NMR for Analytical Chemists. NMR Ch Announcement. Midterm Oct 18 I will give you unknown samples for presentation next Monday

Σχετικά έγγραφα
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Solutions - Chapter 4

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Section 8.3 Trigonometric Equations

Matrices and Determinants

Density Matrix Description of NMR BCMB/CHEM 8190

w o = R 1 p. (1) R = p =. = 1

Homework 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Example Sheet 3 Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Derivation of Optical-Bloch Equations

Lifting Entry (continued)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

derivation of the Laplacian from rectangular to spherical coordinates

6.3 Forecasting ARMA processes

2 Composition. Invertible Mappings

Approximation of distance between locations on earth given by latitude and longitude

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The ε-pseudospectrum of a Matrix

Concrete Mathematics Exercises from 30 September 2016

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order RLC Filters

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

CRASH COURSE IN PRECALCULUS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Math221: HW# 1 solutions

Second Order Partial Differential Equations

Uniform Convergence of Fourier Series Michael Taylor

Space-Time Symmetries

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Reminders: linear functions

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Partial Trace and Partial Transpose

Probability and Random Processes (Part II)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Areas and Lengths in Polar Coordinates

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Areas and Lengths in Polar Coordinates

Quantum Systems: Dynamics and Control 1

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

Solution Series 9. i=1 x i and i=1 x i.

On the Galois Group of Linear Difference-Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Math 6 SL Probability Distributions Practice Test Mark Scheme

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Spin Precession in Electromagnetic Field

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

The Simply Typed Lambda Calculus

Lecture 34 Bootstrap confidence intervals

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Inverse trigonometric functions & General Solution of Trigonometric Equations

Solutions to Exercise Sheet 5

Orbital angular momentum and the spherical harmonics

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

EE512: Error Control Coding

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Srednicki Chapter 55

Section 7.6 Double and Half Angle Formulas

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Calculating the propagation delay of coaxial cable

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Statistical Inference I Locally most powerful tests

Trigonometric Formula Sheet

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Congruence Classes of Invertible Matrices of Order 3 over F 2

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

What happens when two or more waves overlap in a certain region of space at the same time?

10.7 Performance of Second-Order System (Unit Step Response)

Trigonometry 1.TRIGONOMETRIC RATIOS

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Homework 8 Model Solution Section

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Optical Feedback Cooling in Optomechanical Systems

[1] P Q. Fig. 3.1

Notes on the Open Economy

Additional Results for the Pareto/NBD Model

( ) 2 and compare to M.

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

An Inventory of Continuous Distributions

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

C.S. 430 Assignment 6, Sample Solutions

Transcript:

Chem 56 NMR for Analytial Chemts Leture 1 NMR Ch.1-.3 Announement Midterm Ot 18 I will give you unknown samples for presentation next Monday 1

Quiz Q1 What the expeted motion of M(t) in the rotation frame under the following B eff? Desribe M(t) = [M x (t), M y (t), M z (t)]. eff (a) - B eff (t) = [, ω 1, ] M() = [,, M ] () Draw a trajetory of M(t) for (a). When should we stop applying a pulse to exite NMR signals? Give the time t that yields the strongest signal. What exp(-iht)? (t) = exp(-iht) () exp(iht) [.55] 3 exp(a) = 1 A A / A / 3!.. n A n / n! exp(-iγb I z t) = 1 -iγb I z t +(-iγb I z t) / + (-iγb I z t) 3 /3! + (-iγb I z t) 4 /4! +.

Matrix alulation of I z n I z I I I I z 3 z m z m z 1/ 1/ 1/ 1/ 1/ Q4 1 Q 1/ 1/ 1/ 4 Q 3 Q Q5 Q6 1/ 4 I z Q7 Q8 [Q] Q1 Q11 m 1/ 4 Q1 Q13 [Q3] 1 Q15 Q16 m 1/ 4 I Z Q17 Q18 [Q4] 4 exp(-iγb I z t) = 1 -iγb I z t +(-iγb I z t) / + (-iγb I z t) 3 /3! +. Using (I z ) = E exp(-iαi z ) = E +{-iα/}i z + {(-iα/) /}E + {(-iα/) 3 /3!} I z + = Eos(α/) ii z sin(α/) = [Q1 in a matrix?] exp(-iαi z ) I x exp(iαi z ) = I X osα+ I Y sinα exp(-iαi z ) I Y exp(iαi z ) = [Q1] I y osα -I X sinα 3

