New excited state intramolecular proton transfer (ESIPT) dyes based on naphthalimide and observation of triplet excited states

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Divergent synthesis of various iminocyclitols from D-ribose

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Supporting information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supplementary information

Supporting Information

Electronic Supplementary Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information

Supporting information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Supporting Information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information. Experimental section

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

Supporting Information. Experimental section

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Electronic Supplementary Information

Aminofluorination of Fluorinated Alkenes

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

The Free Internet Journal for Organic Chemistry

Supporting Information for

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Supplementary!Information!

Supporting Information

Electronic Supplementary Information (ESI)

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information For

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supplementary Information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Pd-Catalyzed Oxidative Cross-Coupling of N-Tosylhydrazones. with Arylboronic Acids

Supporting Information

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information

Supporting Information

Electronic supplementary information for

Supporting Information

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information

Supporting Information for

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

P-Stereogenic PNP Pincer-Pd Catalyzed Intramolecular Hydroamination of Amino-1,3-dienes

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supporting Information for

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supplementary Material

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information for. Palladium-catalyzed Addition Reaction of Aroyl/Heteroaroyl Acid Anhydrides to Norbornenes

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Supporting Information

Supporting Information

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Transcript:

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 Electronic upplementary Information for: ew excited state intramolecular proton transfer (EIPT) dyes based on naphthalimide and observation of triplet excited states Jie Ma, a,b Jianzhang Zhao, a * Pei Yang, a Dandan Huang, a Caishun Zhang a and Qiuting Li a a tate Key Laboratory of Fine Chemicals, chool of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China b College of Chemistry and Chemical Engineering, Qiqihaer University, Qiqihaer 161006, Heilongjiang, P. R. China. E-mail: zhaojzh@dlut.edu.cn Group homepage: http://finechem.dlut.edu.cn/photochem General. All the chemicals used in synthesis are analytical pure and were used as received. olvents were dried and distilled. MR spectra were recorded on a 400 MHz Varian Unity Inova MR spectrophotometer. 13 C MR spectra were recorded on the same instrument (100 MHz) with total proton decoupling. Mass spectra were recorded with Q-TF Micro M spectrometer. UV-Vis absorption spectra were measured with a HP8453 UV-visible spectrophotometer. Fluorescence spectra were recorded on himadzu 5301 PC spectrofluorometer. The nanosecond time-resolved transient absorption (TA) spectra were measured on LP 920 laser flash photolysis spectrometer (Edinburgh Instruments, UK) and the signals were recorded on a Tektronix TD 3012B oscilloscope. The lifetime values were obtained by monitoring the decay trace of the transients at a specific wavelength with the LP900 software. All samples in flash photolysis experiments were deaerated with argon for ca. 15 min before measurement and the argon gas flow was kept during the measurement. The density functional theory (DFT) calculations were used for optimization of the geometries for both singlet states and triplet states. All the calculations were performed with Gaussian 09W. 1 1. M. J. Frisch, G. W. Trucks, H. B. chlegel, G. E. cuseria, M. A. Robb, J. R. Cheeseman, et al., GAUIA 09 (Revision A.1), Gaussian, Inc., Wallingford, CT, 2009. 1

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 Experimental ection ynthesis: Br CH H a TM 1 CH H b 2 CH H c 3 H d 4 C 4 H 9 -n 5 Br + R 3 R : H 4 R : -C 4 H 9 -n e -1 R : H -3 R : -C 4 H 9 -n R + f Br -2 H CH H + H 2 i H HBT + g I I I 6 h H H -4 cheme 1. ynthesis of -1, -2, -3, -4 and HBT. a) trimethylsilylacetylene, CuI, Pd(PPh 3 ) 2 Cl 2, PPh 3, Et 3, reflux, 6 h; b) TBAF, THF; c) 2-aminothiophenol, MeH ; d) n-c 4 H 9 Br, K 2 C 3, DMF; e) Pd(PPh 3 ) 2 Cl 2, PPh 3, CuI, Et 3, reflux, 6 h; f) Pd(PPh 3 ) 2 Cl 2, PPh 3, CuI, Et 3, reflux, 6 h; g) Pd(PPh 3 ) 2 Cl 2, PPh 3, CuI, Et 3, reflux, 8 h; h) Pd(PPh 3 ) 4, PPh 3, CuI, Et 3, reflux, 8 h; i) 2-aminothiophenol, MeH. ynthesis Procedures ynthesis of compound 2-(5 -ethnyl-2 -hydroxyphenyl)benzothiazole (3) 2 (100 mg, 0.69 mmol) and 2-aminothiophenol (170 mg, 1.30 mmol) were mixed in methanol (10 ml) and stirred for 6 h at 30 C. Methanol was evaporated under reduced pressure and the residue was purified by column chromatography (silica gel, petroleum /CH 2 Cl 2, 3:1, v / v) to give the product as white solid. Yield: 62.2 mg, 36.0 %. Mp: 143.7 144.6 C. 1 H MR (400 MHz, CDCl 3 /CD 3 D): δ 8.02 (d, 1H, J = 8.4 Hz), 7.95 (d, 1H, J = 8.0 Hz), 7.87 (s, 1H), 7.55 7.43 (m, 3H), 7.08 (d, 1H, J = 8.4 Hz), 3.07 (s, 1H). TF HRM EI + ([C 15 H 9 ] + ): calcd m/z = 251.0405, found m/z = 251.0408. 2

