HERA. Halle NORD (H1) Hall NORTH (H1) Hall nord (H1) Halle OST (HERMES) Hall EAST (HERMES) Hall est (HERMES)

Σχετικά έγγραφα
Hadronic Tau Decays at BaBar

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Three coupled amplitudes for the πη, K K and πη channels without data

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

Light Hadrons and New Enhancements in J/ψ Decays at BESII

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Αναζητώντας παράξενα σωµατίδια στο ALICE

Areas and Lengths in Polar Coordinates

Math 6 SL Probability Distributions Practice Test Mark Scheme

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Assalamu `alaikum wr. wb.

Areas and Lengths in Polar Coordinates

Questions on Particle Physics

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Statistical Inference I Locally most powerful tests

Solar Neutrinos: Fluxes

Belle Hawaii activities in Belle New particles in BES & Belle

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

[1] P Q. Fig. 3.1

EE512: Error Control Coding

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Approximation of distance between locations on earth given by latitude and longitude

ST5224: Advanced Statistical Theory II

Other Test Constructions: Likelihood Ratio & Bayes Tests

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Nuclear Physics 5. Name: Date: 8 (1)

derivation of the Laplacian from rectangular to spherical coordinates

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

the total number of electrons passing through the lamp.

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Large β 0 corrections to the energy levels and wave function at N 3 LO

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Section 8.3 Trigonometric Equations

Probability and Random Processes (Part II)

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

On a four-dimensional hyperbolic manifold with finite volume

Supplementary Appendix

Solution Series 9. i=1 x i and i=1 x i.

Instruction Execution Times

Derivation of Optical-Bloch Equations

Right Rear Door. Let's now finish the door hinge saga with the right rear door

2 Composition. Invertible Mappings

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1


DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Monolithic Crystal Filters (M.C.F.)

PHYA1. General Certificate of Education Advanced Subsidiary Examination June Particles, Quantum Phenomena and Electricity

Μηχανική Μάθηση Hypothesis Testing

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Example Sheet 3 Solutions

Graded Refractive-Index

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Homework 3 Solutions

Bck + Had Correction. Bck + Had Correction

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Second Order Partial Differential Equations

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

5.4 The Poisson Distribution.

Strain gauge and rosettes

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

The Simply Typed Lambda Calculus

Impact of ozone cross-section choice on (WF)DOAS total ozone retrieval

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Matrices and Determinants

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Homework 8 Model Solution Section

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Biodiesel quality and EN 14214:2012

Section 7.6 Double and Half Angle Formulas

Inverse trigonometric functions & General Solution of Trigonometric Equations

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Fractional Colorings and Zykov Products of graphs

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Section 9.2 Polar Equations and Graphs

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Reminders: linear functions


ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Transcript:

Karshon Uri Institute of Science Weizmann PENTAQUARK5 U.S.A. JLab, Search for the c (31) Pentaquark Pentaquark Searches in Israel on behalf of the Collaboration - October, 5 U T L I N E Introduction + (153) Signal The of baryons decaying to strange particles Production for the Ξß Pentaquark Search Summary

- HERA and at DESY Introduction E R A Z E U S H GeV 8 9 GeV p 7:6 ß 3 319 GeV s ) vertex finding, momentum Tracking particle ID measurement, Halle NORD (H1) Hall NORTH (H1) Hall nord (H1) HERA Halle OST (HERMES) Hall EAST (HERMES) Hall est (HERMES) Halle WEST (HERA-B) Hall WEST (HERA-B) Hall ouest (HERA-B) HASYLAB DORIS Elektronen / Positronen Electrons / Positrons Electrons / Positons Protonen Protons Protons Synchrotronstrahlung Synchrotron Radiation Rayonnement Synchrotron DESY PETRA Halle SÜD () Hall SOUTH () Hall sud () e ) ( p Calorimetry ) energy measurement xperiments: H1,, HERMES

kinematic regimes: Two Inelastic Scattering (DIS) Q > 1GeV Deep Variables Kinematic transfer) : Q = q = (k k ) (Four-momentum Bjorken-x scaling variable: x = e visible in main detector Scattered (PHP) Q < 1GeV ; < Q >ß 3 1 4 Photoproduction Integrated Luminosity (pb ) 1 Physics Luminosity 1994 1 1 1 8 8 99- e + 6 6 Introduction - HERA I: Luminosity, Kinematic variables 4 98-99 e - 94-97 e + 4 5 5 75 1 Days of running Q P q of energy transfer: y = P q P k Fraction p CMS energy) : W flp = (P + q) ο = 4 Ee E p y (fl No scattered e in main detector ) quasi-real photon

