d jl (s)( σ jl (u)h j (ξ j ϕ j (s u))du σ jl (u)h j (ξ j ψ j (s u))du { [c η ξ 1 a j Lf j ξ j b jl (M g j Lg l ξ l M g l Lg j ξ j) d jl c { c e s c (u)du [c η σ jl (u) du ξ 1 ν jl (u)h l (ξ l ϕ l (s u))du } ν jl (u)h l (ξ l ψ l (s u))du)]ds ν jl (u) du(m h j L h l ξ l M h l L h j ξ j )]ds ϕ ψ B a j Lf j ξ j b jl (M g j Lg l ξ l M g l Lg j ξ j) From (H 3 ), we have and d jl σ jl (u) du } ν jl (u) du(mj h L h l ξ l Ml h L h j ξ j )]ds ϕ ψ B α c (1 α } c ) ϕ ψ B. (3.13) K = max{ max {1 α 1 n c < 1 α c }, max 1 n {c whch, together wth (3.12) and (3.13), yeld < 1, T ϕ T ψ B K ϕ ψ B, α c (1 α c )} < 1, whch mples that the mappng T : B B s a contracton mappng. Therefore, the mappng T possesses a unque fxed pont x = (x 1 (t), x 2 (t),, x n (t)) T B, T x = x.

PSEUDO ALMOST PERIODIC SOLUTIONS 61 By (3.7) and (3.9), x satsfes (3.7). So (1.1) has a unque contnuously dfferentable pseudo almost perodc soluton x = (ξ 1 x 1 (t), ξ 2 x 2 (t),, ξ n x n (t)) T. The proof of Theorem 3.1 s now completed. 4. Exponental stablty of the pseudo almost perodc soluton In ths secton, we wll dscuss the global exponental stablty of the pseudo almost perodc soluton of system (1.1). Theorem 4.1. Suppose that all condtons n Theorem 3.1 are satsfed. Moreover, assume that (1 c c )(c η < 1, J. d jl ξ 1 a j Lf j ξ j ξ 1 σ jl (u) du b jl (M g j Lg l ξ l M g l Lg j ξ j) ν jl (u) du(m g j Lg l ξ l M g l Lg j ξ j) (4.1) Then system (1.1) has at least one pseudo almost perodc soluton x (t), and x (t) s globally exponentally stable. Proof. By Theorem 3.1, (1.1) has a unque contnuously dfferentable almost perodc soluton x (t) = (x 1(t), x 2(t),, x n(t)) T. Suppose that x(t) = (x 1 (t), x 2 (t),, x n (t)) T s an arbtrary soluton of (1.1) assocated wth ntal value ϕ(t) = (ϕ 1 (t), ϕ 2 (t),, ϕ n (t)) T satsfyng (1.2). Let Then y(t) = (y 1 (t), y 2 (t),, y n (t)) T = (ξ 1 1 (x 1 (t) x 1(t)), ξ 1 2 (x 2 (t) x 2(t)),, ξ 1 n (x n (t) x n(t))) T. y (t) = c (t)y (t η (t)) ξ 1 a j (t)(f j (x j (t τ j (t))) f j (x j(t τ j (t)))) b jl (t)(g j (x j (t α jl (t)))g l (x l (t β jl (t))) g j (x j(t α jl (t)))g l (x l (t β jl (t)))) d jl (t)( σ jl (u)h j (x j (t u))du where = 1, 2,, n. σ jl (u)h j (x j(t u))du ν jl (u)h l (x l (t u))du ν jl (u)h l (x l (t u))du), (4.2)

62 CEMIL TUNÇ and We can choose a constant λ (, mn{κ, mn J c }) such that Γ (λ) = c λ c η eλη ξ 1 a j Lf j ξ je λτ j b jl [M g j Lg l ξ le λβ jl M g l Lg j ξ je λα jl ] d jl [ σ jl (u) dumj h σ jl (u) L h j ξ j e λu du β ν jl (u) dum h l ν jl (u) L h l ξ l e λu du = (c λ)( c λ 1) <, (4.3) Π (λ) = (1 c c λ )[c η eλη ξ 1 a j Lf j ξ je λτ j b jl [M g j Lg l ξ le λβ jl M g l Lg j ξ je λα jl ] d jl [ σ jl (u) dumj h σ jl (u) L h j ξ j e λu du ν jl (u) dum h l ] ν jl (u) L h l ξ l e λu du where β = c η eλη ξ 1 = (1 c c λ )β < 1, (4.4) a j Lf j ξ je λτ j b jl [M g j Lg l ξ le λβ jl M g l Lg j ξ je λα jl ] d jl [ σ jl (u) dumj h σ jl (u) L h j ξ j e λu du ν jl (u) L h l ξ l e λu du ν jl (u) dum h l, = 1, 2,, n.