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 ynthesis of compound 3. 4. 2-(5 -ethnyl-2 -butoxyphenyl)benzothiazole (4) The mixture of compound 3 (50 mg, 0.20 mmol), K 2 C 3 (50 mg, 0.36 mmol) and,-dimethyl formamide (0.25 ml) were stirred at room temperature, then n-butyl bromide (122 mg, 0.90 mmol) was added. The mixture were stirred at 50 C for 4 h, then the resulting solution was added dropwise into ice water. The mixture was extracted with CH 2 Cl 2. The organic layer was washed with water and then dried over anhydrous a 2 4. The solvent was removed under reduced pressure then the crude product was purified by column chromatography (silica gel, petroleum : CH 2 Cl 2, 1 : 1, v/v) to give the product as white solid. Yield: 50 mg, 81.4%. M. p. 134.2 135.4 C. 1 H MR (400 MHz, CDCl 3 /CD 3 D): δ 8.73 (s, 1H), 8.11 (d, 1H, J = 8.0 Hz), 7.95 (d, 1H, J = 8.0 Hz), 7.56 (d, 1H, J = 8.8 Hz), 7.52 (t, 1H, J 1 = 7.2 Hz, J 2 = 8.0 Hz), 7.40 (t, 1H, J 1 = 8.0 Hz, J 2 = 7.2 Hz), 7.00 (d, 1H, J = 8.8 Hz), 4.24 4.21 (m, 2H), 3.04 (s, 1H), 2.04 1.99 (m, 2H), 1.66 1.61 (m, 2H), 1.06 (t, 3H, J = 7.2 Hz). TF HRM EI + ([C 19 H 17 ] + ): calculated m/z = 307.1031, found m/z = 307.1031. ynthesis of compound 9-Butyl-3-iodo-9H-carbazole-naphthalimide (6) 4-ethynylnaphthalimide (166.0 mg, 0.50 mmol), 9-butyl-3, 6-diiodo-9H-carbazole (715.0 mg, 1.5 mmol), CuI (10.0 mg, 0.05 mmol), Pd(PPh 3 ) 2 Cl 2 (3.5 mg, 0.05 mmol), triphenylphosphine (5.0 mg, 0.02 mmol), and dry triethylamine (60 ml) were mixed, then the mixture was refluxed under 2 for 8 h. Then the reaction mixture was filtered and the organic phase was evaporated under reduced pressure. The residue was purified through column chromatography (silica gel, hexane: CH 2 Cl 2 = 1:2, v/v). A yellow solid was obtained. Yield: 110.0 mg, 31.6 %. M.p.: 141.0 142.6 C. 1 H MR (400 MHz, CDCl 3 ): δ 8.83 (d, 1H, J = 8.0 Hz), 8.66 (d, 1H, J = 4.0 Hz), 8.57 (d, 1H, J = 8.0 Hz), 8.44 (s, 1H), 8.37 (s, 1H), 7.98 7.95 (m, 1H), 7.79 7.76 (m, 1H), 7.45 (d, 1H, J = 8.0 Hz), 7.24 (d, 2H, J = 8.0 Hz), 4.32 4.29 (m, 2H), 4.16 4.12 (m, 2H), 1.97 1.95 (m, 1H), 1.89 1.85 (m, 2H), 1.42 1.26 (m, 10H), 0.98 0.87 (m, 9H). EI M C 38 H 37 2 2 I Calculated m/z = 680.1900, found m/z = 680.1901. ynthesis of compound -1 Under argon atmosphere, Pd(PPh 3 ) 2 Cl 2 (2.4 mg, 0.003 mmol, 3.0 mol%), PPh 3 (1.3 mg, 0.005 mmol, 5.0 mol%), CuI (1.0 mg, 0.005 mmol, 5.0 mol% ), TEA (2 ml, 1.40 mmol) and 5 (50 mg, 0.15 mmol) were added to a solution of 3 (25.0 mg, 0.10 mmol) in anhydrous THF (5 ml). The mixture was stirred at 70 C for 6 h. The resulting solution was cooled to rt., the solvent was removed under reduced pressure and the compound was purified by column chromatography (silica gel, CH 2 Cl 2 as the eluent) to give the product as yellow solid. Yield: 34 mg, 67.7%. M.p.: 236.3 237.3 C. 1 H MR (400 MHz, CDCl 3 ): δ 8.71 (d, 1H, J = 12 Hz), 8.61 (d, 1H, J = 8 Hz), 8.53 (d, 1H, J = 12 Hz), 7.98 7.89 (m, 4H), 7.81 (t, 1H, J = 8 Hz), 7.64 (d, 1H, J = 8 Hz), 7.50 (t, 1H, J = 8 Hz), 7.43 7.39 (m, 1H), 7.14 (d, 1H, J = 4 Hz), 4.14 (t, 2H, J = 8 Hz), 1.70 1.66 (m, 2H), 1.45 1.39 (m, 2H), 0.94 (t, 3H, J = 8 Hz). 13 C MR (100 MHz, CDCl 3 ): δ 168.1, 164.0, 163.8, 159.0, 151.6, 136.2, 132.6, 132.3, 132.0, 131.6, 130.6, 130.4, 128.7, 128.6, 127.6, 127.5, 127.1, 126.1, 123.1, 122.4, 121.7, 118.7, 117.2, 113.5, 98.5, 94.6, 85.8, 40.4, 30.4, 20.6, 14.0. TF HRM EI + calcd ([C 31 H 22 2 3 ]): calculated m/z = 502.1351, found m/z = 502.1353. 3

