Φίλη μαθήτρια, φίλε μαθητή

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Φίλη μαθήτρια, φίλε μαθητή"

Transcript

1

2 Φίλη μαθήτρια, φίλε μαθητή Στο ένθετο αυτό παρουσιάζεται μία επιπλέον ενότητα, η οποία συμπληρώνει την εξεταστέα ύλη των πανελλαδικών εξετάσεων για το σχολικό έτος Η φιλοσοφία παρουσίασης της θεωρίας της ενότητας αυτής εξακολουθεί να είναι με τη μορφή ερωτήσεων και απαντήσεων, όπως άλλωστε και στο βιβλίο. Με κεντρικό άξονα την εξεταστέα ύλη οφείλουμε να σου επισημάνουμε τις παρακάτω παρατηρήσεις, οι οποίες αφορούν την άρτια προετοιμασία σου: Δεν αποτελούν εξεταστέα ύλη τα παρακάτω: η ενότητα 1 «Ανάλυση προβλήματος» (σελ. 7 σελ. 19), οι ερωτήσεις 2.4 και 2.5 (σελ. 22), η εντολή Επίλεξε (σελ. 65 σελ. 66), οι ερωτήσεις 5.1 και 5.2 (σελ. 213), η ενότητα 6 «Τεχνικές Σχεδίασης Αλγορίθμων» (σελ. 337 σελ. 339), ο αντικειμενοστραφής και ο παράλληλος προγραμματισμός (δηλαδή οι ερωτήσεις στη σελ. 353). Οι ενότητες 3, 4 και 5 να μελετηθούν παράλληλα και κατ αντιστοιχία με τις ενότητες 8, 9 και 10. Οι αλγόριθμοι θα πρέπει να γράφονται στο προγραμματιστικό περιβάλλον της γλώσσας προγραμματισμού ΓΛΩΣΣΑ. Οι παράγραφοι των δυναμικών δομών δεδομένων, καθώς και της επίδοσης αποδοτικότητας αλγορίθμων, οι οποίες παρουσιάζονται στο ένθετο, θα πρέπει να μελετηθούν θεωρητικά. Οι αλγόριθμοι αναζήτησης και ταξινόμησης, καθώς και τα λυμένα θέματα στη στοίβα και την ουρά πρέπει να μελετηθούν διεξοδικά. Οι συγγραφείς

3 12 ΔΥΝΑΜΙΚΕΣ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΣΤΟΙΒΑΣ ΚΑΙ ΟΥΡΑΣ 12.1 Ποιο είναι το τμήμα προγράμματος το οποίο υλοποιεί τη στοίβα σε ένα μονοδιάστατο πίνακα Α[Ν]; Το τμήμα προγράμματος το οποίο υλοποιεί τη στοίβα σε ένα μονοδιάστατο πίνακα Α[Ν] είναι: TOP <- 0 ΓΡΑΨΕ 'Δώστε επιλογή' ΔΙΑΒΑΣΕ Choice ΜΕΧΡΙΣ_ΟΤΟΥ Choice = 'Ω' Ή Choice = 'Α' Ή Choice = 'Ε' ΟΣΟ Choice <> 'Ε' ΕΠΑΝΑΛΑΒΕ ΑΝ Choice = 'Ω' ΤΟΤΕ ΑΝ TOP = Ν ΤΟΤΕ ΓΡΑΨΕ 'Η στοίβα είναι γεμάτη' TOP <- TOP + 1 ΓΡΑΨΕ 'Δώστε αριθμό' ΔΙΑΒΑΣΕ Α[ΤΟP] ΑΝ TOP = 0 ΤΟΤΕ ΓΡΑΨΕ 'Η στοίβα είναι άδεια' ΓΡΑΨΕ 'Απώθηση του αριθμού', Α[TOP] Α[TOP] <- 0 TOP <- TOP 1 ΓΡΑΨΕ 'Δώστε επιλογή' ΔΙΑΒΑΣΕ Choice ΜΕΧΡΙΣ_ΟΤΟΥ Choice = 'Ω' Ή Choice = 'Α' Ή Choice = 'Ε' 12.2 Ποιο είναι το τμήμα προγράμματος το οποίο υλοποιεί την ουρά σε ένα μονοδιάστατο πίνακα Α[Ν]; 3

4 Το τμήμα προγράμματος το οποίο υλοποιεί την ουρά σε ένα μονοδιάστατο πίνακα Α[Ν] είναι: FRONT <- 0 REAR <- 0 ΓΡΑΨΕ 'Δώστε επιλογή' ΔΙΑΒΑΣΕ Choice ΜΕΧΡΙΣ_ΟΤΟΥ Choice = 'EN' Ή Choice = 'DE' Ή Choice = 'EXIT' ΟΣΟ Choice <> 'EXIT' ΕΠΑΝΑΛΑΒΕ ΑΝ Choice = 'EN' ΤΟΤΕ ΑΝ REAR = Ν ΤΟΤΕ ΓΡΑΨΕ 'Η ουρά είναι γεμάτη' REAR <- REAR + 1 ΓΡΑΨΕ 'Δώστε αριθμό' ΔΙΑΒΑΣΕ Α[REAR] ΑΝ FRONT = 0 Ή FRONT > REAR ΤΟΤΕ ΓΡΑΨΕ 'Η ουρά είναι άδεια' ΓΡΑΨΕ 'Εξαγωγή του αριθμού', Α[FRONT] Α[FRONT] <- 0 FRONT <- FRONT + 1 ΓΡΑΨΕ 'Δώστε επιλογή' ΔΙΑΒΑΣΕ Choice ΜΕΧΡΙΣ_ΟΤΟΥ Choice = 'EN' Ή Choice = 'DE' Ή Choice = 'EXIT' ΑΛΓΟΡΙΘΜΟΣ ΔΥΑΔΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ 12.3 Ποιο είναι το τμήμα προγράμματος το οποίο υλοποιεί τον αλγόριθμο της δυαδικής αναζήτησης σε ένα μονοδιάστατο ταξινομημένο πίνακα Α[Ν]; Το τμήμα προγράμματος το οποίο υλοποιεί τη δυαδική αναζήτηση σε ένα μονοδιάστατο ταξινομημένο πίνακα Α[Ν] είναι: ΔΙΑΒΑΣΕ key Left <- 1 Right <- Ν pos <- 0 Found <- ΨΕΥΔΗΣ ΟΣΟ (Left <= Right) ΚΑΙ (Found = ΨΕΥΔΗΣ) ΕΠΑΝΑΛΑΒΕ Μid <- (Left + Right) DIV 2 ΑN A[Μid] = key ΤΟΤΕ pos <- Μid 4

5 Found <- ΑΛΗΘΗΣ ΑN A[Μid] < key ΤΟΤΕ Left <- Μid + 1 Right <- Μid 1 ΑN Found = ΑΛΗΘΗΣ ΤΟΤΕ ΓΡΑΨΕ 'Βρέθηκε στη θέση', pos ΓΡΑΨΕ 'Δεν βρέθηκε' ΑΛΓΟΡΙΘΜΟΙ ΤΑΞΙΝΟΜΗΣΗΣ 12.4 Ποιο είναι το τμήμα προγράμματος το οποίο υλοποιεί την ταξινόμηση με εισαγωγή σε ένα μονοδιάστατο πίνακα Α[Ν]; Αρχικά αντιγράφουμε τα Ν στοιχεία του πίνακα Α στις θέσεις 2 έως Ν + 1 ενός πίνακα Β. Το τμήμα προγράμματος το οποίο υλοποιεί την ταξινόμηση ευθείας εισαγωγής στο μονοδιάστατο πίνακα Β[Ν + 1] είναι: ΓIA Ι ΑΠΟ 3 ΜΕΧΡΙ Ν + 1 TMP <- Β[Ι] J <- I 1 Β[1] <- TMP ΟΣΟ TMP < Β[J] ΕΠΑΝΑΛΑΒΕ Β[J + 1] <- Β[J] J <- J 1 Β[J + 1] <- TMP Το παραπάνω τμήμα προγράμματος είναι ιδανικό για περιπτώσεις δεδομένων που είναι ταξινομημένα σε κάποιο βαθμό και χρησιμοποιείται σε πολλά υβριδικά σχήματα. Επίσης πρέπει να θεωρηθεί ότι ο πίνακας Β έχει Ν + 1 θέσεις, με πρώτη θέση τη θέση Β[1], που χρησιμοποιείται για την προσωρινή αποθήκευση του στοιχείου της α- κολουθίας πηγής που πρόκειται να εισαχθεί στην ακολουθία προορισμού. Έτσι, τα στοιχεία διακρίνονται σχηματικά σε μία ακολουθία προορισμού (destination sequence) Β[2], Β[3],..., Β[I 1] και σε μία ακολουθία πηγής (source sequence) Β[I],..., Β[Ν + 1]. Αρχικά η ακολουθία προορισμού αποτελείται από το δεύτερο στοιχείο και σταδιακά αυξάνεται κατά ένα στοιχείο, το οποίο επιτυγχάνεται παρεμβάλλοντάς το στοιχείο Β[I] στην κατάλληλη θέση μεταξύ των στοιχείων της ακολουθίας προορισμού, εκτελώντας διαδοχικές συγκρίσεις από τα δεξιά προς τα αριστερά με τα στοιχεία της ακολουθίας προορισμού. Τελικά αντιγράφουμε τα στοιχεία του πίνακα Β από τις θέσεις 2 έως Ν + 1 κατ αντιστοιχία στις θέσεις 1 έως Ν του πίνακα Α. Έτσι, τα στοιχεία του πίνακα Α έχουν πλέον ταξινομηθεί Ποιο είναι το τμήμα προγράμματος το οποίο υλοποιεί την ταξινόμηση με επιλογή σε ένα μονοδιάστατο πίνακα Α[Ν]; Το τμήμα προγράμματος που υλοποιεί την ταξινόμηση ευθείας επιλογής σε ένα μονοδιάστατο πίνακα Α[Ν] είναι: ΓIA I ΑΠΟ 1 ΜΕΧΡΙ Ν 1 J <- I ΓIA K ΑΠΟ I + 1 ΜΕΧΡΙ Ν 5