Let ϕ x ξ = max{sup t PSEUDO ALMOST PERIODIC SOLUTIONS 63 max 1 n ξ1 ϕ (t) x (t), sup t max 1 n ξ1 ϕ (t) x (t) } (4.5) and M be a constant such that M > c λ > 1, β for all = 1, 2,..., n, (4.6) whch, together wth (4.3), yelds 1 M β c λ <, β c λ Consequently, for any ε >, t s obvous that < 1, for all J, (4.7) y(t) 1 < ( ϕ x ξ ε)e λt < M( ϕ x ξ ε)e λt for all t (, ]. In the followng, we wll show y(t) 1 < M( ϕ x ξ ε)e λt for all t >. (4.8) Otherwse, there must exst {1, 2,, n} and θ > such that { y(θ) 1 = max{ y (θ), y (θ) } = M( ϕ x ξ ε)e λθ, y(t) 1 < M( ϕ x ξ ε)e λt for all t (, θ). Note that y (s) c (s)y (s) = c (s) s sη (s) y (u)du a j (s)(f j (x j (s τ j (s))) f j (x j(s τ j (s)))) b jl (s)(g j (x j (s α jl (s)))g l (x l (s β jl (s))) g j (x j(s α jl (s)))g l (x l (s β jl (s)))) d jl (s)( σ jl (u)h j (x j (s u))du σ jl (u)h j (x j(s u))du ν jl (u)h l (x l (s u))du (4.9) ν jl (u)h l (x l (s u))du), s [, t], t [, θ].(4.1) Multplyng both sdes of (4.1) by e s c(u)du, and ntegratng t on [, t], we get y (t) = y ()e c (u)du e s c (u)du [c (s) s sη (s) y (u)du a j (s)(f j (x j (s τ j (s))) f j (x j(s τ j (s))))

64 CEMIL TUNÇ b jl (s)(g j (x j (s α jl (s)))g l (x l (s β jl (s))) g j (x j(s α jl (s)))g l (x l (s β jl (s)))) d jl (s)( σ jl (u)h j (x j (s u))du σ jl (u)h j (x j(s u))du ν jl (u)h l (x l (s u))du ν jl (u)h l (x l (s u))du)]ds, t [, θ]. Thus, wth the help of (4.7), we have y (θ) = y ()e θ θ c(u)du e s θ s c(u)du [c (s) y (u)du sη (s) a j (s)(f j (x j (s τ j (s))) f j (x j(s τ j (s)))) b jl (s)(g j (x j (s α jl (s)))g l (x l (s β jl (s))) g j (x j(s α jl (s)))g l (x l (s β jl (s)))) d jl (s)( σ jl (u)h j (x j (s u))du σ jl (u)h j (x j(s u))du ( ϕ x ξ ε)e c θ θ a j Lf j ξ jm( ϕ x ξ ε)e λ(sτ j(s)) ν jl (u)h l (x l (s u))du)]ds ν jl (u)h l (x l (s u))du e θ s c (u)du [c (s)η (s)m( ϕ x ξ ε)e λ(sη (s)) b jl [M g j Lg l ξ lm( ϕ x ξ ε)e λ(sβ jl(s)) M g l Lg j ξ jm( ϕ x ξ ε)e λ(sαjl(s)) ] d jl [ σ jl (u) dumj h ν jl (u) L h l ξ l M( ϕ x ξ ε)e λ(su) du σ jl (u) L h j ξ j M( ϕ x ξ ε)e λ(su) du ( ϕ x ξ ε)e c θ θ e θ s c (u)du e λs [c η eλη ν jl (u) dum h l ]ds