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 ynthesis of compound -2-2 was obtained following the procedure similar to that of -1, except benzene acetylene (50.0 mg, 0.49 mmol) was used instead of 3. Yellow solid, yield: 67.3 mg, 38.9%. 1 H MR (400 MHz, CDCl 3 ): δ 8.66 (d, 1H, J = 8 Hz), 8.57 (d, 1H, J = 8 Hz), 8.48 (d, 1H, J = 4 Hz), 7.88 (d, 1H, J = 8 Hz), 7.76 (t, 1H, J = 8 Hz), 7.62 7.59 (m, 2H), 7.37 (t, 3H, J = 4 Hz), 4.14 (t, 2H, J = 8 Hz), 1.69 1.62 (m, 2H), 1.43 1.33 (m, 2H), 0.91 (t, 3H, J = 8 Hz). 13 C MR (100 MHz, CDCl 3 ): δ 164.1, 163.9, 132.5, 132.1, 131.7, 130.9, 130.5, 129.6, 128.8, 128.2, 127.7, 127.6, 123.1, 122.4, 122.3, 99.2, 94.6, 86.4, 40.5, 30.4, 20.6, 14.0. ynthesis of compound -3-3 was obtained following the procedure similar to that of -1, except 4 (50.0 mg, 0.16 mmol) was used instead of 3. Yellow solid, yield: 28 mg, 30.8%. Mp: 217.8 218.9 C. 1 H MR (400 MHz, CDCl 3 ): δ 8.92 (s, 1H), 8.82 (d, 1H, J = 8 Hz), 8.66 (d, 1H, J = 4 Hz), 8.58 (d, 1H, J = 8 Hz), 8.16 (s, 1H), 8.00 7.95 (m, 2H), 7.87 (d, 1H, J = 8 Hz), 7.76 (d, 1H, J = 8 Hz), 7.55 (d, 1H, J = 8 Hz), 7.42 (t, 1H, J = 8 Hz), 7.13 (d, 1H, J = 8 Hz), 4.30 (t, 2H, J = 4 Hz), 4.20 (t, 2H, J = 8 Hz), 2.10 2.04 (m, 2H), 1.77 1.65 (m,4h), 1.50 1.44 (m, 2H), 1.08 (t, 3H, J = 4 Hz), 0.99 (t, 3H, J = 8 Hz). 13 C MR (100 MHz, CDCl 3 ): δ 164.2, 163.9, 157.4, 135.2, 133.3, 132.7, 131.7, 130.7, 130.5, 128.2, 127.9, 127.5, 126.3, 125.1, 123.1, 123.0, 122.0, 121.5, 115.1, 112.7, 98.9, 86.0, 69.6, 40.5, 31.3, 30.4, 29.9, 20.6, 19.7, 14.0. TF HRM EI + : ([C 35 H 30 2 3 ]) calculated m/z = 558.1977, found m/z = 558.1984. ynthesis of compound -4 Under argon atmosphere, Pd (PPh 3 ) 4 (12.0 mg, 0.01mmol), CuI (1.0 mg, 0.005 mmol) and 6 (68.0 mg, 0.1 mmol ) were added to a solution of 3 (25.0 mg, 0.1 mmol) in anhydrous TEA (15 ml). The mixture was stirred at 90 C for 8 h. The resulting solution was cooled to rt., removed the solvent under reduced pressure and the compound was purified by column chromatography (silica gel, CH 2 Cl 2 and petroleum as the eluent) to give the product as yellow solid. Yield: 27 mg, 33.8%. M.p.: > 250 C. 1 H MR (400 MHz, CDCl 3 ): δ 12.75 (s, 1H), 8.85 (d, 1H, J = 8 Hz), 8.67 (m, 1H), 8.65 (d, 1H, J = 4 Hz), 8.58 (d, 1H, J = 8 Hz), 8.43 (d, 1H, J = 4 Hz), 8.36 (d, 1H, J = 4 Hz), 8.03 (d, 1H, J = 8 Hz), 7.99 (d, 1H, J = 8 Hz), 7.94 (d, 1H, J = 4 Hz), 7.87 (t, 1H, J = 8 Hz), 7.80 (d, 1H, J = 8 Hz), 7.73 7.69 (m, 2H), 7.60 (d, 1H, J = 8 Hz), 7.53 (t, 1H, J = 4 Hz), 7.47 (d, 1H, J = 8 Hz), 7.43 (d, 1H, J = 8 Hz), 7.13 (d, 1H, J = 8 Hz), 4.32 4.29 (m, 2H), 4.19 4.08 (m, 2H), 1.94 1.87 (m, 1H), 1.75 1.68 (m, 2H), 1.47 1.38 (m, 10H), 1.01 0.95 (m, 9H). 13 C MR (100 MHz, CDCl 3 ): δ 168.68, 164.57, 164.30, 157.92, 151.77, 141.11, 140.50,135.84, 132.76, 132.54, 131.61, 131.48, 131.04, 130.61, 129.97, 128.34, 128.26, 126.95, 125.90, 124.84, 124.20, 123.07, 122.79, 122.51, 122.38, 121.72, 121.59, 118.37, 116.98, 115.68, 114.39, 112.86, 109.35, 109.29, 101.20, 94.57, 89.58, 87.26, 85.49, 65.71, 44.35, 43.32, 38.11, 31.23, 30.92, 30.72, 28.87, 24.23, 23.25, 20.68, 19.34, 14.27. MALDI-HRM: [C 53 H 46 3 3 +H + ] Calcd m/z = 804.3260, found m/z = 804.3288. ynthesis of compound HBT alicylaldehyde (250 mg, 2.0 mmol) and 2-aminothiophenol (500 mg, 4.0 mmol) were combined in methanol (20 4