6 ΑN Α[K] < Α[J] TOTE J <- K TMP <- A[J] A[J] <- A[I] A[I] <- TMP Η παραπάνω μέθοδος καλείται ταξινόμηση ευθείας επιλογής (straight selection sort). H ευθεία επιλογή εξετάζει κατά σειρά τα στοιχεία της ακολουθίας πηγής, ώστε να ανιχνεύσει το στοιχείο με το ελάχιστο κλειδί και να το τοποθετήσει ως το επόμενο στοιχείο της ακολουθίας προορισμού. Αντίθετα, η ευθεία εισαγωγή συγκρίνει σε κάθε βήμα το επόμενο στοιχείο της ακολουθίας πηγής με όλα τα στοιχεία της ακολουθίας προορισμού για να εντοπίσει το κατάλληλο σημείο εισαγωγής του. ΔΥΝΑΜΙΚΕΣ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ 12.6 Ποιες δομές δεδομένων καλούνται δυναμικές δομές δεδομένων; Οι δομές δεδομένων που χρησιμοποιούν δείκτες αποκαλούνται δυναμικές (dynamic), γιατί η υλοποίησή τους γίνεται έτσι, ώστε να μην απαιτείται εκ των προτέρων καθορισμός του μέγιστου αριθμού κόμβων. Είναι φανερό ότι οι δομές αυτές είναι πιο ευέλικτες από τη στατική δομή του πίνακα, επειδή επεκτείνονται και συρρικνώνονται κατά τη διάρκεια εκτέλεσης του προγράμματος. Οι στατικές δομές δεδομένων και οι λίστες λέγονται γραμμικές, ενώ τα δένδρα και οι γράφοι μη γραμμικές βάσεις δεδομένων Τι γνωρίζετε για τη λίστα; Στις λίστες το κύριο χαρακτηριστικό είναι ότι οι κόμβοι τους συνήθως βρίσκονται σε απομακρυσμένες θέσεις μνήμης και η σύνδεσή τους γίνεται με δείκτες. Οι δείκτες (pointer index) προσφέρονται από τις περισσότερες σύγχρονες γλώσσες προγραμματισμού και παραπέμπουν σε θέσεις μνήμης και πίνακα αντίστοιχα. Ο δείκτης (pointer) δεν λαμβάνει αριθμητικές τιμές όπως ακέραιες, πραγματικές κ.ά., αλλά οι τιμές του είναι διευθύνσεις στην κύρια μνήμη και χρησιμοποιείται ακριβώς για τη σύνδεση των διαφόρων στοιχείων μιας δομής, που είναι αποθηκευμένα σε μη συνεχόμενες θέσεις μνήμης. Στο σχήμα παρουσιάζεται η δομή του κόμβου μιας λίστας, όπου υποτίθεται ότι το πρώτο πεδίο, που ονομάζεται Δεδομένα, είναι κάποια αλφαριθμητική πληροφορία, ενώ το δεύτερο πεδίο, που ονομάζεται Δείκτης, είναι ο δείκτης που δείχνει στον επόμενο κόμβο της λίστας. Στο σχήμα παρουσιάζεται μια λίστα με τέσσερις κόμβους, όπου οι δείκτες έχουν τη μορφή βέλους, προκειμένου να φαίνεται ο κόμβος στον οποίο παραπέμπουν. Με τη χρήση δεικτών διευκολύνονται οι λειτουργίες της εισαγωγής και της διαγραφής δεδομένων σε μια λίστα. Στο σχήμα φαίνεται η εισαγωγή ενός νέου κόμβου μεταξύ του δεύτερου και τρίτου 6

7 κόμβου της προηγούμενης λίστας. Όπως φαίνεται και στο σχήμα, οι απαιτούμενες ενέργειες για την εισαγωγή (παρεμβολή) του νέου κόμβου είναι ο δείκτης του δεύτερου κόμβου να δείχνει το νέο κόμβο και ο δείκτης του νέου κόμβου να δείχνει τον τρίτο κόμβο (δηλαδή να πάρει την τιμή που είχε πριν την εισαγωγή ο δείκτης του δεύτερου κόμβου). Έτσι οι κόμβοι της λίστας διατηρούν τη λογική τους σειρά, αλλά οι φυσικές θέσεις στη μνήμη μπορεί να είναι τελείως διαφορετικές. Αντίστοιχα για τη διαγραφή ενός κόμβου αρκεί να αλλάξει τιμή ο δείκτης του προηγούμενου κόμβου και να δείχνει πλέον τον επόμενο αυτού που διαγράφεται, όπως φαίνεται στο σχήμα. Ο κόμβος που διαγράφηκε (ο τρίτος) αποτελεί «άχρηστο δεδομένο» και ο χώρος μνήμης που καταλάμβανε παραχωρείται για άλλη χρήση Τι γνωρίζετε για τα δένδρα; Τα δένδρα (trees) είναι δομές που στις σύγχρονες γλώσσες προγραμματισμού υλοποιούνται με τη βοήθεια των δεικτών, ενώ αποτελούν μη γραμμικές δυναμικές βάσεις δεδομένων. Δένδρο είναι ένα σύνολο κόμβων που συνδέονται με ακμές. Υπάρχει ένας μόνο κόμβος που ονομάζεται ρίζα (root) και στον οποίο δεν καταλήγουν, αλλά μόνο ξεκινούν ακμές. Από κάθε κόμβο μπορούν να ξεκινούν καμία, μία ή περισσότερες ακμές. Σε κάθε κόμβο (εκτός της ρίζας) καταλήγει μία μόνο ακμή. Βέβαια, μπορούν να υλοποιηθούν και με στατικές δομές (με πίνακες). Το κύριο χαρακτηριστικό των δένδρων είναι ότι από έναν κόμβο δεν υπάρχει μόνο ο επόμενος κόμβος, αλλά περισσότεροι. Υπάρχει ένας μόνο κόμβος, που λέγεται ρίζα, από τον οποίο ξεκινούν όλοι οι άλλοι κόμβοι. Στο σχήμα παρατηρούμε ότι από τη ρίζα ξεκινούν δύο κόμβοι. Οι κόμβοι αυτοί λέγονται παιδιά της ρίζας. Με την ίδια λογική, από κάθε παιδί της ρίζας ξεκινούν άλλα παιδιά κ.ο.κ. Για παράδειγμα, υπάρχει μια ιδιαίτερη δενδρική δομή, ο σωρός (heap), ο οποίος μπορεί να εφαρμοστεί για τη γρήγορη εύρεση του στοιχείου με τη μικρότερη τιμή. Επίσης μια χρήσιμη κατηγορία δένδρων είναι τα δυαδικά δένδρα αναζήτησης Τι γνωρίζετε για τους γράφους; Ένας γράφος (graph) αποτελείται από ένα σύνολο κόμβων (ή σημείων ή κορυφών) και ένα σύνολο γραμμών (ή ακμών ή τόξων) που ενώνουν μερικούς ή όλους τους κόμβους. Ο γράφος αποτελεί την πιο γενική δομή δεδομένων, με την έννοια ότι όλες οι προηγούμενες δομές που παρουσιάστηκαν μπορούν να θεωρηθούν περιπτώσεις γράφων. Πολλά προβλήματα και καταστάσεις της καθημερινής μας ζωής μπορούν να περιγραφούν με τη βοήθεια γράφων. Για παράδειγμα, τα σημεία ενός γράφου μπορούν να παριστούν πόλεις και οι γραμμές τις οδικές συνδέσεις μεταξύ τους. Λόγω της μεγάλης πληθώρας και ποικιλίας των προβλημάτων που σχετίζονται με γράφους, έχει αναπτυχθεί ομώνυμη θεωρία, η Θεωρία Γράφων. 7