The + (153)! K S p(μp) signal HERA-I DIS data (11 pb 1 ) Phys. Lett. B 591 (4) 7 US 867; K S candidates with ß 6% background ß identified by ionization energy loss de/dx otons the M (K S p) distribution with Q > GeV to two Gaussians it background function ) χ =ndf = 35=44 threshold Gaussian consistent with a PDG ± bump at 148 MeV irst 5 35 3 KS p(p) Q > GeV ( + ) = 151:5 ± 1:5(stat:) +:8 1:7(syst:) MeV M width=6:1 ± 1:6(stat:) MeV Gaussian ± :5 MeV Resolution=: 5 5 96- Fit Gaussian Background ARIADNE MC (BW) = 8 ± 4(stat:) MeV ) ± 48 events ß 4:6 s.d. 1 5 15 1 5 χ / ndf =35 / 44 peak= 151.5 ± 1.5 MeV width= 6.1 ± 1.6 MeV events=1 ± 48 18 16 14 1 1 8 6 4 M (GeV) S S K K p p Gaussian fit Single worse χ =ndf, peak robust! seen in both charges (inset) Signal S μp fit: 96 ± 34 (.8 s.d.) K If real - evidence for antipentaquark

+ cross section at measured kinematic region: etermine > GeV, :4 < y < :95, p T ( + ) > :5 GeV, j ( + )j < 1:5 Q measured in the same kinematic region Λ from Λ selected by de=dx with same cuts as for + rotons MC RAPGAP/ARIADNE A( + ) used ± ± with For Q > GeV : For +! K p)=ff(λ) = ff( + cross section (prel.)! e + X! e ± K px) = 15 ± 7(stat:) +36 8 (syst:)pb (ep to well-known baryon Λ: ompare + ) and ff( + )=ff(λ) as a function of Q min ff( 3 5 (prel.) 96- p) / σ(λ).16.14 (prel.) 96- A( + ),A(Λ) Acceptance using calculated.4< y <.95 P T >.5 GeV η <1.5 K + σ(θ.1.1.4< y <.95 P T >.5 GeV η <1.5 15.8 M = 15 MeV and 1.6 1% decay to K Sp(μp).4 A( + ) ß 4% ; A(Λ) ß 1% 5. 5 3 35 4 45 5 Q min (GeV ) 5 3 35 4 45 5 Q min (GeV ) ± :9 +1: :9 )% (4:

events enriched by K S and p(μp) PHP light-q fragmentation from + not seen in PHP (and low Q ) due to low S=B (large combinatorial perhaps Production of baryons decaying to strange particles (prel.) is the only high-energy experiment that sees the + (153) US a statistical fluctuation or a peculiar production mechanism? it (prel.) 96- photoproduction S/B =.3..3.4 1.4 1.6 1.8..4.6.8 3 11 1 9 8 7 peak= 85.5 ±.6 MeV width= 5.5 ± 1.6 MeV events=553 ± 19 (K Sp(μp)) for 3 data samples: M Q > 1 GeV ; Q > GeV PHP; + peak at high Q See c signal for all 3 samples Λ mpare + production to known baryons with similar decay channels 5 14 1 1 increase of S=B for Λ c vs. Q Strong =.3 (PHP) S=B 5 5 Fit Background Q >1 GeV S/B =.13 8..3.4 peak= 87.9 ± 1.9 MeV width= 5.3 ± 3. MeV events=78 ± 67 (DIS low Q ).13 (DIS high Q ). 1.4 1.6 1.8..4.6.8 3 6 3 5 4 3 1 Q > GeV S/B =. 5 15..3.4 peak= 9. ±.5 MeV width= 6.8 ± 3. MeV events=11 ± 41 1.4 1.6 1.8..4.6.8 3 M(K s p(p)) background and particle multiplicity)

statistics ) mass and width fixed from overall Q > 1 GeV fit ow number of Λ c for all 4 spectra: N (Λ c ) = 131 ± 4; > mparable c produced in parton fragmentation region Λ expected for c fragmentation via BGF fl Λ g! cμc as ± 36; p 16 ± 38; μp 116 Λc production properties > 1 GeV peak studied in forward vs. rear pesudorapidity region Q for p's and μp's separately 145 ± 34; < 5 5 5 5 5 a) Q > 1 GeV χ / ndf =7 / 4 peak= 87.9 MeV (fixed) width= 5.3 MeV (fixed) events=131 ± 4 Lab K (p+p), η > S (prel.) 96- Fit Background.15..5.3.35.4 5 5 b) Lab K (p+p), η < S Combinations/.1 GeV 65 6 55 5 45 4 75 7 65 6 55 a) Q > 1 GeV χ / ndf =7 / 4 peak= 87.9 MeV (fixed) width= 5.3 MeV (fixed) events=16 ± 36 KS.15..5.3.35.4 b) p (prel.) 96- Fit Background KS p 5 χ / ndf = / 4 peak= 87.9 MeV (fixed) width= 5.3 MeV (fixed) events=145 ± 34.15..5.3.35.4 M (GeV) 5 45 4 χ / ndf =3 / 4 peak= 87.9 MeV (fixed) width= 5.3 MeV (fixed) events=116 ± 38.15..5.3.35.4 M (GeV)

