Multi-dimensional Central Limit Theorem

Σχετικά έγγραφα
Multi-dimensional Central Limit Theorem

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

1 Complete Set of Grassmann States

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

α & β spatial orbitals in

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

2 Composition. Invertible Mappings

LECTURE 4 : ARMA PROCESSES

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

8.324 Relativistic Quantum Field Theory II

A Class of Orthohomological Triangles

C.S. 430 Assignment 6, Sample Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The challenges of non-stable predicates

A Note on Intuitionistic Fuzzy. Equivalence Relation

Statistical Inference I Locally most powerful tests

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Every set of first-order formulas is equivalent to an independent set

EE512: Error Control Coding

Phasor Diagram of an RC Circuit V R

6. MAXIMUM LIKELIHOOD ESTIMATION

12. Radon-Nikodym Theorem

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Matrices and Determinants

ST5224: Advanced Statistical Theory II

The Simply Typed Lambda Calculus

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Finite Field Problems: Solutions

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Lecture 15 - Root System Axiomatics

The one-dimensional periodic Schrödinger equation

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Fractional Colorings and Zykov Products of graphs

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Tridiagonal matrices. Gérard MEURANT. October, 2008

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Partial Differential Equations in Biology The boundary element method. March 26, 2013

w o = R 1 p. (1) R = p =. = 1

Pricing of Options on two Currencies Libor Rates

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Reminders: linear functions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Example Sheet 3 Solutions

Srednicki Chapter 55

Solution Series 9. i=1 x i and i=1 x i.

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

8.323 Relativistic Quantum Field Theory I

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Lecture 21: Properties and robustness of LSE

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Chapter 3: Ordinal Numbers

Μηχανική Μάθηση Hypothesis Testing


Bounding Nonsplitting Enumeration Degrees

Lecture 2. Soundness and completeness of propositional logic

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Homework for 1/27 Due 2/5

Mean-Variance Analysis

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Math221: HW# 1 solutions

Differential equations

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Solutions to Exercise Sheet 5

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Homomorphism in Intuitionistic Fuzzy Automata

Areas and Lengths in Polar Coordinates

2 Lagrangian and Green functions in d dimensions

Lecture 13 - Root Space Decomposition II

From the finite to the transfinite: Λµ-terms and streams

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Derivation for Input of Factor Graph Representation

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

CRASH COURSE IN PRECALCULUS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

V. Finite Element Method. 5.1 Introduction to Finite Element Method

Generalized Linear Model [GLM]

Transcript:

Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme () t () t t t t () t As, becomes a Gaussan random process, that s to say, { } t, t,, t are jontly Gaussan for any and any samplng nstants.

Jont Characterstc Functon of a Random Vector defne ts jont characterstc functon as ( ) Defnton. For a -dmensonal random vector,,,, jωx jωx jω (,,, x Φ ω ω ω ) (,,, ) e e e f x x x dxdxdx where f x, x,, x s the jont pdf of. Usng the expectaton notaton, j( ω+ ω+ + ω Φ ) ( ω, ω,, ω ) e ( g) When the random varables { } are statstcally ndependent, j j ( ω ω ω ) ω ω j,,, Φ e e e ω In the one-dmensonal case, j Φ ω e ω Our vectors are row vectors. Usng matrx notaton, ( ω ω ω ) ( ) Let ω,,, and,,,. hen ω and eq. g s wrtten as ω + ω + + ω j e ( g) Φ ω ω

3 Jont Characterstc Functon of a Subset ( ) Let,,,. ( ) ( ) ( ) Consder a subset of the random varables, say,,,,, <. he jont characterstc functon of,,, can be found easly from the jont char functon of,,, : Φ,,, Φ ( ω, ω,, ω ) (,,, ) e e e f,,, x x x dxdx dx + jω x jω x jω x jω x jω x jω x (,,,,,, ) e e e f,,,,,, x x x x x dxdx dx dx dx + + +,,,,,, ( ω, ω,, ω, ω+ 0,, ω 0) Example ( ω, ω ) ( ω, ω 0, ω ) Φ Φ, 3,, 3 3 3 ( ω ) ( ω, ω 0, ω 0) Φ Φ,, 3 3

4 Covarance Matrx of a Random Vector Consder a -dmensonal random vector,,,. Defne and λ cov(, ) j j j j λ λ λ λ λ λ λ λ λ s referred to as the covarance matrx of the random vector. property he dagonal elements of the covarance matrx are σ λ cov, j,,, jj j j j that s, the varance of. j property For j, that s, λ cov, λ j j j j j s symmetrcal. property he correlaton coeffcent s cov (, ) j λj ρj σσ σσ j j hus λ ρ σσ j j j