8 ΕΠΙΔΟΣΗ ΑΠΟΔΟΤΙΚΟΤΗΤΑ ΑΛΓΟΡΙΘΜΩΝ Ποια ερωτήματα προκύπτουν για την κατανόηση της επίδοσης ενός αλγορίθμου; Για την κατανόηση της επίδοσης ενός αλγορίθμου χρειάζεται να απαντηθεί ένα σύνολο ερωτημάτων. Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι αλγόριθμοι; πώς μπορεί να γνωρίζει κανείς αν ένας αλγόριθμος είναι «βέλτιστος»; Οι πληροφορίες αυτές αφορούν κυρίως στην αναγνώριση της χειρότερης περίπτωσης του αλγορίθμου και στην αποτύπωση του μεγέθους του προβλήματος με βάση το πλήθος των δεδομένων Τι αφορά η χειρότερη περίπτωση ενός αλγορίθμου; Η χειρότερη περίπτωση (worst case scenario) ενός αλγορίθμου αφορά στο μέγιστο κόστος εκτέλεσης του αλγορίθμου, κόστος που αποτιμάται σε υπολογιστικούς πόρους. Το κόστος αυτό πολλές φορές κρίνει την επιλογή και το σχεδιασμό ενός αλγορίθμου. Για να εκφραστεί αυτή η χειρότερη περίπτωση, χρειάζεται κάποιο μέγεθος σύγκρισης και αναφοράς που να χαρακτηρίζει τον αλγόριθμο. Η πλέον συνηθισμένη πρακτική είναι η μέτρηση του αριθμού των βασικών πράξεων που θα πρέπει να εκτελέσει ο αλγόριθμος στη χειρότερη περίπτωση. Για παράδειγμα, μία βασική πράξη μπορεί να είναι: η εντολή ανάθεση τιμής, η σύγκριση μεταξύ δύο μεταβλητών ή οποιαδήποτε αριθμητική πράξη μεταξύ δύο μεταβλητών. Η χειρότερη περίπτωση αντιπροσωπεύει τις τιμές εκείνες που, όταν δίνονται ως είσοδος στον αλγόριθμο, οδηγούν στην εκτέλεση του μέγιστου αριθμού βασικών πράξεων. Αν, για παράδειγμα, θέλουμε να αποτιμήσουμε τη χειρότερη περίπτωση του διπλανού αλγορίθμου, τότε είναι προφανές ότι η χειρότερη περίπτωση προκύπτει όταν γίνουν 10 επαναλήψεις (δηλαδή μέχρι n = 0). Το μέγεθος του αλγορίθμου μπορεί να εκφραστεί από τη μεταβλητή n, που στην ουσία εκφράζει το πλήθος των επαναλήψεων του βασικού βρόχου του αλγορίθμου. Γενικά, τα δεδομένα συνιστούν το μέγεθος της εισόδου ενός αλγορίθμου Ποιο το μέγεθος και η βασική πράξη των παρακάτω αλγορίθμων; Αλγόριθμος Παράδειγμα1 n 10 Αρχή_επανάληψης Διάβασε m n n 1 Μέχρις_ότου (m = 0) Ή (n = 0) Εκτύπωσε m Τέλος Παράδειγμα1 Μέγεθος εισόδου και βασική πράξη αλγορίθμων Αλγόριθμος Μέγεθος εισόδου αλγορίθμου (n) Βασική Πράξη Ταξινόμηση το πλήθος των αντικειμένων που θα ταξινομηθούν σύγκριση Πολλαπλασιασμός το πλήθος των ψηφίων των αριθμών που θα πολλαπλασιασθούν αριθμητικές πράξεις Αναζήτηση το πλήθος των στοιχείων του πίνακα σύγκριση 8

9 12.13 Ποια είναι η επίδοση και ο χρόνος εκτέλεσης του παρακάτω αλγορίθμου; Αλγόριθμος Παράδειγμα2 x 123 y 234 Για i από 0 μέχρι 4 Εκτύπωσε i z x * y Τέλος_επανάληψης Εκτύπωσε x Εκτύπωσε y Εκτύπωσε z Τέλος Παράδειγμα2 Η επίδοση του παραπάνω αλγορίθμου θα υπολογιστεί με βάση τον αριθμό των πράξεων που θα εκτελεστούν. Με δεδομένο ότι ο βρόχος του προγράμματος θα εκτελεστεί 5 φορές, προκύπτει η παρακάτω ανάλυση: Εντολή αλγορίθμου Αριθμός πράξεων ανάθεση τιμών στα x και y 2 βρόχος επανάληψης αρχική τιμή i 1 έλεγχος i 6 αύξηση i 5 εκτύπωση i 5 υπολογισμός z (2x5) 10 εκτύπωση x, y, z 3 ΣΥΝΟΛΟ 32 Οι βρόχοι επανάληψης αποτελούν το κρίσιμο σημείο για το χαρακτηρισμό της επίδοσης ενός αλγορίθμου. Έτσι, αν ο αλγόριθμος αυτός γενικευθεί ώστε ο βρόχος να εκτελεστεί n φορές, ο χρόνος εκτέλεσης θα εξαρτάται από το μέγεθος του n. Ο παρακάτω πίνακας παρουσιάζει τους χρόνους εκτέλεσης του αλγορίθμου αυτού για διαφορετικά μεγέθη του n: Χρόνοι εκτέλεσης αλγορίθμου ανάλογα με το μέγεθος μέγεθος n Χρόνος εκτέλεσης 5 42 μικρο-δευτερόλεπτα μικρο-δευτερόλεπτα μικρο-δευτερόλεπτα δευτερόλεπτα (περίπου) Πώς αντιλαμβάνεστε την αποδοτικότητα ενός αλγορίθμου; Αν η επίλυση ενός προβλήματος επιτυγχάνεται με τη χρήση δύο ή περισσότερων αλγορίθμων, χρειάζεται να γίνει η επιλογή του καταλληλότερου με βάση την αποδοτικότητά τους. Έτσι, αν ο αλγόριθμος Β έχει το ίδιο αποτέλεσμα με τον αλγόριθμο Α αλλά δίνει τα αποτελέσματα σε λιγότερο χρόνο, τότε είναι αποδοτικότερος του Α. Με παρόμοιο τρόπο, όταν ο αλγόριθμος Β έχει το ίδιο αποτέλεσμα με έναν αλγόριθμο Α αλλά έχει τα αποτελέσματα με χρήση λιγότερης μνήμης, τότε 9