Production properties of baryons decaying into K p(k + μp) light-quark fragmentation origin, Indicates partons from hard interaction as for Λ c not (prel.) 96- photoproduction 36 34 3 3 1.5 1.55 1.6 peak= 1517.3 ±.4 MeV width= 7.7 ±.4 MeV events=1356 ± 561 S/B =.5 1.4 1.6 1.8..4.6.8 3 (K p(k + μp)) for 3 data samples: M Q > 1 GeV ; Q > GeV PHP; significant numbers of Reconstruct for all 3 samples Λ(15) N (Λ(15)) = 1356 ± 561 55 PHP ± 199 Q > 1 GeV 658 5 45 313 ± 83 Q > GeV Fit Background Q >1 GeV 4 1.5 1.55 1.6 peak= 1517.1 ±.5 MeV width= 6.6 ±.6 MeV events=658 ± 199 S/B =.7 Λ c, S=B similar for PHP and DIS Unlike =.5 (PHP) S=B 1.4 1.6 1.8..4.6.8 3 5 (DIS low Q ).7 (DIS high Q ).4 5 1 1 8 1.5 1.55 1.6 peak= 1517.5 ± 1.8 MeV width= 6. ± 1.8 MeV 5 events=313 ± 83 Q > GeV S/B =.4 1.4 1.6 1.8..4.6.8 3 - M(K p) if Λ(15) production rate Possible to < n ch > proportional

Q > 1 GeV peak studied in > and < regions 15) for p's and μp's separately ± 143; p 17 ± 14; μp 14 Λ(15) production properties number for all 4 spectra: N (Λ(15)) = 1337 ± 151; > mparable ± 17; < 146 a) Q > 1 GeV χ / ndf =39 / 3 peak= 1515.9 ±.8 MeV width= 6. ±.8 MeV events=1337 ± 151 + - Lab K p + K p, η > (prel.) 96- Fit Background Combinations/.5 GeV 3 3 8 6 4 a) Q > 1 GeV Dominant production mechanism of Λ(15) is pure fragmentation χ / ndf =4 / 3 peak= 1516.4 ±.7 MeV width= 6. ±.7 MeV events=14 ± 14 + K p (prel.) 96- Fit Background 1.46 1.48 1.5 1.5 1.54 1.56 1.58 1.6 1.6 1.64 b) + - Lab K p + K p, η < χ / ndf =8 / 3 peak= 1517.6 ±.7 MeV width= 6. ±.7 MeV events=146 ± 17 1.46 1.48 1.5 1.5 1.54 1.56 1.58 1.6 1.6 1.64 M (GeV) 8 6 4 1.46 1.48 1.5 1.5 1.54 1.56 1.58 1.6 1.6 1.64 b) χ / ndf =6 / 3 peak= 1517. ±.8 MeV width= 6.5 ± 1. MeV events=17 ± 143 - K 1.46 1.48 1.5 1.5 1.54 1.56 1.58 1.6 1.6 1.64 p M (GeV)

No statistically significant ++ Search in the K + p(k μp) mass spectra (prel.) 96-7 6 5 4 3 1.45 1.5 1.55 1.6 M (K + p(k μp)) for 3 data samples: PHP; Q > 1 GeV ; Q > GeV photoproduction 1.4 1.6 1.8..4.6.8 3 36 34 3 Some peak at ß 1:54 GeV for Q > 1 GeV state found 3 1.45 1.5 1.55 1.6 Q >1 GeV at RHIC see ++ candidate STAR M ß 1:53 GeV in d-au and Au-Au at 1.4 1.6 1.8..4.6.8 3 8 6 4 8 6 4 Q > GeV 8 6 1.45 1.5 1.55 1.6 1.4 1.6 1.8..4.6.8 3 + M(K p)

due to known baryons Ξ(13), ±(1385) Peaks clearly seen are Search in the Λß ± mass spectra (prel.) 96- photoproduction 33 3 31 3 9 1.5 1.55 1.6 1.65 + (153)! K Sp peak is a new ± state, If decay + (153)! Λß + is also allowed the M (Λß ± ) 3 data samples: for Q > 1 GeV ; Q > GeV PHP; 1. 1.4 1.6 1.8..4.6.8 3 Fit Background Q >1 GeV 4 4 38 36 34 1.5 1.55 1.6 1.65 χ / ndf =37 / 3 peak= 1593.3 ± 1.3 MeV width= 4. ± 1. MeV events=57 ± 19 1. 1.4 1.6 1.8..4.6.8 3 statistically significant peak No 153 GeV near 8 6 4 8 6 4 Q > GeV 6 1.5 1.55 1.6 1.65 1. 1.4 1.6 1.8..4.6.8 3 ± 8 7 M(Λ π ) Q > 1 GeV, a peak with 4:4ff is seen For 16 MeV consistent with the not-well near established PDG states ±(158) or ±(16)