4 exp(-iαi z ) I x exp(iαi z ) = I X osα+ I Y sinα?? 1 1 / / 1/ sin os 1 i sin 1 1 os sin os i i i Expetation value in Dira notation d Ψ(t)>/dt = ih(t) Ψ(t)> In general, state ket Ψ(t)> exanded as Ψ(t)> = = Σ k (t) φ k > = Σ k (t) k >, here φ > an eigen ket (k 1 ) where φ k > an eigen ket (k =1,..) The expetation value <A> obtained by use of operator A as <A>= =< Ψ(t) A Ψ(t)> <A> given by A as ), ( * ), ( t x A t x dx <A> given by A as <A> = <Ψ(t) A Ψ(t)> = (Σ k* (t)<k )A(Σ j* (t) j>) = ΣΣ j (t) k* (t)<k A j> = ΣΣ j (t) k* (t)a kj In Dira notation, operator an be generally denoted by a matrix A kj

Density funtion & Expetation values id Ψ(t)>/dt = H(t) Ψ(t)> Ψ(t)> = Σ j (t) φ j > <A> = <Ψ(t) A Ψ(t)> = ΣΣ j (t) k* (t)<k A j> Density funtion approah: Density matrix for a pure state (t) Ψ(t)><Ψ(t) = Σ * k (t) j (t) j><k <A> = Tr(A(t)) = Σ<m A(t) m> m = Σ{ Σ k* (t) j (t)<m A j><k m>} k,j k,j m = Σ* k (t) j (t)<k A j> k,j Note: Tr(B) = <n B n> Ensemble and Quantum Statt If more than one systems oext, the ensemble average yields <A> = Σ w m <Ψ m (t) A Ψ m (t)> In a density funtion approah, we just need to redefine (t) for a mixed state as (t) Σ w m m = Σ w m Ψ m (t)><ψ m (t) <A> = Σw m Tr(A m (t)) =Tr(A(t)) 5

Density Matrix for Spin Operator Let s think about the density matrix in an equilibrium state, () ( ) for a single spin. () = P >< + P >< ~ {(1 - E /kt)/} >< + {(1 - E /kt)/} >< = E/ - ħγbb /(kt) {1/ >< - 1/ >< } = E/ - {ħγb /kt} I z Comparon: density matrix (t) and state ket (t)> Time dependene of a state ket d (t)>/dt = -ih (t)> (t)> = exp(-iht) ()> (t)> = U(t) ()> In ontrast (t) = (t)> <(t) = exp(-iht) ()><() exp(iht) = exp(-iht) () exp(iht) U = exp(-iht) alled time-evolution [Q1] operator (t) = U(t) () U (t) Time dependene of density operator governed by d(t)/dt = -i[h, (t)] (Liouville-von Neuman eq. ) 6

Time-Evolution of Density Matrix (t) = P m Ψ m (t)><ψ m (t) For eah Ψ m (t)>, Shrödinger equation given by d Ψ m (t)>/dt = -ih Ψ m (t)>. Th yields Ψ m (t)> = exp(-ie m t) Ψ m ()> = exp(-iht) Ψ m ()>. The orresponding ket <Ψ m (t) = <Ψ m () exp(iht) Hene, (t) =P m exp(-iht) Ψ m ()><Ψ m () exp(iht) = exp(iht){p m Ψ m ()><Ψ m () }exp(iht) = exp(-iht) () exp(iht) [.55] Motions of σ(t) d(t)/dt = -i[h, (t)] In NMR, Zeeman Interation yields E mz = -γb m z From Shrödinger Equation E > = H > (t) =exp(-iht) () exp(iht) H = -γb I z Q1. Assume σ() =I z, what happens? Q. If σ() =I X, what happens? 7

.7.3 Produt Operators If three operators satfy the ommutation relationship [A, B] =ic and its yli permutation exp(-ic)aexp(ic) = Aos + Bsin [I X, I Y ] = ii Z [I Z, I X ] = ii Y Rotation along C exp(-ic)aexp(ic) = Aos + Bsin 8