5 property When s a zero mean random vector, that s, 0 for every,,,, In that case, ote that λ j j ( )

6 Covarance Matrx of the Sum Vector ( ) Let,,, be a zero-mean -dmensonal random vector. Let denote the covarance matrx of :. Consder ndependent vectors,,, statstcally dentcal to. Defne the sum vector as. hen ( g3) () t ();{ ()} t t are d to (), t () t 0 () t tme () t () t Proof Snce s a zero mean random vector, t t As, ( t) becomes a Gaussan random process. { t, t,, t ( )} are jontly Gaussan for any and for any samplng nstants. t ( )( ) whch s + + + + + + + j j j notng j j 0 for j

7 Jont Characterstc Functon of the Sum Vector Let and assume { } are d to. hen ln ω Φ ω ln Φ ( g4) Proof Φ ( ω) e jω e jω e j ω notng { } are ndependent e j ω ω Φ Φ ω notng { } are dentcal to

8 Jont CF of a zero-mean random vector For a -dm random vector where Φ ( ω) e ( ω ω ω ) ( ) jω, ts jont characterstc functon s ω,,, and,,,. ω ω + ω + + ω Defne the random varable W as hen Φ ( ω) e W ( ω ω ω ) W jω j + + + W W3 + W + + +! 3! ow assume s a zero-mean random vector. he nd term of eq. m s ( ω ω ω ) W j + + + For a zero-mean vector, 0 for all j. hus we have j ( m ) ( m ) W 0 he 3rd term of eq. m s ( ω ω ω ) W j + + + ( ω ω ω )( ω ω ω ) + + + + + + j ω ω j j recallng the covarance λ when 0 j j j j ωλ ω ω ω j j ( m3)

9 Mult-dmensonal Central Lmt heorem Let and { } be d to. Assume 0. hen ω ω lm Φ ( ω) e ( m4) where. s referred to as a zero-mean Gaussan random vector when ts jont characterstc functon s the form shown n eq. m4. Proof From eq. m, m, and m3, 3 ω W W W Φ + + + + 3! 3! ω ω + ω ln Φ ln ω + f 3 3 ω 3 u u Recallng ln( + u) u + ; u < 3 ω ln Φ ωω + f 3 3 + other terms From eq. g4, 3 f 3 Fnally ω ln Φ ω ln Φ ωω + f 3 + other terms lm ln Φ ( ω) ωω and from eq. g3,.

0 Jont Char Functon of non-zero mean Gaussan Let be a Gaussan random vector wth mean m and covarance matrx. hen ts jont CF s ω ω Φ e ω + jωm A Gaussan random vector s completely defned by the mean and ts covarance matrx. Proof. Defne Y m. hen Y s a zero-mean Gaussan random vector, and t s easy to see. Y From eq. m4, Φ Y ω exp ωyω. hus ω exp ( jω ) Φ ( jω( Y m ) ) exp + exp Φ Y ( jωy ) exp ( jωm ) ω exp ( jωm ) exp ωyω + jωm exp ωω + jωm notng Y

Formal Defnton of Gaussan Random Vector s a Gaussan random vector (or the component random varables are jontly Gaussan) f and only f ts jont characterstc functon s Φ ω exp ωω + jωm where m s the mean vector and s the covarance matrx. he jont pdf f f ( π ) ( x) can be found by the nverse Fourer transform: ( ) ( x) exp x m x m Example For, m [ μ] [ ] σ Φ ω exp ωσ ω+ jωμ

For, m ( ) [ μ μ ] jontly Gaussan wth correlaton coeffcent ρ ( ) λ σ λ cov, λ cov (, ) λ σ ( ) cov, recallng ρ σσ σ ρσσ ρσσ σ Φ ω exp ωω + jωm ω ω ω [ ω ω ] ωm σ ρσσ ω [ ωω] ρσ ω σ σ ω σ + ωω ρσ σ + ω σ [ ω ω ] μ μ ωμ + ω μ ω σ + ωω ρσ σ + ω σ Φ ω + + exp j ( ωμ ω μ )

3 he jont pdf of a Gaussan random vector s For, x m ( ) ( x x ) f,.,. ( μ μ ) ( x μ x μ ) ( ) ( x) exp x m x m,. x m,. σ ρσσ. ρσσ σ σ σ ρ σ σ σ σ ρ. ( π ) σ ρσ σ ( x m ) ( x m ) ρσσ. σ, / πσσ ( ρ ) ( x ) ( x )( x ) + ( x ) σ μ ρσσ μ μ σ μ σσ Fnally we have, for, f ( x, x ) e ( ρ ) ( ρ ) x μ x μ x μ x μ ρ + σ σ σ σ μ μ μ μ x x x x ρ + σ σ σ σ ( ρ )