events are more favorable High-Q is produced mainly in the forward region ( > ) (153) + rate is larger than + (153) production properties of + (153) in e + e collisions may indicate that the n-observation related to proton fragmentation. In this case: S.Chekanov, hep-ph/598 is 8 6 4 8 6 4 S K (p + p), η Lab > Q > GeV χ / ndf =59 / 46 peak= 1517.4 ± 1.8 MeV width= 7.7 ± 1.5 MeV events=195 ± 4 (prel.) 96- Fit Background a) + (153) produced by pure If as Λ(15) fragmentation signal should be seen for ) > and < both 153) Q > GeV peak studied in > and < regions 4 KS (p + p), η Lab < Q > GeV two Gaussian fit yields: A ( (153)) = 195 ± 4; > N ± 3; < 8 6 4 χ / ndf =65 / 5 peak= 151.5 MeV (fixed) width= 6.1 MeV (fixed) events= ± 3 b) M (GeV) (153) production related to ) remnant? proton

Number of K Sp events larger than for K S μp conclusion possible due to complicated background strong S μp near 148 MeV region K + (153) production properties Q > GeV peak studied separately for p's and μp's 153) 18 16 14 1 1 8 6 4 Q > GeV KS p a) (prel.) 96- Fit Background χ / ndf =49 / 44 peak= 15. ± 3.3 MeV width= 6.3 ± 3.1 MeV events=96 ± 34 Combinations /.5 GeV 18 16 14 1 1 8 6 4 Q > GeV KS p b) χ / ndf =35 / 44 peak= 1516.9 ± 3. MeV width= 1.4 ±.6 MeV events=16 ± 49 M (GeV) M (GeV) ( (153)) = 16 ± 49; p N ± 34; μp 96 A two Gaussian fit yields:

lit the (153) signal to K Sp and K S plots: Two Gaussian fit; one free parameter for the overall normalization ft parameters fixed from sum of the two distributions her for number of events in peaks; one for background normalization o and widths fixed to the sum of the two distributions aks + (153) production properties μp combinations for > : inconsistent with sum of the two distributions not plots: Two Gaussian fit with 3 free parameters: ght has better χ /ndf and yields 5:4ff statistical significance for the p channel 1 1 8 6 4 S K p, η Lab > Q > GeV χ / ndf =6 / 53 (prel.) 96- Scaled fit for KS (p+p) η> Background a) Combinations/.5 GeV 1 1 8 6 4 S K p, η Lab > Q > GeV (prel.) 96- Fit Background χ / ndf =54 / 51 peak= 1517.4 MeV (fixed) width= 7.7 MeV (fixed) events=15 ± 3 a) 1 KS p, η Lab > 1 KS p, η Lab > 1 Q > GeV 1 Q > GeV 8 8 6 6 4 χ / ndf =61 / 53 b) M (GeV) 4 χ / ndf =53 / 51 peak= 1517.4 MeV (fixed) width= 7.7 MeV (fixed) events=64 ± b) M (GeV)

identified by ionization energy loss de/dx otons Λ,Ξ signals: higher statistics; smaller background US for the Ξß pentaquark Search Found narrow peaks in all Ξß combinations (M ß 186 MeV, width < 18 MeV) 49: HERA-I DIS data (11 pb 1 ) Phys. Lett. B 61 (5) 1 US Λ! pß ; μ Λ! μpß + ; Ξ! Λß ; μ Ξ +! μ Λß + from secondary vertices construct 8 6 4 8 6 4 8 6 4 8 6 4 for Q > 1 GeV for each decay channel separately (Ξß) 96- NA49 signal Ξ - π - Ξ - π + + Ξ π - + Ξ π + 1.5 1.6 1.7 1.8 1.9.1..3.4 (a) (b) (c) (d) M(Ξπ)(GeV) a clean signal of See (153)! Ξ ß + (+c.c.) Ξ No evidence for a signal at 186 MeV (fixed target) has good acceptance NA49 forward region in Non-observation in at central ) region - fragmentation contradiction if NA49 signal no in forward direction mainly