10 είναι αποδοτικότερος του Α. Βέβαια, όταν συγκρίνονται δύο αλγόριθμοι, θα πρέπει να συγκρίνονται με χρήση των ίδιων δεδομένων και κάτω από τις ίδιες συνθήκες Ποιοι παράγοντες καθορίζουν το χρόνο εκτέλεσης ενός αλγορίθμου; Οι παράγοντες που καθορίζουν το χρόνο εκτέλεσης ενός αλγορίθμου είναι: ο τύπος του ηλεκτρονικού υπολογιστή που θα εκτελέσει το πρόγραμμα του αλγορίθμου, η γλώσσα προγραμματισμού που θα χρησιμοποιηθεί, η δομή του προγράμματος και οι δομές δεδομένων που χρησιμοποιούνται, ο χρόνος που απαιτείται για την πρόσβαση στο δίσκο και για τις ενέργειες εισόδου-εξόδου, το είδος του συστήματος, ενός χρήστη ή πολλών χρηστών Ποιοι παράγοντες πρέπει να ικανοποιούνται κατά τη σύγκριση δύο προγραμμάτων; Κατά τη σύγκριση δύο προγραμμάτων θα πρέπει: και τα δύο προγράμματα να έχουν συνταχθεί στην ίδια γλώσσα προγραμματισμού, να έχει χρησιμοποιηθεί ο ίδιος μεταφραστής της γλώσσας προγραμματισμού, να χρησιμοποιείται η ίδια υπολογιστική πλατφόρμα, ακριβώς τα ίδια δεδομένα να αποτελούν είσοδο κατά τον έλεγχο των δύο αλγορίθμων. ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΑΛΓΟΡΙΘΜΩΝ Με ποιους τρόπους επιτυγχάνεται η μέτρηση της επίδοσης ενός αλγορίθμου; Ο απλούστερος τρόπος μέτρησης της επίδοσης ενός αλγορίθμου είναι ο εμπειρικός (empirical) ή, αλλιώς, ο λεγόμενος εκ των υστέρων (a posteriori). Δηλαδή, ο αλγόριθμος υλοποιείται και εφαρμόζεται σε ένα σύνολο δεδομένων, ώστε να υπολογισθεί ο απαιτούμενος χρόνος επεξεργασίας (processing time) και η χωρητικότητα μνήμης (memory space). Ο τρόπος όμως αυτός παρουσιάζει δύο κύρια μειονεκτήματα. Αφενός είναι δύσκολο να προβλεφθεί η συμπεριφορά του αλγορίθμου για κάποιο άλλο σύνολο δεδομένων, αφετέρου ο χρόνος επεξεργασίας εξαρτάται από το υλικό, τη γλώσσα προγραμματισμού και το μεταφραστή και προπάντων από τη δεινότητα του προγραμματιστή. Έτσι μπορεί να συναχθούν λανθασμένες εκτιμήσεις για την επίδοση του αλγορίθμου. Ο δεύτερος τρόπος εκτίμησης της επίδοσης ενός αλγορίθμου είναι ο θεωρητικός (theoretical) ή, αλλιώς, ο λεγόμενος εκ των προτέρων (a priori). Για το σκοπό αυτό εισάγεται μία μεταβλητή n, που εκφράζει το μέγεθος (size) του προβλήματος, ώστε η μέτρηση της αποδοτικότητας του αλγορίθμου να ισχύει για οποιοδήποτε σύνολο δεδομένων και ανεξάρτητα από υποκειμενικούς παράγοντες, ό- πως αυτοί που αναφέρθηκαν. Η σημασία της μεταβλητής αυτής εξαρτάται από το πρόβλημα που πρόκειται να επιλυθεί. Για παράδειγμα, αν το πρόβλημα είναι η ταξινόμηση k στοιχείων, τότε n = k. Στη συνέχεια ο χρόνος επεξεργασίας και ο απαιτούμενος χώρος μνήμης εκτιμώνται με τη βοήθεια μιας συνάρτησης f(n), που εκφράζει τη χρονική πολυπλοκότητα (time complexity) ή την πολυπλοκότητα χώρου (space complexity) Τι καλείται τάξη ενός αλγορίθμου; Ορισμός Αν η πολυπλοκότητα ενός αλγορίθμου είναι f (n), τότε λέγεται ότι είναι τάξης O(g(n)), αν υπάρχουν δύο θετικοί ακέραιοι c και n 0, έτσι ώστε για κάθε n n0 να ισχύει: f (n) c g(n) 10

11 3 2 Έστω ότι η πολυπλοκότητα ενός αλγορίθμου δίνεται από το πολυώνυμο f(n) 2n 5n 4n 3. Ο πιο σημαντικός όρος του πολυωνύμου είναι η τρίτη δύναμη, ενώ η σημασία των υπόλοιπων όρων σταδιακά μειώνεται επιπλέον, αγνοείται ο συντελεστής 2 της τρίτης δύναμης. Έτσι προκύπτει ότι 3 3 g(n) n και η πολυπλοκότητα του αλγορίθμου είναι O(n ). Η έκφραση αυτή εκφράζει την ποιοτική και όχι την ποσοτική συμπεριφορά του αλγορίθμου. Κατά τον ίδιο τρόπο, αν δοθεί η έκφραση n 2 n f(n) 5 2 4n 4logn, τότε προκύπτει ότι g(n) 2, καθώς αγνοούνται οι μη σημαντικοί όροι του f (n) και ο συντελεστής 5 του όρου n Ποιες είναι οι κατηγορίες χρονικής πολυπλοκότητας ενός αλγορίθμου; Οι κατηγορίες χρονικής πολυπλοκότητας ενός αλγορίθμου είναι: O(1) : Κάθε εντολή του προγράμματος εκτελείται μία φορά ή, το πολύ, μερικές μόνο φορές. Στην περίπτωση αυτή λέγεται ότι ο αλγόριθμος είναι σταθερής πολυπλοκότητας. O(log n) : Ο αλγόριθμος είναι λογαριθμικής πολυπλοκότητας. Ας σημειωθεί ότι με «log» θα συμβολίζεται ο δυαδικός λογάριθμος, ενώ με «ln» θα συμβολίζεται ο φυσικός λογάριθμος. Συνήθως, οι λογάριθμοι που χρησιμοποιούνται στο βιβλίο αυτό είναι δυαδικοί. O(n) : Η πολυπλοκότητα λέγεται γραμμική. Αυτή είναι η καλύτερη επίδοση για έναν αλγόριθμο που πρέπει να εξετάσει ή να δώσει στην έξοδο n στοιχεία. O(n log n) : Διαβάζεται όπως ακριβώς γράφεται, n log n, δηλαδή χωρίς να χρησιμοποιείται κάποιο επίθετο (όπως, για παράδειγμα, γραμμολογαριθμική). Στην κατηγορία αυτή ανήκει μία πολύ σπουδαία οικογένεια αλγορίθμων ταξινόμησης. 2 O(n ) : Τετραγωνική πολυπλοκότητα. Πρέπει να χρησιμοποιείται μόνο για προβλήματα μικρού μεγέθους. 3 O(n ) : Κυβική πολυπλοκότητα. Και αυτοί οι αλγόριθμοι πρέπει να χρησιμοποιούνται μόνο για προβλήματα μικρού μεγέθους. n O(2 ) : Σπάνια στην πράξη χρησιμοποιούνται αλγόριθμοι εκθετικής πολυπλοκότητας. Χρόνοι εκτέλεσης αλγορίθμων ανάλογα με την πολυπλοκότητα και το μέγεθος Πολυπλοκότητα αλγορίθμου Μέγεθος προβλήματος n = 20 n = 40 n = 60 O(n) δεύτερα δεύτερα δεύτερα 2 O(n ) δεύτερα δεύτερα δεύτερα 3 O(n ) δεύτερα δεύτερα 216 δεύτερα O(2n) 1.0 δεύτερo 2.7 ημέρες 366 αιώνες O(n!) 771 αιώνες αιώνες αιώνες 11