Pratie of Produt/Rotation Operators R z (φ) = exp(-iφi z ) R z (φ)i X R z (φ) = os(φ) I X + sin(φ) I Y R z (φ)i Y R z (φ) = os(φ) I Y -sin(φ) I X R X (φ) = exp(-iφi X ) R X (φ)i X R X (φ) = [Q1] R X (φ)i Y R X (φ) = os(φ) I Y + sin(φ)[q] R X (φ)i Z R X (φ) = [Q3] Rotation along C exp(-ii Z )I X exp(ii Z ) = I X os + I Y sin 9

Homework σ e (t) = exp{-ii X t}i Y exp {ii X t} = [Q1]ost + [Q]sin t. σ e (t) = exp{ii X t}i Y exp {-ii X t} = [Q3]ost + [Q4]sin t. σ e (t) = exp{-ii X t}i Z exp {ii X t} = [Q5]os 1 t + [Q6]sin 1 t. σ e (t) = exp{-ii Y t}i X exp {ii Y t} = [Q7]ost + [Q8]sin t. Calulation of <M z >, <M x >, <M Y > <M z > = Tr{(ħI z ) ()} = Tr{(ħI z ) E/ - ({ħγb /kt) (ħi z )I z } =. 1. Prove <M Z > = γ ħ B /4kT. (th an expeted magnetization for 1 spin). Prove <M X > = when M X = ħi X 1

Summary of 1D The motion of the magneti moment simply summarized as I Z [π/ I Y ] I X and I X -[t I Z ] I X os(t) + I Y sin(t). Observing NMR Signal in Quantum Mehan σ(t) = exp(-i ti z ) I x exp(i ti z ) = I X os(q1)+ I Y sin(q1) <M x (t)> = Tr{γI x σ(t)} = Tr{γI x (I X osα+ I Y sinα)} = γosαtr(i x )+ γsinαtr(i x I Y ) = [Q] <M Y (t)> = γtr{i Y σ(t)} = γtr{i Y (I X osα+ I Y sinα)} = (γosα)tr(i Y I x )+ (γsinα)tr(i Y ) = [Q3] <M + (t)> = < M x (t)> + i<m Y (t)>= [Q] + [Q3] 11

Home work 7A: General Formula Baker Campbell-Hausdorff lemma B = exp(-iαa) B exp(iαa) = B() + (-iα)[a, B]+ (-iα) /[A,[A, B]]+ +(-iα) 3 /3![A,[A,[A, B]]]+ [.7] (t)= exp(-iαi Z ) I X exp(iαi Z ) = I X + (-iα)[i Z, I X ]+ (-iα) /[I Z, [I Z, I X ]]+ = I X + (-iα)ii Y +(iα) (-iα) / [I Z, ii Y ]+ = I X + (-iα)ii Y + (-iα) / I X + (-iα) 3 /3! ii Y + = I X (-iα) m /(m)! + ii Y (-iα) m+1 /(m+1)! = I X [Q1] + ii Y [Q] = [Q3] Home work 7B B = exp(-iαa) B exp(iαa) B = B() + (-iα)[a, B]+ (-iα) /[A,[A, B]]+ +(-iα) 3 /3![A,[A,[A, B]]]+.. [.7] When A = I Z and B=I X C = I Y prove that [A,[A, B]] = [A,[A,[A,[A, B]]]] = [A,[A,[A,[A,[A,[A,B]]]]]]]= B and that [A,B]] =[A,[A,[A, B]]] = [A,[A,[A,[A,[A,B]]]]]= ic Prove that th orret for A = I X, B =I Y, C = I z 1

..4 Rotating-frame transformation (p43) U: A unitary transformation from a laboratory frame to a new frame. (t) r > = U (t)> r (t) = U(t)U, where (t) r > and r (t) are a state ket and a density operator in a new frame. Liouville-von Neuman equation for the density operator in the frame given by (eqs..61-.65) d r (t)/dt = i[ r (t), H e ] with H e = UHU iu{du /dt} [.66] r (t) = exp(-ih e t) r ()exp(ih e t) U for a Rotation Transformation A rotation transformation along the z ax by an angle φ given by R z z(φ) = exp(-iφi φ z ) Transformation to a frame rotating at an angular veloity ω rf given by U = R z (-ω rf t) = exp(i ω rf I z t) Then, H e = UHU iu{du /dt} = exp(iω rf I z t)hexp(-iω rf I z t) - ω rf I z, where iu{du /dt} = - ω H rf I z What e H e when H= I Z? = exp(iω rf I z t) I Z exp(-iω rf I z t) ω rf I z = I Z ω rf I z 13