(Ξß) for Q > 1 and Q > GeV a Ξ (153)! Ξ ß + (+c.c.) signal See (153) fitted to Gaussian Ξ ± 3:7(stat.)MeV width=9:5 :5ff Significance fit yields: M = 1533:3 ± 1: (stat.) MeV ; width = 6:6 ± 1:4 (stat.) MeV 153) ± 3 events 19 signal much bigger than NA49 53) for the NA49 186 signal evidence Search for the Ξß pentaquark (all Ξß charge combinations).6.4 Ξ (153) χ /ndf=84/88 candidates=19±3 peak=1533.3±1. MeV σ=6.6±1.4 MeV 96- (a) Fit Background Fit Q >1 GeV 95% C.L. upper limit on R Combinations / 1 MeV 6 5 4 3 Q > GeV (b) + threshold background function plot: Peak at ß 169 MeV (?) Right be due to PDG Ξ(169) *** Can. 1 yields: Fit = 1687:5 ± 4: (stat.) MeV M NA49 signal 1.5 1.6 1.7 1.8 1.9.1..3.4 M(Ξπ)(GeV) NA49 signal 1.5 1.6 1.7 1.8 1.9.1..3.4 M(Ξπ)(GeV) curve is 95% C.L. upper limit ratio R = Ξ 3= (Ξ 3= )=Ξ (153) rly function of M (Ξß) in the range 165 35 MeV (R ß :1 :5)

for the c (31) Pentaquark Search a narrow D Λ p resonance at ß 3:1 GeV Phys. Lett. B 588 (4) 17 saw Low-P p : Prob(χ ) p > :15; P < 1:35 GeV; de=dx > 1:3 (Clean p's from de=dx) ) High-P p : Prob(χ ) p > :15; P > GeV (Nicer H1 signal without de=dx cut) ) (a) 95- background wrong charge D* ± (Kπ)π s N(D* ± ) = 468 ± 35 14 1 1 8 6 (b) D* ± (Kπππ)π s N(D* ± ) = 199 ± 5 HERA-I data (16.5 pb 1 ) Eur. Phys. J. C38 (4) 9 Λ± US D ß ± s M = M (D Λ± ) M (D ) ο m ß! P T (D Λ ± ) > 1:35 GeV, j (D Λ ± )j < 1:6 D Λ signals in D decay modes Clean! K ß + ; D! K ß + ß + ß (+ c.c.) D 4 c searched for with D Λ 's from bands N (D Λ ± ) ß 6; 6 yellow 5 (c) Q > 1 GeV N(D* ± ) = 868 ± 13 5 (d) Q > 1 GeV N(D* ± ) = 483 ± 1 the DIS sub-sample Q > 1 GeV For (D Λ ± ) ß 13; 5 (x 4 of H1 sample) N 5 15 calibrated tagged p(μp) from Λ's de/dx (ln(de=dx) ln(de=dx) with expected ) = χ ff ln(de=dx) 1 5 5 candidates with P T > :15 GeV selected by p(μp) ) p > :15; A(Prob(χ ) p > :15) = 85: ± :1% Prob(χ.14.15.16.17 M(Kππ s ) - M(Kπ) (GeV).14.15.16 M(Kππππ s ) - M(Kπππ) (GeV) Two strategies for p-selection:

High-P p M (D Λ p) spectra for the D! K ß + channel (D Λ p) = M (Kßß s p) M (Kßß s ) + M (D Λ+ ) PDG M (D Λ p) resolution at ß 3:1 GeV is ß 4 MeV M full sample DIS sample (a) 1995- D* ± (Kπ)π s like-sign combinations (b) P(p) < 1.35 GeV, de/dx(p) > 1.3 mips Combinations per 1 MeV 1 75 5 5 (a) 1995-, Q > 1 GeV D* ± (Kπ)π s like-sign combinations 15 (b) P(p) < 1.35 GeV, de/dx(p) > 1.3 mips 1 All protons 5 Low-P p (c) P(p) > GeV 3 (c) P(p) > GeV 1.9 3 3.1 3. 3.3 3.4 3.5 3.6 M(D p) = ΔM ext + M(D + ) PDG (GeV).9 3 3.1 3. 3.3 3.4 3.5 3.6 M(D p) = ΔM ext + M(D + ) PDG (GeV) are M (D Λ± p ± ) like-sign combinations stograms evidence for a signal at 3:1 GeV (also in the D! K ß + ß + ß mode) No! K ß + analysis repeated with very similar cuts to H1 ) no signal