12 12.20 Ποια είναι η πολυπλοκότητα του αλγορίθμου ταξινόμησης ευθείας ανταλλαγής; Το πιο βασικό κριτήριο της επίδοσης μιας μεθόδου ταξινόμησης είναι ο αριθμός C, που μετρά τις απαιτούμενες συγκρίσεις κλειδιών (key comparisons) που εκτελούνται μέχρι να τελειώσει η ταξινόμηση. Ένα άλλο κριτήριο είναι ο αριθμός Μ, που μετρά τις μετακινήσεις (moves) των στοιχείων. Οι αριθμοί C και M είναι συναρτήσεις του αριθμού n των στοιχείων που πρέπει να ταξινομηθούν. Με βάση τον αλγόριθμο όπως περιγράφεται στην παράγραφο, εύκολα προκύπτει ότι ο αριθμός των συγκρίσεων στην καλύτερη, τη μέση και τη χειρότερη περίπτωση είναι ο ίδιος. Ο αριθμός αυτός είναι: C (n 1). Με βάση τις ιδιότητες της αριθμητικής προόδου προκύπτει ότι n(n 1) C, που τελικά σημαίνει ότι η πολυπλοκότητα της ταξινόμησης αυτής είναι 2 2 O(n ) Ποια είναι η πολυπλοκότητα του αλγορίθμου γραμμικής αναζήτησης; Έχουμε ήδη μελετήσει την απλούστερη μέθοδο αναζήτησης, τη γραμμική ή σειριακή μέθοδο. Όταν αναζητούμε ένα κλειδί που πράγματι υπάρχει στον πίνακα, τότε λέμε ότι η αναζήτηση είναι επιτυχής (successful). Στην αντίθετη περίπτωση, λέμε ότι η αναζήτηση είναι ανεπιτυχής (unsuccessful). Το κόστος της αναζήτησης μετράται με τον αριθμό των συγκρίσεων κλειδιών. Έτσι το κόστος αυτό για την επιτυχή αναζήτηση συμβολίζεται με Ε, ενώ για την ανεπιτυχή αναζήτηση συμβολίζεται με Α. Ας εξετάσουμε αρχικά πώς προκύπτει η πολυπλοκότητα της επιτυχούς αναζήτησης σε μη ταξινομημένο πίνακα που αποτελείται από n στοιχεία. Αν αναζητάμε το πρώτο στοιχείο, τότε η επιτυχής αναζήτηση θα κοστίσει μία σύγκριση, ενώ αν αναζητάμε το δεύτερο στοιχείο, τότε το κόστος είναι δύο συγκρίσεις. Με την ίδια λογική, αν αναζητάμε το n-οστό στοιχείο, τότε θα εκτελεσθούν n συγκρίσεις κλειδιών μέχρι την περάτωση του αλγορίθμου. Έτσι, κατά μέσο όρο, ο απαιτούμενος αριθμός συγκρίσεων κλειδιών για την επιτυχή αναζήτηση είναι: n n(n 1) n 1 E n 2n 2 Από τη σχέση αυτή εύκολα καταλήγουμε στο συμπέρασμα ότι η επιτυχής αναζήτηση έχει πολυπλοκότητα της τάξης O(n), με την απαραίτητη προϋπόθεση ότι τα κλειδιά που αναζητάμε είναι ισοπίθανα. Η πολυπλοκότητα της ανεπιτυχούς αναζήτησης είναι επίσης τάξης O(n). Αυτό προκύπτει με βάση την απλή σκέψη ότι, όταν το αναζητούμενο κλειδί δεν υπάρχει στον πίνακα, τότε η αναζήτηση καταλήγει να εξετάσει ένα προς ένα όλα τα κλειδιά μέχρι το τέλος του πίνακα. Αν ο πίνακας είναι ταξινομημένος, τότε η διαδικασία της επιτυχούς και της ανεπιτυχούς αναζήτησης μπορεί να βελτιωθεί, ωστόσο και πάλι η πολυπλοκότητα θα είναι γραμμικής τάξης. Πολυπλοκότητες μερικών αλγορίθμων Αλγόριθμος Ώθηση απώθηση σε στοίβα Εισαγωγή εξαγωγή σε ουρά Fibonacci επαναληπτική Πολυπλοκότητα O(1) O(1) O(n) Ταξινόμηση ευθείας ανταλλαγής 2 O(n ) Σειριακή αναζήτηση O(n) Δυαδική αναζήτηση O(log n) 12

13 ΘΕΜΑΤΑ ΜΕ ΑΠΑΝΤΗΣΗ Έστω ότι σε μία στοίβα εισάγονται τρία στοιχεία με τη σειρά: πρώτα το Κ, μετά το Λ και τέλος το Μ, τα οποία αργότερα εξάγονται. Όμως, οι εξαγωγές αυτές μπορούν να συμβούν οποτεδήποτε μεταξύ ή μετά τις εισαγωγές. Να γράψετε όλες τις δυνατές διατάξεις των παραπάνω στοιχείων. Θα συμβεί το ίδιο όταν χρησιμοποιηθεί αντί για στοίβα ουρά; Λύση Το πλήθος των διαφορετικών διατάξεων 3 στοιχείων είναι 3! = 1*2*3 = 6. Οι δυνατές όμως διατάξεις χρησιμοποιώντας στοίβα είναι οι εξής 5: α. ΚΛΜ: ώθηση Κ απώθηση Κ, ώθηση Λ απώθηση Λ, ώθηση Μ απώθηση Μ β. ΚΜΛ: ώθηση Κ απώθηση Κ, ώθηση Λ, ώθηση Μ απώθηση Μ, απώθηση Λ γ. ΛΜΚ: ώθηση Κ, ώθηση Λ απώθηση Λ, ώθηση Μ απώθηση Μ, απώθηση Κ δ. ΛΚΜ: ώθηση Κ, ώθηση Λ απώθηση Λ, απώθηση Κ, ώθηση Μ απώθηση Μ ε. ΜΛΚ: ώθηση Κ, ώθηση Λ, ώθηση Μ απώθηση Μ, απώθηση Λ, απώθηση Κ Προφανώς, χρησιμοποιώντας ουρά για τα τρία αυτά στοιχεία και με προϋπόθεση ότι η σειρά εισαγωγής των στοιχείων είναι Κ, Λ, Μ, η μοναδική διάταξη που προκύπτει είναι η ΚΛΜ. Αυτό είναι το αποτέλεσμα της λειτουργίας FIFO της ουράς Μια γαλακτοβιομηχανία παστεριώνει τα γάλατα που συλλέγει από τους παραγωγούς ανάλογα με την ημερομηνία παραγωγής του γάλακτος. Έτσι συλλέγει αρχικά το γάλα σε διαφορετικά δοχεία και το παστεριώνει με σειρά προτεραιότητας. Θα πρέπει δηλαδή το γάλα το οποίο παρήχθη πρώτο να παστεριωθεί πρώτο. Να γραφεί πρόγραμμα σε ΓΛΩΣΣΑ το οποίο: α. Να εισάγει αρχικά την τιμή 0 σε όλες τις θέσεις του πίνακα Α[10] και τον κενό χαρακτήρα στον πίνακα Κ[10] αντίστοιχα. β. Να εισάγει στον πίνακα Α[10] τις ημέρες που έχουν παρέλθει από την παραγωγή του κάθε διαφορετικού δοχείου γάλακτος και στον παράλληλο πίνακα Κ[10] τον αντίστοιχο κωδικό του δοχείου, χρησιμοποιώντας τη λειτουργία της εισαγωγής σε ουρά. Κατά τη διαδικασία αυτή θα πρέπει οι ημέρες παραγωγής που εισάγονται στον πίνακα Α να είναι λιγότερες από τις προηγούμενες. γ. Να εμφανίζει κατά σειρά τους κωδικούς των δοχείων τα οποία πρέπει να παστεριωθούν, χρησιμοποιώντας τη λειτουργία της εξαγωγής. δ. Η παραπάνω διαδικασία να ελέγχεται από αντίστοιχο μενού επιλογής. Λύση ΠΡΟΓΡΑΜΜΑ queue ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Ι, Π, REAR, FRONT, Α[10], Η ΧΑΡΑΚΤΗΡΕΣ: Κ[10], Choice ΑΡΧΗ ΓΙΑ Ι ΑΠΟ 1 ΜΕΧΡΙ 10 Α[Ι] <- 0 Κ[Ι] <- ' ' ΓΡΑΨΕ 'Δώστε επιλογή' ΔΙΑΒΑΣΕ Choice 13

14 ΜΕΧΡΙΣ_ΟΤΟΥ Choice = 'εισαγωγή' Ή Choice = 'εξαγωγή' Ή Choice = 'έξοδος' Π <- 0 REAR <- 0 FRONT <- 0 ΟΣΟ Choice <> 'έξοδος' ΕΠΑΝΑΛΑΒΕ ΑΝ Choice = 'εισαγωγή' ΤΟΤΕ ΑΝ REAR = 10 ΤΟΤΕ ΓΡΑΨΕ 'Τα δοχεία είναι γεμάτα' REAR <- REAR + 1 Π <- Π + 1 ΑΝ Π = 1 ΤΟΤΕ ΔΙΑΒΑΣΕ Α[REAR], Κ[REAR] Η <- Α[REAR] FRONT <- 1 ΓΡΑΨΕ 'Δώστε ημέρες παραγωγής' ΔΙΑΒΑΣΕ Α[REAR] ΜΕΧΡΙΣ_ΟΤΟΥ Α[REAR] > Η Η <- Α[REAR] ΓΡΑΨΕ 'Δώστε κωδικό δοχείου' ΔΙΑΒΑΣΕ Κ[REAR] ΑΝ FRONT = 0 Ή FRONT > REAR ΤΟΤΕ ΓΡΑΨΕ 'Τα δοχεία είναι άδεια' ΓΡΑΨΕ 'Παστερίωση δοχείου', Κ[FRONT] Α[FRONT] <- 0 Κ[FRONT] <- ' ' FRONT <- FRONT + 1 ΓΡΑΨΕ 'Δώστε επιλογή' ΔΙΑΒΑΣΕ Choice ΜΕΧΡΙΣ_ΟΤΟΥ Choice = 'εισαγωγή' Ή Choice = 'εξαγωγή' Ή Choice = 'έξοδος' ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ Στη χώρα της Αραρουνίας ο πληθωρισμός τρέχει με μηνιαίο ρυθμό 5%. Η εταιρία κατασκευής και εμπορίας φωτοτυπικού χαρτιού KAR2, θέλοντας αφενός να κυριαρχήσει στην αγορά, αφετέρου να μεγιστοποιήσει τα κέρδη της, αποθηκεύει πρώτη ύλη σε μεγάλα ρολά στις αποθήκες της, χρησιμοποιώντας στη συνέχεια την πιο πρόσφατα αποθηκευμένη πρώτη ύλη. Το περιθώριο κέρδους της εταιρίας είναι 10% στην τιμή αγοράς ανά ρολό και η κάθε μηνιαία παραγγελία πρώτης 14