PSEUDO ALMOST PERIODIC SOLUTIONS 65 a j Lf j ξ je λτ j b jl [M g j Lg l ξ le λβ jl M g l Lg j ξ je λα jl ] d jl [ σ jl (u) dumj h σ jl (u) L h j ξ j e λu du ν jl (u) L h l ξ l e λu du ν jl (u) dum h l ]dsm( ϕ x ξ ε) θ ( ϕ x ξ ε)e c θ e c θ e (c λ)s dsβ M( ϕ x ξ ε) = M( ϕ x ξ ε)e λθ [( 1 M β c λ )e(λc )θ β c λ ] (4.11) < M( ϕ x ξ ε)e λθ, (4.12) whch, together wth (4.9), mples that y(θ) 1 = max{ y (θ), y (θ) } = y (θ) = M( ϕ x ξ ε)e λθ. (4.13) From (4.4) and (4.7), (4.1) and (4.11) yeld y (θ) c (θ)y (θ) c (θ) θ θη (θ) y (u) du a j (θ) f j (x j (θ τ j (θ))) f j (x j(θ τ j (θ))) b jl (θ) [ g j (x j (θ α jl (θ)))g l (x l (θ β jl (θ))) g j (x j (θ α jl (θ)))g l (x l (θ β jl (θ))) g j (x j (θ α jl (θ)))g l (x l (θ β jl (θ))) g j (x j(θ α jl (θ)))g l (x l (θ β jl (θ))) ] d jl (θ) [ σ jl (u)h j (x j (θ u))du σ jl (u)h j (x j (θ u))du σ jl (u)h j (x j (θ u))du σ jl (u)h j (x j(θ u))du ν jl (u)h l (x l (θ u))du ν jl (u)h l (x l (θ u))du ν jl (u)h l (x l (θ u))du ] ν jl (u)h l (x l (θ u))du

66 CEMIL TUNÇ M( ϕ x ξ ε)e λθ [c ( 1 M β c λ )e(λc )θ β ( c λ 1)] < M( ϕ x ξ ε)e λθ, whch contradcts (4.13). Hence, (4.8) holds. Lettng ε, we have from (4.8) that y(t) 1 M ϕ x ξ e λt for all t >, whch mples x(t) x (t) 1 M ϕ x e λt for all t >. Ths completes the proof. 5. Example and Remark In ths secton, some examples and remarks are provded to demonstrate the effectveness of our results. Example 5.1. Consder the followng for HCNNs wth tme-varyng leakage delays: x 1(t) = [ 4 1 8 1 cos t cos 2t ]x1 (t 1 sn t ) 1 1 3 (cos t cos 2t e t4 sn 2 t )f 1 (x 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) 25 1 (cos t cos 3t e t4 sn 2 t )f 2 (x 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 1 (cos t cos 2t sn 2 t et4 )g1(x 2 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) 2 7 (cos t cos 5t e t4 sn 2 t )g2(x 2 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 1 (cos t cos 7t e t4 sn 2 t )g 1 (x 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) g 2 (x 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 3 (cos t cos 2t et4 sn 2 t ) 5 1 sn t et4 cos t, x 2(t) = [ 1 4 8 1 where c e u h 1 (x 1 (t u))du e u h 2 (x 2 (t u))du cos t cos 3t ]x1 (t 1 cos t ) 1 5 7 (cos t cos πt sn 2 t et4 )f 1 (x 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 9 (cos t cos 2t sn 2 t et4 )f 2 (x 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 1 (cos t cos πt sn t et4 )g1(x 2 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) 5 11 (cos t cos 2t e t4 sn t )g2(x 2 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 13 (cos t cos 3t e t4 sn t )g 1 (x 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) g 2 (x 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 7 3 (cos t cos 2t et4 sn 2 t ) 1 5 et4 sn t cos t, f j (x) = 1 4 ( x cos x), g j(x) = h j (x) = cos x, e u h 1 (x 1 (t u))du e u h 2 (x 2 (t u))du (5.1)