upper limits for c production (D Λ p) = M (Kßß s p) M (Kßß s ) + M (D Λ+ ) PDG M D Λ p window 3.7-3.13GeV. in visible rate of R = 1% is A by 9 s.d. (5 s.d) excluded the full (DIS) sample. for < :3% (< :35%) for R (DIS) sample. full limits: < :37%(< :51%) for full (DIS) sample. cepted-corrected c ) B c! D Λ p < :16% (< :19%) for the full (DIS) combined sample!! K ß + D! K ß + ß + ß D l sample Combinations per 1 MeV 5 4 3 1 (a) D* ± (Kπ)π s backgr. fit fit interpol. (b) 95- D* ± (Kπππ)π s MC signal on top of interpolation histograms are Yellow c signals normalized MC c=d Λ = 1% after H1 to top of a background on fit (solid curves) 8 (c) Q > 1 GeV (d) Q > 1 GeV C.L. upper limits on 95% c! D Λ p=d Λ ) calculated R( 6 D* ± (Kπ)π s D* ± (Kπππ)π s S sample 4 3 3. 3.4 3.6 3 3. 3.4 3.6 M(D p) = ΔM ext + M(D + ) PDG (GeV)

N ( +! K Sp) > N (! K S μp) p-remnant effect (?) ) cannot be reference" state for + production Λ(15) Summary ing all HERA-I high-energy data (ß 1 pb 1 ) in the detector: In inclusive ep DIS, a narrow peak is seen in M (K Sp) (M (K S μp)) For Q > GeV : fitted signal has 1 ± 48 events (4.6 s.d.) = 151:5 ± 1:5(stat:) +:8 1:7(syst:) MeV; (BW) = 8 ± 4(stat:) MeV M Q > GeV : ff( +! K p) = 15 ± 7(stat:) +36 8(syst:) pb For +! K p)=ff(λ) = (4: ± :9 +1: :9 )% ff( Unlike Λ c and Λ(15): + produced mainly in the forward (proton) region may explain non-observation in other experiments?

95% C.L. R(( c! D Λ p)=d Λ ) < :3%; At DIS (Q > 1 GeV ) R < :35% for acceptance correction: R cor < :37%; After cor (H1) = (1:59 ± :33 +:33 :45 )% R from HERA-II are crucial to clarify Results pentaquarks status at HERA the Summary No evidence for the NA49 Ξß signal at 186 MeV in inclusive ep DIS (153)) < :9 (95% C:L:) (Different kinematic region?) R(Ξ(186)=Ξ resonance structure seen in M (D Λ± p ) around 3:1 GeV from 6,6 D Λ No ) limits are not compatible with the H1 c signal

> 1 GeV Q S! ß+ ß selection K p T (K ) > :3 GeV, j (K )j < 1:5 Backup: + Event selection All HERA-I data (11 pb 1 ) e + p, e p collisions at CM energy 3 318 GeV CTD tracks p T > :15 GeV, j j < 1:75 S reconstructed from K tracks secondary-vertex photon conversions Remove (e + e ) < 5 MeV M Combinations /. GeV x 1 15 1 5 96- Fit Q > 1GeV and Λ's M (ßp) < 1:11 GeV.46.48.5.5.54 M(π + π - ) (GeV) :483 < M (ß + ß ) < :513 GeV ß 867; K S candidates with ß 6% background

4 ( < # 8 7 6 positive charge (a) 5 4 de / dx (mips) de / dx (mips) 7 & 8 7 6 negative charge (b) 5 4 3 3 1.9.8.7.6 1.9.8.7.6 1 1 p (GeV) 8 < < ( - $ : % # p (GeV)

Backup: K S p(μp) results I earch for + in M (K S p) for Q > 1; 1; 3; 5 GeV structures near See GeV and below 1:5 are ARIADNE MC simulation Histograms to data above 1:65 GeV normalised W < 15; > 15 GeV Combinations/.5 GeV 1 1 8 6 4 5 15 1 5 Q >1 GeV 5 96- ARIADNE MC Q >3 GeV (a) (c) 5 5 4 4 3 3 1 1 16 Q >1 GeV (b) 16 14 14 1 1 1 1 8 6 4 1 8 Q >5 GeV (d) 8 at 1:5 GeV Signal with Q increases decreases with W 15 1 Q >1 GeV W<15 GeV 6 6 4 4 Q >1 GeV W>15 GeV (± bumps not included in the MC) 5 (e) (f) M (GeV)

Backup: K S p(μp) results II the M (K S p) distribution with Q > GeV to single Gaussian it background function P 1 (M m) P (1 + P 3 (M m)) threshold ( + ) = 15: ± 1:5 MeV M ß 3:9 s.d. Significance m = m K + m p ; P 1;;3 = free parameters χ =ndf = 51=47 35 Q > GeV 3 5 15 1 5 KS p (p) 96- Fit Signal Background ARIADNE MC χ / ndf =51 / 47 peak= 15. ± 1.5 MeV width= 4.9 ± 1.3 MeV events=155 ± 4 consistent with Width (ß MeV) resolution M (GeV)