4 Weghted Sum of Gaussan Random Varables Let be a Gaussan random vector and defne Y as a lnear transformaton of Y A + b where dm, A s a matrx, and b s a -dmesonal constant vector. hen Y s also a Gaussan random vector wth Y + Y ( w ) m Am b and A A ote. A sum of Gaussan random varables s Gaussan. he component Gaussan random varables { } don't have to be ndependent for the sum to be Gaussan. Homewor. Weghted Sum of Gaussan Random Varables Prove that a transformaton of a Gaussan random vector s a Gaussan random vector. Hnt. ω( A ) A ω jω m A b Show Φ ω e + + to prove Y s Gaussan wth Y Y + and Y m m A b A A ote. A can be a h matrx wth h<. Eq. w stll holds true.

5 Example: Lnear Combnaton of Gaussan Random Varables: ( μ σ ) ( μ σ ) Let ~, and ~,. Suppose and are jontly Gaussan wth correlaton coeffcent ρ. Defne Y a + a Y ( Y Y ) Fnd the covarance matrx of,. Soluton. In ths example, a a A 0 b 0 Y and Y and are jonly Gaussan wth m Y a a μ aμ+ aμ Am 0 μ μ Y a a σ ρσσ a AA 0 ρσ a σ σ 0 a a a a a a σ + ρ σσ + σ σ + ρ σσ aσ + ρaσσ σ ( + ) σ + ρ σσ + σ Covarance matrx shows VAR Y a a a a. Y Alternate method of fndng VAR Y : VAR Y VAR a a (, ) VAR a + VAR a + COV a a ( ) σ σ a + a + aa a a σ σ a + a + a a σ σ, a + a + a a COV σ σ ρσσ a + a + a a

6 Suppose we are nterested n Y only. Let In ths example, Y a + a A [ a a ] he dmenson of Y can be smaller than that of. Y and s a Gaussan random varables wth m Y Covarance matrx μ Am [ a a ] a + a μ μ μ σ ρσσ a Y AA [ a a] ρσ a σ σ Y σ ρ σσ σ a + a a + a a σ s, and shows VAR Y + a a ρσ σ + a σ

7 Mult-dmensonal Central Lmt hm - Example 3 ( t) ( t); { ( t) } are ndependent random telegraph sgnals () t () t () t t 0 As t t t 3 3, ( t) becomes a Gaussan random process. t, t, t are jontly Gaussan. { } 3

8 Covarance Matrx of the Random elegraph Sgnal Samples ( t) s a random telegraph sgnal wth transton rate α [transtons/second] We have shown that ( t) s a WSS random process wth mean m ( t) ( t) 0 ; t t varance σ ; ατ auto-correlaton R ( τ ) e In ths example, we wll tae 3 tme samples. ( t t t ) [ ] Samplng tme nstants are,, (,,3) seconds. 3 ( ) ( () ),,,, 3 s a 3-dmensonal random vector. 3 0 for all,,3. he mean vector m 0. Let be the covarance matrc of the random vector. λ λ λ 3 λ λ λ3 λ 3 λ3 λ 33 where λ cov(, ). j j t j λj j R tj t e α Snce 0, We have α 4α e e α α e e 4α α e e j t

9 Covarance Matrx of the Sum Vector () () () Generate d random telegraph sgnals t, t,, t. Sample the sgnals to get d random vectors,,,. he sum vector s wth.. Jont Characterstc Functon ( ),, a 3-dmensonal random vector 3 3 e e e f x x x3 dxdxdx 3 jωx jωx jω3x Φ 3 ( ω, ω, ω ) (,, ) where f x, x, x s the jont pdf of. 3 Usng expectaton notaton, j( ω+ ω+ ω33 Φ,, e ) e ( ω ω ω ) 3 Usng matrx notaton, ( ω ω ω ) ( ) Let ω,, and,,. hen ω 3 3 ω + ω + ω Φ ( ω) e jω 3 3 eq. e and s wrtten as For the sum vector, ( ),, a 3-dmensonal random vector 3 3 e e e f z z z3 dzdzdz 3 jωz jωz jω3z Φ 3 ( ω, ω, ω ) (,, ) where f z, z, z s the jont pdf of. 3 Usng matrx notaton, Φ e jω ω We do not now Φ ( ω) yet. However, as, we can fnd Φ ( ω) wthout nowledge of Φ ( ω).

0 Mult-dmensonal central lmt theorem states As, Φ ω exp ωω ( e) α 4α e e α α where e e 4α α e e Eq. e s the jont characterstc functon of a zero-mean Gaussan random vector. Jont pdf of the sum vector he jont pdf f ( z) can be found by the nverse Fourer transform from Φ ( ω) : f ( π ) ( ) ( z) exp z z wth 3.