PSEUDO ALMOST PERIODIC SOLUTIONS 67 and b jl (u) =, (jl 112, jl 212), σ jl (u) = v jl (u) = e u,, j, l = 1, 2. Comparng (5.1) wth (1.1) and usng some basc nformaton, t follows that c 1 = 1 4, c 1 = 1 2, c 2 = 1 4, c 2 = 1 2, η j = 1 1, Lf j = 1 2, L g j = Lh j = L h l = 1, M g j = M j h = Ml h = 1, ξ = ξ 1 = ξ k = ξ l = 1, 2 2 2 c c η ξ 1 a j Lf j ξ ξ 1 b jl (M g j Lg l ξ l M g l Lg j ξ j), 2 2 d jl σ jl (u) du v jl (t) du(m h j L h l ξ l M h l L h j ξ j ), = 1 4 1 2 ( 9 2 3 5 21 1 27 2 ) ( 12 1 156 1 ), (1 c c )(c η 2 8 1 ( c ξ 1 2 d jl e u du e u du) = 2181 1 = α, α c (1 α c ) = 1569 25 < 1, 2 a j Lf j ξ ξ 1 σ jl (u) du 1 = 3[ 2 ( 261 1 )] 8 1 ( 2 2 b jl (M g j Lg l ξ l M g l Lg j ξ j), v jl (t) du(m h j L h l ξ l M h l L h j ξ j ) e u du e u du)] = 957 1 < 1, whch mply that (5.1) satsfes all the condtons n Theorem 3.1 and Theorem 4.1. Hence, we can conclude that system (5.1) has a unque contnuously dfferentable pseudo almost perodc soluton x (t), whch s globally exponentally stable wth the exponental convergent rate λ.1.

68 CEMIL TUNÇ Open Access: Ths artcle s dstrbuted under the terms of the Creatve Commons Attrbuton Lcense (CC-BY 4.) whch permts any use, dstrbuton, and reproducton n any medum, provded the orgnal author(s) and the source are credted.

PSEUDO ALMOST PERIODIC SOLUTIONS 69 References [1] A. Dembo, O. Farotm, T. Kalath, Hgh-order absolutely stable neural networks. IEEE Trans. Crcuts Syst. 38 (1991) 57-65. [2] D. Psalts, C. H. Park, J. Hong, Hgher order assocatve memores and ther optcal mplementatons. Neural Networks 1 (1988), 143-163. [3] N. B. Karayanns, A. N. Venetsanopoulos, On the tranng and performance of hgh-order neural networks. Math. Bosc. 129 (1995), no. 2, 143-168. [4] Z. Chen, M. Yang, Exponental convergence for HRNNs wth contnuously dstrbuted delays n the leakage terms. Neural Comput & Applc (213) 23:2221-2229. [5] R. Ja, M. Yang, Convergence for HRNNs wth Unbounded Actvaton Functons and Tmevaryng Delays n the Leakage Terms. Neural Process Lett (214) 39: 69-79. [6] Y. Yu, W. Jao, New Results on Exponental Convergence for HRNNs wth Contnuously Dstrbuted Delays n the Leakage Terms. Neural Process Lett (214) 39:167-177. [7] Y. Xu, Ant-perodc solutons for HCNNs wth tme-varyng delays n the leakage terms, Neural Comput & Applc (212) DOI 1.17/s521-12-133-6. [8] A. Zhang, Exstence and exponental stablty of ant-perodc solutons for HCNNs wth tmevaryng leakage delays. Adv. Dfference Equ. 213, 213:162, 14 pp. [9] C. Zhang, Almost Perodc Type Functons and Ergodcty. Kluwer Academc/Scence Press, Bejng (23) [1] A. M. Fnk, Almost perodc dfferental equatons, Lecture Notes n Mathematcs, Vol. 377, Sprnger, Berln, 1974. [11] B. Lu, Pseudo Almost Perodc Solutons for CNNs wth Contnuously Dstrbuted Leakage Delays, Neural Processng Lett. (214) DOI 1.17/s1163-14-9354-9. [12] W. Wang, B. Lu, Global exponental stablty of pseudo almost perodc solutons for SICNNs wth tme-varyng leakage delays, Abstr. Appl. Anal. 214(967328) (214) 1-17. [13] B. Lu, Pseudo almost perodc solutons for neutral type CNNs wth contnuously dstrbuted leakage delays, Neurocomputng 148 (215) 445-454.. [14] Y. Xu, New results on almost perodc solutons for CNNs wth tme-varyng leakage delays, Neural Computng & Applcatons. 25(6)(214) 1293-132. [15] C. Zhang, Pseudo almost perodc solutons of some dfferental equatons II, J. Math. Anal. Appl., 7-192, 543-561, 1995. [16] B. Ammar, F. Cherf, A. M. Alm, Exstence and unqueness of pseudo almost-perodc solutons of recurrent neural networks wth tme-varyng coeffcents and mxed delays, IEEE Transactons on Neural Networks and Learnng Systems, 23(1) (212) 19-118.