Backup: results K S p(μp) earch for (153) in M (K Sp) for Q > ; 3; 4; 5 GeV Combinations/.5 GeV 35 3 5 15 1 5 Q > GeV χ (prel.) 96- Fit Background / ndf =48 / 45 peak=15 ± 1 MeV events=184 ± 39 (a) 5 15 1 5 Q >3 GeV χ / ndf =59 / 45 peak=15 ± 1 MeV events=139 ± 33 (b) 18 16 14 1 1 8 6 4 Q >4 GeV χ / ndf =6 / 45 peak=15 ± 1 MeV events=118 ± 9 (c) 16 14 1 1 8 6 4 Q >5 GeV χ / ndf =55 / 45 peak=153 ± 1 MeV events=15 ± 6 (d) M (GeV)

Backup: Fit results for Q > GeV Gaussian+Bkg. Gaussians + Bkg. Fit =ndf M» 17 MeV 51/47 35/44 χ (MeV) - 1465:1 ± :9 mass 1 width (MeV) - 15:5 ± 3:4 Peak - 368 ± 11 events (MeV) 15: ± 1:5 151:5 ± 1:5 mass width (MeV) 4:9 ± 1:3 6:1 ± 1:6 Peak 155 ± 4 1 ± 48 events

Backup: trigger selection irst level trigger: regional energy sums CAL-FLT: tracks" looking to the nominal interaction point CTD-FLT: : scattered electron (and CTD-FLT) DIS PhP : CTD-CAL and CTD-FLT Untagged Tagged PhP : 44m and 35m taggers, CTD-CAL and CTD-FLT econd level trigger: : scattered electron and CAL energies DIS PhP : CAL energies and SLT tracks (high-w) Untagged Tagged PhP : 44/35m taggers, CAL energies and SLT tracks hird level trigger: DIS : almost offline selection Inclusive Λ ± in DIS : reconstructed D Λ ± in DIS events (low Q ) D PhP : dijet events Inclusive Λ ± in PhP : reconstructed D Λ ± in tagged/untagged PhP events D

Backup: Main systematic studies for c selecting of DIS with Q > 15 GeV cos Λ (p) > :7, where Λ (p) is the angle require p direction in 5q r.f. and 5q direction in the lab between reflections from D 1 ;DΛ! DΛ± ß studying/removing all cuts as close as possible to H1 selection making No signal ) varying de=dx requirements for low-p selection no de=dx requirements for high-p selection out 1ffi ; using z(d Λ± ) > : instead removing the cut on P T (D Λ± )=E T

M ext = M (Kßß S ß 4 ) M (Kßß s ) dn cos ff / 1 + 3 cos ff (1 + ;L+ s = 3=) d dn cos ff / 1 cos ff ( + ;L+ s = 3=) d narrow bump? Additional = 11 ± 49 N (a) 1995- Preliminary 11 pb -1 1 (4); DΛ (46)! DΛ ± ß D Backup: Orbitally excited P-wave D mesons Backgr. wrong charge..3.4.5.6.7.8.9 M(Kππ s π 4 ) - M(Kππ s ) + M(D * ) (GeV) fit with fixed M,, -dimensional and helicity distribution: resolution 5 (b) 5 5 5.3.35.4.45.5 (c).3.35.4.45.5 M(Kππ s π 4 ) - M(Kππ s ) + M(D * ) (GeV) angle ff : between ß 4 and ß s helicity D Λ ± rest frame in (D 1 ) = 56 ± 65 N (D Λ ) = 3 ± 6 N = 398:1 ± :1(stat:) +1:6 :8(syst:) MeV M New D meson? Interference?

Fit to a form : 1 + R cos ff : consistent with R =, i.e. J P = 1 + Charm-strange ± (536) meson Backup: D s1 DΛ ± Ks, K s! ß + ß 1! (536) s1 ± M ext = M (Kßß S ß 3 ß 4 ) M (Kßß s ) M (ß 3 ß 4 ) Combinations / 3.5 MeV 1 8 (prel.) 1995- (17 pb -1 ) K s candidates in events with a D ± candidate (D s1 ) = 6:3 ± 9:3 6 s1 ) = 534: ± :6 ± :5 MeV (ο M PDG ) (D 4 (prel.) 1995- (17 pb -1 ) Fit : Gauss + A (ΔM ext ) B s1 D ± N(D ± K s ) = 6 ± 9 : between K ff angle Helicity.45.475.5.55.55 M(π 3 π 4 ) (GeV) S and ß s in D Λ± r.f. = :53 ± :3(stat:) +:5 :14(syst:) ( prel.) R (D + s1! D Λ K + ) : R = :3 +:4 :3 CLEO.55.6.65 M(D ± K s ) = ΔM ext + M(D + ) PDG + M(K ) PDG (GeV) not contradict R = 1 does for J P = 1 ; + expected