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 ml) and stirred for 12 h at 30 C. Then methanol was evaporated under reduced pressure and the compound was purified by column chromatography (silica gel, petroleum / CH 2 Cl 2, 3 : 1, v / v) to give the product as white solid. Yield: 107 mg, 23.6%. 1 H MR (400 MHz, CDCl 3 ): δ 12.52 (s, 1H), 8.00 (d, 1H, J = 8 Hz), 7.91 (d, 1H, J =8 Hz), 7.71 (d, 1H, J = 8 Hz), 7.51 (d, 1H, J = 8 Hz), 7.43 7.36 (m, 2H), 7.12 (d, 1H, J = 8 Hz), 6.96 (t, 1H, J = 8 Hz). 13 C MR (100 MHz, CDCl 3 ): δ 169.5, 158.1, 152.0, 132.9, 128.6, 126.8, 125.7, 122.3, 121.7, 119.7, 118.0, 116.9. 8.02 8.00 7.95 7.92 7.87 7.53 7.52 7.45 7.08 7.06 3.07 3 H 1.00 3.010.80 0.93 8 7 6 5 4 3 2 1 0 Fig. 1 1 H MR of compound 3 (CDCl 3, 400 MHz). 100 251.0408 1.87e4 H % 3 252.0424 223.0468 44.9823 221.0305 250.0333 253.0391 290.9729 0 63.0234 109.0113 152.0605 197.0337 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 m/z Fig. 2 TF HRM EI + of compound 3. 5

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 8.73 8.11 8.09 7.95 7.93 7.56 7.53 7.50 7.38 7.00 7.00 6.97 4.24 4.22 4.21 3.04 2.04 2.03 2.01 1.99 1.66 1.64 1.62 1.61 1.06 1.04 1.02 1.00 1.05 1.06 1.04 2.09 1.01 2.09 3.09 9 8 7 6 5 4 3 2 1 0 Fig. 3 1 H MR of compound 4 (CDCl 3, 400 MHz). 4 C 4 H 9 -n y zjz111025-1 198 (3.284) Cm (194:198-61:83) 100 GCT CA156 251.0397 264.0474 26-ct-201113:47:14 TF M EI+ 1.54e5 % 0 223.0464 307.1031 308.1100 81.9884 108.0044 178.0671 190.0668 365.1774 57.9884 310.1120 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 m/z 4 C 4 H 9 -n Fig. 4 TF HRM EI + of compound 4. 6