RF Hamiltonian in the rotating frame U = exp(-iω rf I z t) H e = UHU iu{du /dt} = exp(iω rf I z t)hexp(-iω rf I z t) - ω rf I z, H = -μ B = ω I z + ω 1 I x os(ω rf t) = ω I z +ω 1 R Z (ω rf t)i X R Z (ω rf t) + ω 1 R Z (ω rf t)i X R Z (ω rf t). ~ ω I z + ω 1 U I XU exp(iω rf I z t)hexp(-iω rf I z t) = ω UI z U + ω 1 UU I X UU = [Q1] + [Q] H e = ω I z + ω 1 I X - ω rf I z RF Hamiltonian in the rotating frame H e = UHU iu{du /dt} = exp(iω rf I z t)hexp(-iω rf I z t) - ω rf I z, H = -μ B = ω I z + ω 1 I x os(ω rf t+φ) ~ ω I z +ω 1 R Z (ω rf t+φ)i X R Z (ω rf t+φ). exp(iω rf I z t)hexp(-iω rf I z t) = Q1 H e = ω I z + ω 1 R Z (φ)i X R Z (φ) ω rf I z 14

RF Hamiltonian & Rotating Frame Spin Hamiltonian in a stati magneti field and a transverse RF field given by H = -μ B B = ω I z + ω 1 I x os(ω RF t+φ) = ω I z +ω 1 {I x os(ω RF t+φ)-i Y sin(ω RF t+φ)} +ω 1 {I x os(ω RF t+φ) + I Y sin(ω RF t+φ)} ~ ω I z +ω 1 R Z (ω RF t+φ)i X R Z (ω RF t+φ). In the rotating frame, H e = UHU iu{du /dt} = (ω -ω rf )I z + ω 1 {osφ I X +sinφ I Y }. RF Hamiltonian & Rotating Frame Spin Hamiltonian in a stati magneti field and a transverse RF field given by H = -μ B B = ω I z + ω 1 I x os(ω RF t+φ) = ω I z +ω 1 {I x os(ω RF t+φ)-i Y sin(ω RF t+φ)} +ω 1 {I x os(ω RF t+φ) + I Y sin(ω RF t+φ)} ~ ω I z +ω 1 R Z (ω RF t+φ)i X R Z (ω RF t+φ). In the rotating frame, H e = UHU iu{du /dt} = (ω -ω rf )I z + ω 1 {osφ I X +sinφ I Y }. 15

The effet of an RF field in the Rotating Frame H e = (ω -ω rf )I z + ω 1 (osφ I X + sinφ I Y ). σ e (t) = [Q1] σ e ()[Q] On-resonane ase: (ω -ω rf ) << ω 1 When φ =, H ~ ω 1 I X σ e (t) = exp(-iω 1 I X t)(ai z )exp(iω 1 I X t) = a(i Z os ω 1 t - I Y sin ω 1 t). Q. What does th mean? Q. When t = π/ω 1, σ e (t)= -I [Q1] Y When t = π/ω 1, σ e (t)= -I [Q] Z z Rotation Iz osα - Iy sinα y x p Rotation along x 16

Observing a signal in the rotating frame σ e (t) = exp{-ii z t}i x exp {ii z t} = I x ost + I Y sin t, where = ω ω rf. M + = M x + im y = γ(i x + ii y ) <M + > e = Tr(M + σ e (t)) = γtr{(i X + ii Y )(I x os t + I Y sin t)} = γ{os [Q1] t + in t}/, where we used Tr(I x I y ) = and Tr(I x ) = Tr(I y ) = 1/ The effet of an general RF field H e = (ω -ω rf )I z + ω 1 (osφ I X + sinφ I Y ). = n x I X +n Y I Y +n Z I Z. σ e (t) = [Q1] σ e ()[Q] 17