15 ύλης αποτελείται από 20 ρολά. Η αποθήκη της εταιρίας έχει δυνατότητα αποθήκευσης έως και 240 ρολά πρώτης ύλης. Να γραφεί πρόγραμμα σε ΓΛΩΣΣΑ το οποίο: α. Να εισάγει αρχικά την τιμή 0 σε όλες τις θέσεις του πίνακα Α[12] και τον κενό χαρακτήρα στον πίνακα Κ[12] αντίστοιχα. β. Να εισάγει στον πίνακα Α[12] την τιμή αγοράς της κάθε παραγγελίας και στον παράλληλο πίνακα Κ[12] τον αντίστοιχο κωδικό της, υλοποιώντας τη λειτουργία της ώθησης σε στοίβα. Κατά τη διαδικασία αυτή να γίνεται έλεγχος ώστε η κάθε παραγγελία να έχει τιμή αγοράς υψηλότερη κατά 5% από την αμέσως προηγούμενη. Η λειτουργία της ώθησης να ολοκληρώνεται όταν γεμίσει η αποθήκη. γ. Να διαβάζει την ποσότητα της πρώτης ύλης που πρέπει να χρησιμοποιηθεί για την κατασκευή φωτοτυπικού χαρτιού ελέγχοντας ώστε αυτή να είναι πολλαπλάσια του 20 και να μην υπερβαίνει την αποθηκευμένη πρώτη ύλη. Στη συνέχεια να εμφανίζει τον κωδικό και την τιμή αγοράς της χρησιμοποιούμενης πρώτης ύλης υλοποιώντας τη λειτουργία της απώθησης από τη στοίβα, ελέγχοντας παράλληλα την υποχείλισή της. Η ώθηση και η απώθηση να ε- λέγχονται από αντίστοιχο μενού με επιλογές Ω (ώθηση), Α (απώθηση), Ε (έξοδος). δ. Να εμφανίζει μετά από την έξοδο τα κέρδη της εταιρίας. Λύση ΠΡΟΓΡΑΜΜΑ stack ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Ι, J, K, Π, TOP, ΠΟΣΟΤΗΤΑ ΠΡΑΓΜΑΤΙΚΕΣ: Α[12], ΚΕΡΔΗ, ΤΙΜΗ ΧΑΡΑΚΤΗΡΕΣ: Κ[12], Choice ΑΡΧΗ ΓΙΑ Ι ΑΠΟ 1 ΜΕΧΡΙ 12 Α[Ι] <- 0 Κ[Ι] <- ' ' ΓΡΑΨΕ 'Δώστε επιλογή' ΔΙΑΒΑΣΕ Choice ΜΕΧΡΙΣ_ΟΤΟΥ Choice = 'Ω' Ή Choice = 'Α' Ή Choice = 'Ε' ΚΕΡΔΗ <- 0 Π <- 0 TOP <- 0 ΠΟΣΟΤΗΤΑ <- 0 ΟΣΟ Choice <> 'Ε' ΕΠΑΝΑΛΑΒΕ ΑΝ Choice = 'Ω' ΤΟΤΕ ΑΝ TOP = 12 ΤΟΤΕ ΓΡΑΨΕ 'Η αποθήκη είναι γεμάτη' Π <- Π + 1 TOP <- TOP + 1 ΑΝ Π = 1 ΤΟΤΕ ΔΙΑΒΑΣΕ Α[ΤΟP], Κ[ΤΟP] ΤΙΜΗ <- Α[ΤΟP] 15

16 ΓΡΑΨΕ 'Δώστε τιμή αγοράς' ΔΙΑΒΑΣΕ Α[ΤΟP] ΜΕΧΡΙΣ_ΟΤΟΥ Α[ΤΟP] > 1.05 * ΤΙΜΗ ΤΙΜΗ <- Α[ΤΟP] ΓΡΑΨΕ 'Δώστε κωδικό παραγγελίας' ΔΙΑΒΑΣΕ Κ[ΤΟP] ΠΟΣΟΤΗΤΑ <- ΠΟΣΟΤΗΤΑ + 20 ΑΝ TOP = 0 ΤΟΤΕ ΓΡΑΨΕ 'Η αποθήκη είναι άδεια' ΓΡΑΨΕ 'Δώσε ποσότητα πρώτης ύλης' ΔΙΑΒΑΣΕ ΠΟΣ ΜΕΧΡΙΣ_ΟΤΟΥ ΠΟΣ < = ΠΟΣΟΤΗΤΑ ΚΑΙ ΠΟΣ DIV 20 = 0 Κ <- ΠΟΣ DIV 20 J <- 0 ΓΙΑ Ι ΑΠΟ TOP ΜΕΧΡΙ TOP + 1 K ME_BHMA 1 J <- J + 5 ΚΕΡΔΗ <- ΚΕΡΔΗ + Α[I] * (J + 10) / 100 ΠΟΣΟΤΗΤΑ <- ΠΟΣΟΤΗΤΑ 20 Α[I] <- 0 Κ[I] <- ' ' ΓΡΑΨΕ 'Δώστε επιλογή' ΔΙΑΒΑΣΕ Choice ΜΕΧΡΙΣ_ΟΤΟΥ Choice = 'Ω' Ή Choice = 'Α' Ή Choice = 'Ε' ΓΡΑΨΕ ΚΕΡΔΗ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ 16

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Κεφάλαιο 5 Ανάλυση Αλγορίθμων Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι

Διαβάστε περισσότερα

Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση

Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση Επίδοση Αλγορίθμων Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση πώς υπολογίζεται ο χρόνος εκτέλεσης

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Οι σημειώσεις, αν και βασίζονται στο διδακτικό πακέτο, αποτελούν προσωπική θεώρηση της σχετικής ύλης και όχι επίσημο

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Κανάρη 36, Δάφνη Τηλ. 210 9713934 & 210 9769376 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ο.Π. ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα Α A1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σελίδα 1 από 12 www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σε συνεργασία µε τις εκδόσεις ΕΛΛΗΝΟΕΚ ΟΤΙΚΗ κυκλοφορούν τα βοηθήµατα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον:

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) Σημειώσεις Θεωρίας

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) Σημειώσεις Θεωρίας ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) Δημιουργία - Συγγραφή Costas Chatzinikolas www.costaschatzinikolas.gr info@costaschatzinikolas.gr

Διαβάστε περισσότερα

Α1. Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες.

Α1. Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες. Ημερομηνία: 15/04/15 Διάρκεια διαγωνίσματος: 180 Εξεταζόμενο μάθημα: Προγραμματισμός Γ Λυκείου Υπεύθυνος καθηγητής: Παπαδόπουλος Πέτρος ΘΕΜΑ Α Α1. Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Τα δεδομένα (data) είναι η αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της. Η συλλογή των ακατέργαστων δεδομένων και ο συσχετισμός

Διαβάστε περισσότερα

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων; ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ 01/03/2015 Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1.

Διαβάστε περισσότερα

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός...