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 8.65 8.57 8.55 8.44 8.37 7.98 7.96 7.87 7.77 7.45 7.24 7.22 4.32 4.30 4.29 4.16 4.13 4.12 1.89 1.86 1.42 1.39 1.38 1.31 1.26 0.98 0.96 0.94 0.93 0.89 8.83 8.81 8.66 8.65 8.57 8.55 8.44 8.37 7.98 7.96 7.88 7.87 7.85 7.79 7.77 7.74 7.45 7.43 7.24 7.22 I 0.97 1.02 1.00 1.101.062.02 1.15 1.09 6 8.5 8.0 7.5 1.02 2.02 1.09 2.00 1.02 10.32 9 8 7 6 5 4 3 2 1 0 Fig. 5 1 H MR of compound 6 (CDCl 3, 400 MHz). m GCT CA156 zjz120507-1 266 (4.434) Cm (257:266-219:231) 100 568.0660 07-May-201213:41:15 TF M EI+ 680.1895 6.98e4 % 0 525.0122 569.0732 681.1964 399.1145 442.1698 398.1069 581.0753 682.2004 327.1059 127.9140 480.0168 98.0835 254.0043 729.0266 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 m/z I 6 Fig. 6 TF HRM EI + of compound 6. 7

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012-1 H 8 7 6 5 4 3 2 1 0 Fig. 7 1 H MR of compound 1 (CDCl 3, 400 MHz). 135 130 125 120 115 168.14 164.04 163.76 159.04 151.56 136.17 132.29 131.97 131.60 130.40 127.45 127.07 126.09 122.43 121.70 118.71 117.18 113.47 98.53 94.56 85.82 40.44 30.35 20.56 14.01 136.17 132.61 132.29 131.97 131.60 130.60 130.40 128.71 128.59 127.61 127.45 127.07 126.09 123.06 122.43 121.70 118.71 117.18 113.47 8.59 8.50 7.96 7.95 7.92 7.91 7.89 7.50 7.42 7.21 7.13 4.16 4.14 4.12 1.70 1.69 1.66 1.45 1.43 1.41 1.39 0.96 0.94 0.92 8.71 8.68 8.61 8.59 8.53 8.50 7.98 7.96 7.95 7.92 7.91 7.89 7.83 7.81 7.79 7.64 7.62 7.52 7.50 7.48 7.43 7.42 7.39 7.21 7.14 7.13 1.00 1.03 3.98 1.04 1.22 1.27 1.01 8.5 8.0 7.5 7.0 1.03 3.981.27 2.14 2.10 3.00-1 H 150 100 50 Fig. 8 13 C MR of compound 1 (CDCl 3, 100 MHz). 8

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 100 % 0 502.1353 4.90e4 446.0728 H 503.1392-1 504.1421 28.0057 214.5336 372.0717 165.1281 417.0707 505.1439 559.1556 50 100 150 200 250 300 350 400 450 500 550 600 m/z Fig. 9 TF HRM EI + of compound 1. 8.57 8.48 8.47 7.88 7.86 7.76 7.61 7.60 7.59 7.38 7.37 7.36 7.19 4.13 4.11 4.09 1.67 1.65 1.64 1.62 1.41 1.39 1.38 1.36 0.93 0.91 0.89 8.66 8.64 8.57 8.55 8.48 8.47 7.88 7.86 7.78 7.76 7.74 7.62 7.61 7.60 7.59 7.38 7.37 7.36 7.19-2 1.00 1.01 1.01 1.00 2.03 3.01 8.5 8.0 7.5 1.01 1.01 3.01 2.01 2.02 3.00 9 8 7 6 5 4 3 2 1 0 Fig. 10 1 H MR of compound 2 (CDCl 3, 400 MHz). 9

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 164.13 163.86 132.45 132.05 131.70 130.85 130.48 129.57 128.78 128.16 127.56 123.13 99.16 94.57 86.41 40.48 30.36 20.56 14.02 132.45 132.05 131.70 130.85 130.48 129.57 128.78 128.16 127.66 127.56 123.13 122.38 122.25-2 130 125 150 100 50 Fig. 11 13 C MR of compound 2 (CDCl 3, 100 MHz). 8.92 8.82 8.80 8.66 8.65 8.58 8.56 7.97 7.95 7.87 7.76 7.44 7.42 7.13 7.11 4.32 4.30 4.29 4.22 4.20 4.18 2.06 1.75 1.73 1.69 1.48 1.09 1.08 1.06 1.01 0.99 8.92 8.82 8.80 8.66 8.65 8.58 8.56 8.16 8.00 7.97 7.95 7.89 7.87 7.85 7.76 7.74 7.55 7.54 7.44 7.42 7.40 7.13 7.11 0.94 1.07 0.972.07 1.03 1.08 0.97-3 C 4 H 9 -n 9.0 8.5 8.0 7.5 7.0 1.07 2.071.01 2.07 4.04 3.20 10 9 8 7 6 5 4 3 2 1 Fig. 12 1 H MR of compound 3 (CDCl 3, 400 MHz). 10