K S K S Backup: Resonances in DIS 6 5 f (17)/a (13) f (155) f (171) 96- cosθ KK <.9 cosθ KK.9 3 B-W + Background Breit-Wigner Background Several resonances observed 4 3 in gluon-rich Produced environment 1 f (171) = glueball candidate?? 1 1. 1.4 1.6 1.8..4.6.8 M(K s K s ) (GeV)

Predictions: (hep-ph/37341); Wu-Ma (hep-ph/444): Jaffe-Wilczek c ß 7 MeV ) too light to decay to D mesons ) decay weakly to + ß can M ( c ) > M (DΛ± ) + M (p) = 948 MeV, If c can decay to D Λ± p Backup: Charm Pentaquarks + = uuddμs exists, heavy pentaquarks, such as Since uuddμc should also exist = (hep-ph/37343): Karliner-Lipkin ( c ) = 985 ± 5 MeV ; ( c ) ο 1 MeV M Cheung (hep-ph/38176): M ( c ) = 938 997 MeV [ud][ud] c =Θ c [ud][ds] c [ud][ds] c + [ud][us] c [ud][us] c + decays dominantly to D p + or D n (+ c.c.) [ds][us] c [ds][ds] c [ds][us] c + [us][us] c is sensitive to resonances decaying to D Λ ± (D 1, D Λ, D s1 ) US very narrow resonances ( +, f (155), f (171)) ) Search for c signal in M (D Λ p) (+ c.c.) spectra

DIS sample of ß 34 D Λ± H1 sees a narrow resonance in a Λ p) and M (D Λ+ μp) with M = 399 ± 3(stat:) ± 5(syst:) MeV D ple with ß same ratio to D Λ 4 3 H1 D* p + D* + p Signal + bg. fit Bg. only fit Backup: H1 observation Entries per 1 MeV 1 75 5 γ p H1 D* p + D* + p wrong charge D 1 5 3 3. 3.4 3.6 M(D*p) [ GeV ] 3 3. 3.4 3.6 M (D*p) [ GeV ] et al., Phys. Lett. B 588, 17 (4) Atkas measured Gaussian width 1 ± 3(stat:) MeV e with experimental resolution compatible signal consists of 5:6 ± 11: events e 1% of the total D Λ production rate" ughly (with large background) also seen in a photoproduction nal

careful de/dx calibration More + analysis w.r.t. tuned using Parameters p(μp) from Λ decays tagged Prob(χ ) p > :15 A(Prob(χ ) p > :15) = 85: ± :1% Backup: de=dx for the c analysis ß's from K S decays tagged select p(μp) candidates: To (ln(de=dx) ln(de=dx) expected ) = χ ff ln(de=dx) ln(de=dx) = a= p n ff hits used for de/dx measurement n=no.of

Combinations per 1 MeV 3 5 15 1 5 6 5 4 3 1 (a) M (D Λ p) for Kßßß Backup: 1995-, D* ± (Kπππ)π s like-sign combinations (b) Q > 1 GeV.9 3 3.1 3. 3.3 3.4 3.5 3.6 M(D p) = ΔM ext + M(D + ) PDG (GeV) evidence for a signal at 3:1 GeV in the D! K ß + ß + ß mode

M (D Λ p) with H1-like cuts Backup: K ß + analysis repeated with cuts very similar to H1! Combinations per 1 MeV 45 4 35 3 5 15 1 5 4 35 3 5 15 1 5 (a) (b) 1995-, D* ± (Kπ)π s Q > 1 GeV, H1 selection criteria wrong charge (Kπ)π s D* ± MC Q < 1 GeV, H1 selection criteria.9 3 3.1 3. 3.3 3.4 3.5 3.6 M(D p) = ΔM ext + M(D + ) PDG (GeV) evidence for a signal at 3:1 GeV

Λ decay (Kß)ß s (Kßßß)ß s Both D channels channel backgr 1678 ± 3 919 ± 19 N Λ ) 468 ± 35 199 ± 5 N(D c! DΛ p=d Λ ) < :9% < :33% < :3% R( cor ( c! DΛ p=d Λ ) < :47% < :5% < :37% R window 5 N backgr 5:8 ± 9: 19:8 ± 8:8 N Λ ) 868 ± 13 483 ± 1 N(D c! DΛ p=d Λ ) < :41% < :69% < :35% R( cor ( c! DΛ p=d Λ ) < :59% < 1:6% < :51% R! c ) B c!d Λ p < :% < :56% < :19% f(c Backup - data sample Full window 171 914 N! c ) B c!d Λ p < :18% < :33% < :16% f(c with Q > 1 GeV DIS