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός... 1 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Διάρκεια 3 ώρες Στοιχεία Μαθητή: Όνομα... Επώνυμο... Βαθμός... 2 Θεμα Α (30%) Α1 ΣΩΣΤΟ - ΛΑΘΟΣ 1. Ένα υποπρόγραμμα δεν μπορεί να κληθεί περισσότερες

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ

3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΝΑΚΩΝ ΣΤΟΙΒΑΣ ΚΑΙ ΟΥΡΑΣ Α ΜΕΡΟΣ ΘΕΩΡΙΑ ΓΙΑ ΠΙΝΑΚΕΣ 3.1

Διαβάστε περισσότερα

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Λάθος. Ποια η διαφορά μεταξύ διερμηνευτή και μεταγλωττιστή; Απάντηση:

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Λάθος. Ποια η διαφορά μεταξύ διερμηνευτή και μεταγλωττιστή; Απάντηση: ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασμένη. 1. Η ταξινόμηση είναι μια από τις βασικές

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς Βασικές Έννοιες Αλγορίθμων Δομή Ακολουθίας (κεφ. 2 και 7 σχολικού βιβλίου) 1. Οι μεταβλητές αντιστοιχίζονται από τον μεταγλωττιστή κάθε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Επίδοση αλγορίθμων. Πολυπλοκότητα αλγορίθμων Είδη αλγορίθμων

ΠΕΡΙΕΧΟΜΕΝΑ. Επίδοση αλγορίθμων. Πολυπλοκότητα αλγορίθμων Είδη αλγορίθμων ΠΕΡΙΕΧΟΜΕΝΑ Επίδοση αλγορίθμων Πολυπλοκότητα αλγορίθμων Είδη αλγορίθμων Εισαγωγή Η καταγραφή των μεγεθών που επηρεάζουν την επίδοση ενός αλγορίθμου είναι μία σημαντική ενέργεια για την κατανόηση της αποδοτικότητας

Διαβάστε περισσότερα

Να γράψετε στο τετράδιό σας τον αριθμό κάθε πρότασης και τον αντίστοιχο χαρακτηρισμό ( Σ - σωστό, Λ - λάθος)

Να γράψετε στο τετράδιό σας τον αριθμό κάθε πρότασης και τον αντίστοιχο χαρακτηρισμό ( Σ - σωστό, Λ - λάθος) ΤΡΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ Α.Ε.Π.Π ΘΕΜΑ Α Α1 Να γράψετε στο τετράδιό σας τον αριθμό κάθε πρότασης και τον αντίστοιχο χαρακτηρισμό ( Σ - σωστό, Λ - λάθος) 1. Αν οι δείκτης rear μιας ουράς υλοποιημένης με πίνακα

Διαβάστε περισσότερα

Οι δομές δεδομένων στοίβα και ουρά

Οι δομές δεδομένων στοίβα και ουρά Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Βίντεο: https://youtu.be/j8petzztqty Οι δομές δεδομένων στοίβα και ουρά Εισαγωγή Στα πλαίσια του μαθήματος της Ανάπτυξης

Διαβάστε περισσότερα

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΔΕΔΟΜΕΝΑ ΑΛΓΟΡΙΘΜΟΙ -ΠΛΗΡΟΦΟΡΙΑ: Δεδομένα: Αναπαράσταση της Πραγματικότητας Μπορούν να γίνουν αντιληπτά με μια από τις αισθήσεις μας Πληροφορία: Προκύπτει από

Διαβάστε περισσότερα

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.:

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ,

Διαβάστε περισσότερα

ΑΕΠΠ 7o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 7o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 7o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή, ή τη λέξη ΛΑΘΟΣ,

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Κανάρη 36, Δάφνη Τηλ. 210 9713934 & 210 9769376 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ο.Π. ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα Α A1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ Α.Ε.Π.Π. Γ ΤΕΧΝΟΛΟΓΙΚΗΣ. Όνομα:.. Βαθμός: /100

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ Α.Ε.Π.Π. Γ ΤΕΧΝΟΛΟΓΙΚΗΣ. Όνομα:.. Βαθμός: /100 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ Α.Ε.Π.Π. Γ ΤΕΧΝΟΛΟΓΙΚΗΣ Όνομα:.. Βαθμός: /100 Θέμα Α 1. Να χαρακτηρίσετε τις προτάσεις με Σ, αν είναι σωστές και Λ, αν είναι λάθος. a. Οι πίνακες δεν μπορούν να έχουν περισσότερες από δύο

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

8. Λεξιλόγιο μιας γλώσσας είναι όλες οι ακολουθίες που δημιουργούνται από τα στοιχεία του αλφαβήτου της γλώσσας, τις λέξεις.

8. Λεξιλόγιο μιας γλώσσας είναι όλες οι ακολουθίες που δημιουργούνται από τα στοιχεία του αλφαβήτου της γλώσσας, τις λέξεις. ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΑ 1-6 ΟΝΟΜΑ: ΗΜΕΡΟΜΗΝΙΑ: ΒΑΘΜΟΣ: ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό,

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθµός Ασφαλείας: Να διατηρηθεί µέχρι: Βαθ. Προτεραιότητας: ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ A Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-6 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν

Διαβάστε περισσότερα

α. Να συμπληρώσετε τις επόμενες εντολές εκχώρησης, ώστε τα κενά κελιά του πίνακα να αποκτήσουν τις επιθυμητές τιμές.

α. Να συμπληρώσετε τις επόμενες εντολές εκχώρησης, ώστε τα κενά κελιά του πίνακα να αποκτήσουν τις επιθυμητές τιμές. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 2 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 01 ΙΟΥΝΙΟΥ 2012 ΘΕΜΑ Α Α1. Να γράψετε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ

ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗ ΜΕΓΑΛΥΤΕΡΟΥ/ΜΙΚΡΟΤΕΡΟΥ ΣΤΟΙΧΕΙΟΥ ΜΟΝΟΔΙΑΣΤΑΤΟΥ -1 Ολα τα στοιχεία του πίνακα είναι διαφορετικά μεταξύ τους.

Διαβάστε περισσότερα

σας φύλλο τον αριθμό της ερώτησης ακολουθούμενη από το γράμμα Σ (Σωστή) ή το γράμμα Λ (Λάθος).

σας φύλλο τον αριθμό της ερώτησης ακολουθούμενη από το γράμμα Σ (Σωστή) ή το γράμμα Λ (Λάθος). Μάθημα: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Τάξη Γ ΛΥΚΕΙΟΥ, Πληροφορικής οικονομικών Καθηγητής : Σιαφάκας Γιώργος Ημερομηνία : 8/5/2016 Διάρκεια: 3 ώρες ΘΕΜΑ Α /40 (Α1) (α)να απαντήσετε αν

Διαβάστε περισσότερα

Α2. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες που εκτελεί ένας υπολογιστής (Μονάδες 3)

Α2. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες που εκτελεί ένας υπολογιστής (Μονάδες 3) Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΘΕΜΑ Α Α1. Να χαρακτηρίσετε σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις: 1. Ένα επιλύσιμο πρόβλημα είναι και δομημένο. 2. Ένας από τους

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Πληροφορικής της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Πληροφορικής της Ώθησης ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Ομάδα Πληροφορικής της Ώθησης 1 Τετάρτη, 27 Μα ου 2015 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ον/μο:.. Γ Λυκείου Ύλη:3-6-9 Τεχν. Κατ. 03-03-13 ΘΕΜΑ 1 ο A. Να χαρακτηρίσετε τις παρακάτω προτάσεις αν είναι Σωστές ή Λανθασμένες. 1. Η εισαγωγή και η διαγραφή κόμβων σε πίνακα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 27 ΜΑΪΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ 11.0 13.0 Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 EKΠΑΙΔΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία -1-

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ 11.0 13.0 Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 EKΠΑΙΔΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία -1- ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ(ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ)

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. www.lazarinis.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. www.lazarinis. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ www.lazarinis.gr Σε συνεργασία με τις εκδόσεις ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ κυκλοφορούν

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014 ΘΕΜΑ 1 Ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

Α5. Να γράψετε στο τετράδιό σας τους αριθμούς της στήλης Α και δίπλα το γράμμα της στήλης Β που αντιστοιχεί σωστά. 1. χαρακτήρες α.

Α5. Να γράψετε στο τετράδιό σας τους αριθμούς της στήλης Α και δίπλα το γράμμα της στήλης Β που αντιστοιχεί σωστά. 1. χαρακτήρες α. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 3 Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Σ Ε Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Τ Ι Κ Ο Π Ε Ρ Ι Β Α Λ Λ Ο Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων; ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ 01/03/2015 Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Βάλβης Δημήτριος Μηχανικός Πληροφορικής ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΑΣΜΑ 21/4/2013

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΑΣΜΑ 21/4/2013 Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ Α [40 μόρια] α) Να επιλέξτε το γράμμα Σ, αν μια πρόταση είναι σωστή και

Διαβάστε περισσότερα

Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος

Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος Κεφάλαιο 10 Υποπρογράμματα 1 10.1 Τμηματικός προγραμματισμός Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων.