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 164.18 163.91 157.43 135.21 132.68 131.68 130.70 130.50 127.52 126.30 125.07 123.02 122.03 121.48 115.07 112.65 98.87 86.02 69.59 40.47 31.32 30.39 29.86 20.57 19.68 14.04 135.21 133.33 132.68 131.68 130.70 130.50 128.20 127.94 127.52 126.30 125.07 123.10 123.02 122.03 121.48 115.07 112.65-3 C 4 H 9 -n 135 130 125 120 115 150 100 50 0 Fig. 13 13 C MR of compound 3 (CDCl 3, 100 MHz). m GCT CA156 zjz111107-1 409 (6.817) Cm (409:415-79:106) 100 % 0 08-ov-201109:58:16 TF M EI+ 515.1426 6.42e4 C 4 H 9 -n 516.1476 446.0732 558.1984-3 447.0780 559.2025 109.0116 136.0228 214.5359 314.0960 346.0685 417.0707 560.2037 50 100 150 200 250 300 350 400 450 500 550 600 m/z Fig. 14 TF HRM EI + compound 3. 11

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 8.00 7.98 7.91 7.89 7.71 7.69 7.53 7.51 7.49 7.43 7.41 7.40 7.39 7.37 7.36 7.12 7.10 6.98 6.96 6.94 1.001.04 1.02 1.06 2.06 1.03 1.01 H HBT 12.52 8.0 7.5 7.0 8.00 7.98 7.91 7.89 7.51 7.41 7.39 7.12 7.10 6.96 0.89 2.06 10 5 0 Fig. 15 1 H MR of compound HBT (CDCl 3, 400 MHz). 169.50 158.07 151.95 132.90 128.56 126.84 125.68 122.32 121.66 119.67 118.01 116.91 H HBT 170 160 150 140 130 120 110 100 90 80 Fig. 16 13 C MR of compound HBT (CDCl 3, 100 MHz). 12

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 8.85 8.83 8.67 8.66 8.65 8.64 8.58 8.56 8.43 8.42 8.36 8.35 8.01 7.99 7.97 7.94 7.93 7.87 7.78 7.73 7.72 7.71 7.70 7.69 7.58 7.54 7.53 7.52 7.47 7.45 7.41 7.13 7.11 H -4 1.01 1.01 1.22 1.03 1.00 1.00 1.02 1.01 2.25 1.96 1.52 1.03 1.03 1.02 12.75 8.5 8.0 7.5 7.0 8.83 8.58 8.56 7.99 7.97 7.94 7.72 7.71 7.54 7.47 7.45 7.13 7.11 4.32 4.31 4.29 4.19 4.17 4.14 4.11 1.72 1.45 1.43 1.41 1.40 1.01 0.99 0.98 0.96 0.95 0.95 1.00 1.01 2.25 2.19 1.03 1.03 1.02 1.02 10.13 9.41 10 5 0 Fig. 17 1 H MR of compound -4 (CDCl 3, 400 MHz). 168.68 164.57 164.30 157.92 151.77 141.11 131.61 130.61 128.26 125.90 123.07 122.79 121.59 118.37 116.98 115.08 114.39 112.86 101.20 94.57 89.58 87.26 85.49 65.71 44.35 43.32 38.11 31.23 30.92 30.72 28.87 24.23 23.25 20.68 19.34 14.27 141.11 140.50 135.84 132.76 132.54 131.61 131.48 131.04 130.61 129.97 128.34 128.26 126.95 125.90 124.84 124.20 123.07 122.79 122.51 122.38 121.72 121.59 118.37 116.98 115.08 114.39 112.86 109.35 109.29 H -4 140 135 130 125 120 115 110 150 100 50 Fig. 18 13 C MR of compound -4 (CDCl 3, 100 MHz). 13

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 MJ 12051710 14 (0.466) Cn (Cen,4, 50.00, Ht); m (G, 2x3.00); b (15,10.00 ); Cm (10:14) 804.3288 100 935 805.3302 % 803.3241 703.2377 806.3279 704.2491 H -4 691.1984 807.3075 1024.3612 1130.5365 1270.4292 1399.2828 1452.3639 0 m/z 500 600 700 800 900 1000 1100 1200 1300 1400 Fig. 19 MALDI HRM of compound -4. Δ. D. 0.004 a 0.000-0.004-0.008 380μs 360μs... 20μs 0μs 300 400 500 600 700 Wavelength / nm Δ. D. 0.02 b 0.01 0.00 τ=118.2μs -0.01 0 100 200 300 t / μs Fig. 20 (a) anosecond time-resolved transient absorption difference spectra of -1 in deaerated methanol (λ ex = 355 nm) and (b) decay traces of the transient absorption at 380 nm; c = 2.0 10-5 M; 20 C. Δ. D. 0.02 0.01 0.00-0.01 a 580μs 560μs... 20μs 0μs 300 400 500 600 Wavelength / nm Δ.D 0.02 0.01 b τ=124.5 μs 0.00 0 200 400 600 t / μs Fig. 21 (a) anosecond time-resolved transient absorption difference spectra of -1 in aerated methanol (λ ex = 355 nm) and (b) decay traces of the transient absorption at 380 nm; c = 2.0 10-5 M; 20 C. 14

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 0.04 a 0.10 b Δ. D. 0.00-0.04-0.08 80μs 76μs... 4μs 0μs 300 400 500 Wavelength / nm Δ.D. 0.05 τ = 10.9 μs 0.00 0 20 40 60 80 t / μs Fig. 22 (a) anosecond time-resolved transient absorption difference spectra of HBT in aerated benzene (λ ex = 355 nm) and (b) decay traces of the transient absorption at 340 nm; c = 2.0 10-5 M; 20 C. 0.04 a Δ. D. 0.00-0.04-0.08 160μs 152μs... 8μs 0μs 350 400 450 500 550 Wavelength / nm Δ.D. 0.10 b 0.05 τ = 18.6 μs 0.00 0 50 100 150 t / μs Fig. 23 (a) anosecond time-resolved transient absorption difference spectra of HBT in deaerated benzene (λ ex = 355 nm) and (b) decay traces of the transient absorption at 340 nm; c = 2.0 10-5 M; 20 C. Δ. D. 0.02 a 0.00-0.02-0.04 152μs 144μs... 8μs 0μs 300 400 500 Wavelength / nm Δ.D. 0.06 0.04 b τ = 9.7 μs 0.02 0.00 0 50 100 t / μs Fig. 24 (a) anosecond time-resolved transient absorption difference spectra of HBT in aerated methanol (λ ex = 355 nm) and (b) decay traces of the transient absorption at 340 nm; c = 2.0 10-5 M; 20 C. 15

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 Δ. D. 0.02 0.00-0.02-0.04 a 152μs 144μs... 8μs 0μs Δ.D. 0.006 b 0.003 0.000 τ=10.9μs 300 400 500 Wavelength / nm -0.003 0 100 200 t / μs Fig. 25 (a) anosecond time-resolved transient absorption difference spectra of HBT in deaerated methanol (λ ex = 355 nm) and (b) decay traces of the transient absorption at 340 nm; c = 2 10-5 M; 20 C. Δ. D. 0.010 a 0.005 0.000 338μs 326μs -0.005... 11μs 0μs -0.010 300 400 500 600 700 800 Wavelength / nm Δ.D. 0.009 b 0.006 τ T =74.5μs 0.003 0.000-0.003 0 100 200 300 Wavelength / nm Fig. 26 (a) anosecond time-resolved transient absorption difference spectra of -3 in deaerated benzene (λ ex = 355 nm) and (b) decay traces of the transient absorption at 380 nm; c = 2.0 10-5 M; 20 C. 这 16

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 Δ E / KJ/mol 260-1 240 20 10 0 1 Δ E = -25.5 KJ/mol Enol Keto 0 0.0 0.2 0.4 0.6 0.8 1.0 Δ -H Bond length / 10-1 nm Δ E / KJ/mol 240 230 220 10 0 1-4 Δ E = -11.8 KJ/mol Enol Keto 0 0.0 0.2 0.4 0.6 0.8 1.0 Δ -H Bond length / 10-1 nm Fig. 27 Potential energy curves from enol form to keto form of the compounds -1 and -4 at the Excited tate and Ground tate. The calculations are based on the optimized ground state geometry ( 0 state) at the B3LYP/6-31G(d)/ level using Gaussian 09W. Table 1. Free energy changes for the transformation from enol form to keto form of the compounds at the Excited tate and Ground tates. Compounds ΔE / kj mol-1 a ΔE / kj mol-1 b -1 9.1 25.5-4 9.7 11.8 a At 0 (ground state) state. b At 1 state. 17

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 Table 2. Photophysical Properties of Compounds -1, -2, -3, -4 and HBT in Different olvents a Comp. olvents b λ abs (nm) λ c em (nm) ε d (M -1 cm -1 ) CH 2 Cl 2 390 545 34700-1 EtAc 380 592 36900 CH 3 C 396 h 34400 CH 2 Cl 2 375 434 26700 EtAc 370 424 26300-2 CH 3 C 371 443 25700 MeH 374 459 23600 CH 2 Cl 2 392 483 17100-3 EtAc 384 469 16800 CH 3 C 392 550 18000 CH 2 Cl 2 440 568 20500-4 EtAc 428 548 20000 CH 3 C 424 e 21100 HBT CH 2 Cl 2 337 517 20200 EtAc 335 363 20500 CH 3 C 332 458 20000 a The excited wavelength for compound -1, -2, -3, -4 and HBT were 370 nm, 350 nm, 370 nm, 410 nm and 315 nm. 1.0 10-5 M, 20 C. b Absorption wavelength. c Fluorescence emission wavelength. d e Molar extinction coefficient. Weak signal. Triplet state of compound -1 (DFT//B3LYP/6-31G(d)) ymbolic Z-matrix: Charge = 0 Multiplicity = 3 0 3 C -4.78143400 2.85559700-0.00000500 H C -3.58856300 2.10434200-0.00008800 C -3.61487300 0.70942200-0.00010200 C -4.88635200 0.05010800-0.00003600 C -6.07115900 0.81481800 0.00004500 C -6.01185700 2.22414000 0.00006200 H -4.72589900 3.94025000 0.00000500 H -2.63102000 2.61600400-0.00014300 C -2.40650700-0.11532900-0.00017800 C -4.96256100-1.37455200-0.00005000 H -6.94098000 2.78215000 0.00012400 C -3.76431500-2.16616600-0.00015000 C -2.54454300-1.56651000-0.00021700 H -3.86832800-3.24483200-0.00017000 H -1.63542100-2.15928600-0.00029200 C -7.39392900 0.15976500 0.00011000 18

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 C -6.25490000-2.04735700 0.00003200-7.40148700-1.23910200 0.00013100 C -8.68989700-1.93838900 0.00024400 H -9.47502300-1.18622300 0.00036900 H -8.76821600-2.57266600-0.88611400 H -8.76800700-2.57275200 0.88655700-6.36890900-3.27914700 0.00004500-8.44338300 0.80462900 0.00022800 C -1.14715900 0.43565400-0.00019300 C -0.00385000 0.90994700-0.00019300 C 1.29180300 1.43779900-0.00018700 C 2.41937200 0.58693000-0.00010200 C 1.51388900 2.84611900-0.00025300 C 3.72320100 1.08699400-0.00008100 H 2.25205900-0.48555800-0.00004800 C 2.79190600 3.35769800-0.00022700 H 0.65879800 3.51406300-0.00031700 C 3.91524600 2.50428400-0.00013800 H 2.96999400 4.42796500-0.00027200 5.12253200 3.07515600-0.00011700 H 5.81004900 2.34962200-0.00004800 C 4.88540400 0.20227100-0.00000200 C 7.05237200-0.36562300 0.00014900 C 6.50358400-1.66920500 0.00009800 C 8.44434200-0.19292600 0.00024700 C 7.31948000-2.80230200 0.00014300 C 9.25588700-1.32068900 0.00029100 H 8.86185200 0.80891400 0.00028500 C 8.69959300-2.61250900 0.00024000 H 6.89477400-3.80096800 0.00010600 H 10.33544000-1.20414400 0.00036700 H 9.35470600-3.47857300 0.00027700 4.75198600-1.56943200-0.00001500 6.11526300 0.65136700 0.00009100 Z-keto form of -1 (DFT//B3LYP/6-31G(d)) ymbolic Z-matrix: Charge = 0 Multiplicity = 1 0 1 C -4.69493600 2.83425200-0.00034000 H C -3.54950400 2.06132200-0.00021200 C -3.62547900 0.64716500-0.00010500 C -4.91422800 0.03306200-0.00014000 19

Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2012 C -6.07761500 0.84581400-0.00028200 C -5.96460600 2.22610500-0.00037000 H -4.61842400 3.91725900-0.00041800 H -2.57072500 2.53061800-0.00018500 C -2.45608700-0.19572800 0.00004500 C -5.03225100-1.37957200-0.00002200 H -6.86979000 2.82384000-0.00047500 C -3.89094400-2.16767000 0.00013500 C -2.61758500-1.58482800 0.00016300 H -4.00247200-3.24683300 0.00023000 H -1.73574700-2.21677200 0.00028200 C -7.42720600 0.23067400-0.00034000 C -6.36312100-2.01978200-0.00004400-7.47955300-1.17153800-0.00013400 C -8.79210200-1.82672900-0.00000500 H -9.55140600-1.04871500-0.00007500 H -8.89160800-2.45750800-0.88653400 H -8.89154600-2.45729100 0.88668500-6.52126000-3.23682400 0.00021800-8.45382600 0.90177000-0.00024900 C -1.15491700 0.36437300 0.00008700 C -0.02326800 0.82051900 0.00012900 C 1.29179500 1.34877800 0.00018000 C 2.40107500 0.51113100 0.00023800 C 1.51324300 2.76768200 0.00004700 C 3.71600400 1.02310200 0.00024000 H 2.24277000-0.56435300 0.00023200 C 2.77255800 3.29854400 0.00010100 H 0.64728300 3.42393100-0.00006700 C 3.95512800 2.47115400 0.00036600 H 2.93047500 4.37263600 0.00001200 5.11770000 2.97935600 0.00022800 C 4.84497800 0.16274400 0.00018200 C 6.60282200-1.62101500 0.00005100 C 7.11151700-0.30909400-0.00005200 C 7.45721400-2.72235500 0.00000700 C 8.48913200-0.07347000-0.00019100 C 8.83184200-2.48463400-0.00012700 H 7.06624000-3.73458900 0.00008700 C 9.33937700-1.17592400-0.00022300 H 8.87465200 0.94083300-0.00028200 H 9.51664300-3.32691400-0.00015900 H 10.41338700-1.01811500-0.00033700 6.09882000 0.63643500-0.00003700 4.83542700-1.59687400 0.00023700 H 6.14062700 1.68953500-0.00026600 20