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

1. Δεν μπορεί να γίνει κλήση μίας διαδικασίας μέσα από μία συνάρτηση.

1. Δεν μπορεί να γίνει κλήση μίας διαδικασίας μέσα από μία συνάρτηση. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιο σας τον αριθμό για καθεμία από τις παρακάτω

Διαβάστε περισσότερα

ΘΕΜΑ 1. 1. Συμβολική γλώσσα 2. Γλώσσες υψηλού επιπέδου 3. Γλώσσες τέταρτής γενιάς 4. Γλώσσα μηχανής

ΘΕΜΑ 1. 1. Συμβολική γλώσσα 2. Γλώσσες υψηλού επιπέδου 3. Γλώσσες τέταρτής γενιάς 4. Γλώσσα μηχανής ΘΕΜΑ 1 Α1Να γράψετε στο τετράδιο σας τον αριθμό καθεμίας από τις παρακάτω προτάσεις και δίπλα τη λέξη Σώστο,αν είναι σωστή και τη λέξη Λάθος, αν είναι λανθασμένη. 1.ο αλγόριθμος του πολλαπλασιασμού αλά

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Να γίνει περιγραφή της δομής δεδομένων Στοίβα. Στη δομή δεδομένων στοίβα τα δεδομένα στοιβάζονται το ένα πάνω στο άλλο. Σχηματικά οι λεπτομέρειες μιας δομής δεδομένων στοίβας μπορούν

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2011-2012 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ- Α.ΚΑΤΡΑΚΗ - Π.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ- Α.ΚΑΤΡΑΚΗ - Π. ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ- Α.ΚΑΤΡΑΚΗ - Π.ΣΙΟΤΡΟΠΟΣ ΘΕΜΑ Α Α1. Να γράψετε στο γραπτό σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

1. Ο διερμηνευτής εντοπίζει μόνο τα συντακτικά λάθη ενός προγράμματος, ενώ ο μεταγλωττιστής και τα λογικά.

1. Ο διερμηνευτής εντοπίζει μόνο τα συντακτικά λάθη ενός προγράμματος, ενώ ο μεταγλωττιστής και τα λογικά. ΘΕΜΑ Α Επαναληπτικό διαγώνισμα στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2016 Α1.Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα να σημειώσετε

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς K εφ. 1 σχολικού βιβλίου 1. Επιλύσιμο είναι ένα πρόβλημα για το οποίο ξέρουμε ότι έχει λύση, αλλά αυτή δεν έχει βρεθεί ακόμη. 2. Για

Διαβάστε περισσότερα

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ 11.0 13.0 Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ 11.0 13.0 Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Α2. Α3. 1. ΛΑΘΟΣ 2. ΣΩΣΤΟ 3. ΛΑΘΟΣ 4. ΛΑΘΟΣ 5. ΣΩΣΤΟ 1. Σελ. 183-184 σχολικού βιβλίου: Ορισμός: Το τμήμα του προγράμματος

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Δομές Δεδομένων. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Δομές Δεδομένων. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Δομές Δεδομένων ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομές Δεδομένων Τα δεδομένα ενός προβλήματος αποθηκεύονται στον υπολογιστή,

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη

Διαβάστε περισσότερα

ΑΕΠΠ 6o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 6o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 6o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή, ή τη λέξη ΛΑΘΟΣ,

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΕΔΟΜΕΝΑ // Ν // Σ 0 π 0 ΓΙΑ ι ΑΠΟ -10 ΜΕΧΡΙ Ν ΔΙΑΒΑΣΕ α, β Σ Σ + α+ β π

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑΤΑ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή, ή

Διαβάστε περισσότερα

ΝΤΗΛ ΓΩΝΙΑ THΛ: ΤΜΗΜΑ:... 2 Ο ΔΙΑΓΩΝΙΣΜΑ

ΝΤΗΛ ΓΩΝΙΑ THΛ: ΤΜΗΜΑ:... 2 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΤΜΗΜΑ:... :......... ΗΜΕΡΟΜΗΝΙΑ:...1/ :...1/2/201 /2015... 2 Ο ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

Τρίτη, 1 Ιουνίου 2004 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ

Τρίτη, 1 Ιουνίου 2004 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 ο ο Τρίτη, 1 Ιουνίου 2004 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. 1ο ΓΕΛ ΠΕΥΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ B' ΤΕΤΡΑΜΗΝΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. 1ο ΓΕΛ ΠΕΥΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ B' ΤΕΤΡΑΜΗΝΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ο ΓΕΛ ΠΕΥΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ B' ΤΕΤΡΑΜΗΝΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Δίνεται το παρακάτω πρόγραμμα σε ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑ ΘΕΜΑ_Α2

Διαβάστε περισσότερα

ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr

ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξεταζόμενη ύλη : 7o Κεφάλαιο ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές η λανθασμένες. 1. Τα στοιχεία

Διαβάστε περισσότερα

Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη.

Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη. ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28-02-2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ- Α.ΚΑΤΡΑΚΗ ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ 10/4/2016

ΘΕΜΑΤΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ 10/4/2016 ΘΕΜΑΤΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ 10/4/2016 ΘΕΜΑ 1ο Α. Να γράψετε τον αριθμό κάθε πρότασης και δίπλα αν είναι Σωστή(Σ) ή Λανθασμένη(Λ). 1. Το αντικείμενο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΣΧ... ΕΤΤΟΣΣ 22000099-22001100 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία

Διαβάστε περισσότερα

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΤΙΣ 01/03/2015 ΘΕΜΑ Α

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΤΙΣ 01/03/2015 ΘΕΜΑ Α ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΤΙΣ 01/03/2015 ΘΕΜΑ Α Α1. 1. ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΠΑΡΑΓΡΑΦΟΣ 3.2 2. ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΠΑΡΑΓΡΑΦΟΣ 3.3 3. ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΠΑΡΑΓΡΑΦΟΣ

Διαβάστε περισσότερα

Στο παραπάνω τμήμα υπάρχουν περιττοί έλεγχοι. Να γράψετε ξανά το παραπάνω τμήμα χωρίς τους περιττούς ελέγχους.

Στο παραπάνω τμήμα υπάρχουν περιττοί έλεγχοι. Να γράψετε ξανά το παραπάνω τμήμα χωρίς τους περιττούς ελέγχους. ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 Α. Χαρακτηρίστε με τη λέξη Σωστή ή τη λέξη Λάθος καθεμία από τις παρακάτω προτάσεις: 1 Ο Γιάννης έχει ύψος 1.83εκ. και βάρος 82 κιλά. Ο Γιάννης χαρακτηρίζεται κανονικός. Το βάρος και

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. 1. Ποια είναι τα κυριότερα χρησιμοποιούμενα γεωμετρικά σχήματα σε ένα διάγραμμα ροής και τι ενέργεια ή λειτουργία δηλώνει το καθένα;

ΘΕΜΑ 1ο Α. 1. Ποια είναι τα κυριότερα χρησιμοποιούμενα γεωμετρικά σχήματα σε ένα διάγραμμα ροής και τι ενέργεια ή λειτουργία δηλώνει το καθένα; ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο. Πίνακες. Επικοινωνία:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο. Πίνακες. Επικοινωνία: Πίνακες Επικοινωνία: spzygouris@gmail.com Να δοθεί ο ορισμός του όρου «δεδομένα». Δεδομένα αποτελούν οποιαδήποτε στοιχεία μπορούν να εξαχθούν από τη διατύπωση του προβλήματος και η επιλογή τους εξαρτάται

Διαβάστε περισσότερα

Επιμέλεια: Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών

Επιμέλεια: Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΚΕΦΑΛΑΙΩΝ 3 & 9 (ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΙΝΑΚΕΣ) Επιμέλεια: Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα 1

Διαβάστε περισσότερα

ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ

ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ)

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων ΠΕΡΙΕΧΟΜΕΝΑ Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων Εισαγωγή Η χρήση των μεταβλητών με δείκτες στην άλγεβρα είναι ένας ιδιαίτερα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1ο ΔΙΑΓΩΝΙΣΜΑ Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές ή λάθος: 1. Ο δομημένος προγραμματισμός στηρίζεται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα A1 1. Λάθος 2. Σωστό 3. Λάθος 4. Σωστό 5. Λάθος Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών

Διαβάστε περισσότερα

ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ

ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο Α. Δίνεται η εντολή εκχώρησης: τ κ < λ Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος. Να δικαιολογήσετε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 27 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα