2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ"

Transcript

1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης και ποιες είναι οι τρεις επαναληπτικές δομές ; Η λογική των επαναληπτικών διαδικασιών εφαρμόζεται στις περιπτώσεις, όπου μία ακολουθία εντολών πρέπει να εκτελεστεί πολλές φορές. Η διαδικασία της επανάληψης είναι αρκετά συχνή, αφού πολλά προβλήματα μπορούν ακολουθούν με επαναληπτικές διαδικασίες. Για παράδειγμα, οι τράπεζες αποδίδουν τόκους των καταθέσεων ταμιευτηρίου. Ο υπολογισμός των τόκων πρέπει να γίνει για όλους τους λογαριασμούς της τράπεζας, άρα η πράξη: τόκος = ποσό * επιτόκιο πρέπει να εκτελεστεί για όλους τους τραπεζικούς λογαριασμούς. Οι επαναληπτικές διαδικασίες μπορεί να έχουν διάφορες μορφές και συνήθως εμπεριέχουν και συνθήκες επιλογών. Οι τρεις επαναληπτικές δομές που χρησιμοποιούνται είναι: Όσο επανάλαβε Τέλος...επανάληψης Για από... μέχρι Τέλος...επανάληψης Αρχή_επανάληψης Μέχρις...ότου 2) Να περιγράφει η δομή επανάληψης Όσο.Επανάλαβε ; Η δομή επανάληψης Όσο... επανάλαβε αποτελεί τον πιο γενικό τύπο δομής επανάληψης. Η μορφή της είναι. Όσο Συνθήκη επανάλαβε

2 Η ομάδα εντολών στο εσωτερικό της επανάληψης εκτελείται όσο ισχύει η συνθήκη στην αρχή της επανάληψης. Η εντολή επανάληψης καλείται και βρόχος επανάληψης ή απλά βρόχος. Τα βήματα της δομής επανάληψης Όσο... επανάλαβε είναι: 1ο Βήμα: Γίνεται έλεγχος της συνθήκης. Αν η συνθήκη ισχύει πηγαίνουμε στο 2 ο βήμα. Αν η συνθήκη δεν ισχύει, τότε η εκτέλεση του αλγορίθμου συνεχίζει πρώτη εντολή μετά το. 2ο Βήμα: Εκτελούνται οι εντολές που υπάρχουν ανάμεσα στο Όσο... επανάλαβε και στο και επανερχόμαστε στο 1ο βήμα. Στη δομή επανάληψης Όσο...επανάλαβε παρατηρούμε τα εξής: 1. Η ομάδα εντολών ανάμεσα στο Όσο... επανάλαβε και στο μπορεί να μην εκτελεστεί ποτέ, γιατί μπορεί να μην ισχύει η συνθήκη εξαρχής. 2. Δεν γνωρίζουμε εκ των προτέρων τον αριθμό των επαναλήψεων. Η ομάδα εντολών της επανάληψης εκτελείται όσο η συνθήκη είναι αληθής. 3. Στην ομάδα εντολών θα πρέπει να περιλαμβάνονται και εντολές που θα τροποποιούν τη συνθήκη, έτσι ώστε κάποια στιγμή αυτή να γίνει ψευδής και η επανάληψη να τερματίσει. 4. Η δομή επανάληψης Όσο..επανάλαβε χρησιμοποιείται όταν δεν γνωρίζουμε τον ακριβή αριθμό επαναλήψεων. Όταν δηλ. δεν γνωρίζουμε από την αρχή πόσες φορές θέλουμε να εκτελεστεί μια ομάδα εντολών, αλλά η εκτέλεση εξαρτάται από μία συνθήκη. 3) Τι καλείται ατέρμων βρόχος. Να δοθεί ένα παράδειγμα ; Όταν η συνθήκη μιας επανάληψης είναι πάντα αληθής, δηλ. ο βρόχος δεν τερματίζει, τότε η επανάληψη καλείται ατέρμων βρόχος. Για παράδειγμα, ένας ατέρμων βρόχος είναι: α 4 Όσο α < 8 επανάλαβε Εμφάνισε α α α-1 Ο βρόχος αυτός δεν τερματίζει ποτέ γιατί η αρχική τιμή της α είναι 4 και στην επανάληψη η τιμή της μειώνεται κατά 1. Δηλ. η α θα πάρει τις τιμές 3, 2, 1, 0,.. οι οποίες είναι μικρότερες του 8. Έτσι η συνθήκη της επανάληψης θα είναι πάντα αληθής και η επανάληψη θα εκτελεστεί άπειρες φορές. 4) Πως συμβολίζεται στο διάγραμμα ροής η δομή επανάληψης Όσο..επανάλαβε ; Για να σχεδιάσουμε το διάγραμμα ροής ενός βρόχου επανάληψης Όσο. Επανέλαβε, πρέπει να κάνουμε τα εξής βήματα: 1ο Βήμα: Χρησιμοποιούμε έναν ρόμβο όπου βάζουμε τη συνθήκη της επανάληψης 2ο Βήμα: Από τον ρόμβο ξεκινούν δυο βέλη. Το βέλος Ναι οδηγεί στην επανάληψης. Το βέλος Όχι οδηγεί στην επόμενη εντολή μετά το. 3ο Βήμα: Σχεδιάζουμε τα σύμβολα των εντολών της επανάληψης και απ' της τελευταίας εντολής της επανάληψης ένα βέλος οδηγεί στη _ επανάληψης. Σχηματικά, το διάγραμμα ροής της δομής επανάληψης Όσο... επανάλαβε είναι.

3 5) Να περιγράφει η δομή επανάληψης Αρχή_Επανάληψης..Μέχρις_ότου ; Η μορφή της δομής επανάληψης Αρχή_Επανάληψης..Μέχρις_ότου είναι : Αρχή_ επανάληψης Μέχρις _ότου Συνθήκη Η ομάδα εντολών στο εσωτερικό της επανάληψης εκτελείται μέχρις ότου η συνθήκη να γίνει αληθής, δηλ όσο η συνθήκη είναι ψευδής. Τα βήματα της δομής επανάληψης Αρχή_επανάληψης... Μέχρις_ότου είναι: 1 ο Βήμα: Αρχίζει η επανάληψη και εκτελείται η μια φορά. 2 ο Βήμα: Όταν φθάσουμε στο Μέχρις_ότου ελέγχουμε τη συνθήκη. Αν η συνθήκη είναι ψευδής πηγαίνουμε στο 1 ο βήμα, διαφορετικά τερματίζει η επανάληψη. Στη δομή επανάληψης Αρχή_επανάληψης...Μέχρις_Οτου παρατηρούμε τα εξής: 1. Η ομάδα εντολών ανάμεσα στο Αρχή-επανάληψης και στο Μέχρις_Οτου εκτελείται τουλάχιστον μια φορά. 2. Δεν γνωρίζουμε εκ των προτέρων τον αριθμό των επαναλήψεων. Η ομάδα εντολών της επανάληψης εκτελείται μέχρις ότου η συνθήκη να γίνει αληθής, όσο δηλ. η συνθήκη είναι ψευδής. 3. Στην ομάδα εντολών θα πρέπει να περιλαμβάνονται και εντολές που θα τροποποιούν τη συνθήκη, έτσι ώστε κάποια στιγμή αυτή να γίνει αληθής και η επανάληψη να τερματίσει. 4. Η δομή επανάληψης Αρχή-επανάληψης...Μέχρις_Οτου χρησιμοποιείται όταν δεν γνωρίζουμε τον ακριβή αριθμό επαναλήψεων, αλλά επιθυμούμε να εκτελεστεί τουλάχιστον μια φορά η επανάληψη. 6) Πως συμβολίζεται στο διάγραμμα ροής η δομή επανάληψης Αρχή_Επανάληψης..Μέχρις_ότου; Για να σχεδιάσουμε το διάγραμμα ροής ενός βρόχου επανάληψης Aρχή_επανάληψης Μέχρις_ότου πρέπει να κάνουμε τα εξής βήματα: 1o Βήμα: Σχεδιάζουμε τα σύμβολα των εσωτερικών εντολών της επανάληψης.

4 2o Βήμα: Φτιάχνουμε έναν ρόμβο για τη συνθήκη της επανάληψης. 3o Βήμα: Από τον ρόμβο ξεκινούν δυο βέλη. Το βέλος Όχι οδηγεί στην αρχή των εντολών της επανάληψης. Το βέλος Ναι οδηγεί στην επόμενη εντολή μετά το Μέχρις_ότου. Σχηματικά, το διάγραμμα ροής μιας επανάληψης Αρχή_επανάληψης... Mέχρι_ότου είναι: 7) Ποιες είναι οι διαφορές των δομών επανάληψης Όσο..επανάλαβε και Αρχή_Επανάληψης..Μέχρις_ότου ; Οι διαφορές μεταξύ των δομών είναι : 1. Στο Όσο επανάλαβε οι εντολές μπορεί να μην εκτελεστούν ποτέ, γιατί μπορεί να μην ισχύει ποτέ η συνθήκη, ενώ στο Αρχή_επανάληψης Μέχρις_ότου οι εντολές θα εκτελεστούν τουλάχιστόν μια φορά. 2. Στο Όσο..επανέλαβε ο έλεγχος της συνθήκης γίνεται στην αρχή, ενώ στο Αρχή_επανάληψης..Μέχρις_ότου στο τέλος. 3. Στο Όσο.επανάλαβε η επανάληψη συνεχίζει όσο η συνθήκη είναι αληθής, ενώ στο Αρχή_επανάληψης..Μέχρις_ότου η επανάληψη συνεχίζει όσο η συνθήκη είναι ψευδής, δηλ μέχρι η συνθήκη να γίνει αληθής.

5 8) Να περιγράφει η δομή επανάληψης Για..από μέχρι ; Η μορφή της δομής επανάληψης Για από.μέχρι είναι : Για μεταβλητή από τ1 μέχρι τ2 με_βήμα τ3 Ομάδα Εντολών Τελος_επανάληψης Η μεταβλητή είναι το όνομα μιας μεταβλητής που παίρνει τιμές στο [τ1, τ2], αν τ1<=τ2 ή στο [τ2, τ1] αν τ1>=τ2. Όσο η μεταβλητή βρίσκεται στο διάστημα μεταξύ τ1 και τ2 ή τ2 και τ1, τότε εκτελείται η ομάδα εντολών της επανάληψης. Τα βήματα της δομής επανάληψης Για... από... μέχρι είναι τα εξής: 1ο Βήμα: Αρχίζει η επανάληψη και η μεταβλητή παίρνει την τιμή τ1. 2ο Βήμα: Ελέγχουμε αν μεταβλητή <= τ2, αν τ1<= τ2, ή αν μεταβλητή >= τ2, αν τ1>=τ2. Αν η συνθήκη ισχύει τότε οδηγούμαστε στο 3ο βήμα. Αν η συνθήκη δεν ισχύει τότε η επανάληψη τερματίζει και εκτελείται η πρώτη εντολή μετά το. 3ο Βήμα: Εκτελείται η ομάδα εντολών της επανάληψης και η τιμή της μεταβλητής μεταβάλλεται κατά τ3 (η τιμή τ3 μπορεί να είναι και αρνητική) και επανερχόμαστε στο 2ο βήμα. Στη δομή επανάληψης Για...από...μέχρι παρατηρούμε τα εξής: 1. Στο Για...από...μέχρι, το με-βήμα δεν είναι απαραίτητο. Όταν δεν υπάρχει το βήμα αύξησης είναι Η συνθήκη τερματισμού (μεταβλητή <= τ2 ή μεταβλητή >= τ2) της επανάληψης υπονοείται στη δομή επανάληψης Για...από...μέχρι 3. Πότε δεν αλλάζουμε την τιμή της μεταβλητής μέσα στο σώμα της επανάληψης. Δηλ. δεν μπορούμε να διαβάσουμε ή να εκχωρήσουμε τιμή στη μεταβλητή της επανάληψης, διότι τότε αλλοιώνονται τα βήματα της επανάληψης. 4. Ο αριθμός εκτέλεσης των επαναλήψεων είναι γνωστός εκ των προτέρων και ισούται με τον αριθμό των διαφορετικών αποδεκτών τιμών που θα πάρει η μεταβλητή για να οδηγηθούμε από το 2 ο βήμα στο 3 ο βήμα. 9) Πως συμβολίζεται στο διάγραμμα ροής στην δομή επανάληψης Για..από μέχρι; Για να σχεδιάσουμε το διάγραμμα ροής για τη γενική μορφή ενός βρόχου επανάληψης Για... από... μέχρι πρέπει να κάνουμε τα εξής βήματα: 1ο Βήμα: Χρησιμοποιούμε ένα ορθογώνιο για την εκχώρηση της τιμής τ1 στην μεταβλητή της επανάληψης. 2ο Βήμα: Φτιάχνουμε έναν ρόμβο όπου βάζουμε τη συνθήκη μεταβλητή <= τ2, αν τ1<=τ2, ή μεταβλητή >= τ2, αν τ1>=τ2.

6 3ο Βήμα: Από τον ρόμβο ξεκινούν δυο βέλη. Το βέλος Ναι οδηγεί στις εντολές της επανάληψης. Το βέλος Όχι οδηγεί στην επόμενη εντολή μετά το τέλος_επανάληψης. 4ο Βήμα: Σχεδιάζουμε τα σύμβολα των εντολών της επανάληψης. 5ο Βήμα: Στο τέλος των εντολών, χρησιμοποιούμε ένα ορθογώνιο για αύξησης ή μείωσης της τιμής της μεταβλητής της επανάληψης. Από το σύμβολο της τελευταίας αυτής εντολής της επανάληψης ένα βέλος οδηγεί στην συνθήκη της επανάληψης. Σχηματικά, το διάγραμμα ροής μιας επανάληψης Για... από... μέχρι είναι: 10) Πότε χρησιμοποιούμε την Για..από μέχρι και πότε τις άλλες μορφές επανάληψης ; Χρησιμοποιούμε την Για... από... μέχρι όταν γνωρίζουμε τον αριθμό επαναλήψεων. Χρησιμοποιούμε το Όσο... επανάλαβε όταν δεν γνωρίζουμε τον αριθμό επαναλήψεων και η επανάληψη δεν είναι απαραίτητο να εκτελεστεί ούτε μια φορά. Χρησιμοποιούμε το Αρχή_επανάληψης... όταν δεν γνωρίζουμε τον αριθμό των επαναλήψεων και η επανάληψη πρέπει να εκτελεστεί τουλάχιστον μια φορά. 11) Τι ονομάζουμε ολίσθηση ;

7 Ο υπολογιστής αποθηκεύει τα δεδομένα με δυαδική μορφή, δηλαδή συνδυασμούς 0 και 1. Παράδειγμα ενός δυαδικού αριθμού είναι ο , που αντιστοιχεί στον αριθμό 2 του δεκαδικού συστήματος. Αν ολισθήσουμε (μετακινήσουμε) τα ψηφία του αριθμού κατά μια θέση προς τα αριστερά, δηλαδή αν προσθέσουμε ένα 0 στο τέλος του αριθμού και αφαιρέσουμε το αρχικό 0, τότε προκύπτει ο αριθμός του δυαδικού συστήματος, ο οποίος αντιστοιχεί στον αριθμό 4 του δεκαδικού συστήματος. Άρα η ολίσθηση προς τα αριστερά ισοδυναμεί με πολλαπλασιασμό επί δύο. Αν ολισθήσουμε τα ψηφία κατά μία θέση δεξιά, δηλαδή αφαιρέσουμε το τελευταίο 0 και το προσθέσουμε στην αρχή του αριθμού, προκύπτει ο αριθμός , που ισοδυναμεί με τον αριθμό 1 του δεκαδικού συστήματος. Συνεπώς, η ολίσθηση προς τα δεξιά ισοδυναμεί με την ακέραια διαίρεση δια δύο. 12) Να περιγραφεί η διαδικασία του πολλαπλασιασμού Αλα-Pωσικά και να δοθεί ο αλγόριθμος υπολογισμού του ; Ο πολλαπλασιασμός Αλά-Ρωσικά υπολογίζει το γινόμενο δυο αριθμών και χρησιμοποιείται στους υπολογιστές, γιατί υλοποιείται πιο απλά και πιο γρήγορα από τον κλασικό τρόπο πολλαπλασιασμού. Βασίζεται στην ολίσθηση και περιλαμβάνει πολλαπλασιασμό επί δυο και διαίρεση δια δυο. Για να υπολογίσουμε το γινόμενο δυο αριθμών, Π.χ. 12 Χ 10, με τον πολ/μό Αλά-Ρωσικά πρέπει να κάνουμε τα εξής βήματα: 1ο Βήμα: Κατασκευάζουμε έναν πίνακα με τρεις στήλες και γράφουμε στις δυο πρώτες στήλες τον πρώτο και δεύτερο αριθμό. 2ο Βήμα: Διπλασιάζουμε τον πρώτο αριθμό και υποδιπλασιάζουμε τον δεύτερο αριθμό (κρατάμε το ακέραιο μέρος του) και τα αποτελέσματα τα γράφουμε στην πρώτη και 2η στήλη αντίστοιχα. 3ο Βήμα: Ελέγχουμε αν στη δεύτερη στήλη, το αποτέλεσμα είναι 1. Αν είναι πάμε στο 4ο βήμα, αλλιώς επαναλαμβάνουμε το 2ο βήμα και 3ο βήμα. 4ο Βήμα: Στην τρίτη στήλη γράφουμε τον αντίστοιχο αριθμό της πρώτης με την προϋπόθεση ότι στη δεύτερη στήλη ο αριθμός είναι περιττός. 5ο Βήμα: Προσθέτουμε τα νούμερα της τρίτης στήλης. Το αποτέλεσμα της πρόσθεσης, είναι το γινόμενο των δυο αρχικών αριθμών. Ο αλγόριθμος με ψευδοκώδικα είναι: Αλγόριθμος Πολλαπλασιασμός_Αλά _Ρωσικά Διάβασε α1, α2 άθροισμα 0 Όσο α2 > 0 επανάλαβε Αν α2 mod 2 = 1 τότε άθροισμα άθροισμα + α1 Τέλος_αν α1 α1 *2 α2 α2 div 2 Εμφάνισε άθροισμα Τέλος Πολλαπλασιασμός_Αλά_Ρωσικά

8 ΣΗΜΑΝΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΘΕΩΡΗΤΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΟΥ ΠΡΕΠΕΙ ΝΑ ΓΝΩΡΙΖΕΤΑΙ Στις ασκήσεις όπου πρέπει να εμφανίσουμε ή να επεξεργαστούμε μια δεδομένη ακολουθία αριθμών θα πρέπει να προσέχουμε τα εξής σημεία: 1. Τον αρχικό αριθμό της ακολουθίας αριθμών. 2. Τον τελικό αριθμό της ακολουθίας αριθμών. 3. Το αν η σειρά των αριθμών είναι αύξουσα ή φθίνουσα. 4. Τη διαφορά μεταξύ των αριθμών. Στις ασκήσεις όπου πρέπει να διαβάσουμε ένα άγνωστα πλήθος αριθμών ή αλφαριθμητικών τιμών, θα κάνουμε τα εξής βήματα: 1. Τον πρώτο αριθμό ή αλφαριθμητική τιμή θα τον διαβάζει ο αλγόριθμος πριν την επανάληψη, για να μπορεί να γίνει ο έλεγχος στην αρχή της επανάληψης. 2. Στο εσωτερικό της επανάληψης θα εκτελούνται οι απαραίτητες ενέργειες για την τιμή της μεταβλητής, Π.χ. θα υπολογίζεται άθροισμα ή πλήθος ή γινόμενο. 3. Πριν το Τέλος-επανάληψης θα διαβάζεται ο επόμενος αριθμός και θα εισάγεται στην ίδια μεταβλητή. Έτσι όταν επανέλθουμε στην αρχή της επανάληψης μπορούμε να ελέγξουμε την τιμή της ίδιας μεταβλητή. Για να ανακαλύψουμε σε μια άσκηση αν πρέπει να χρησιμοποιήσουμε δομή επανάληψης και ποια ακριβώς δομή επανάληψης, θα κάνουμε τις εξής ερωτήσεις: Ερώτηση: Η άσκηση αναφέρεται σε ένα αντικείμενο (προϊόν, βαθμό, κ.λ.π.) ή σε πολλά Αν η άσκηση αναφέρεται σε πλήθος αντικειμένων πρέπει να χρησιμοποιήσουμε επανάληψη, αλλιώς πρέπει να χρησιμοποιήσουμε δομή ακολουθίας ή επιλογής. Ερώτηση: Γνωρίζουμε τον αριθμό των αντικειμένων από την αρχή; Με άλλα λόγια είναι γνωστός ο αριθμός των επαναλήψεων; Αν ο αριθμός των επαναλήψεων είναι γνωστός τότε θα χρησιμοποιήσουμε τη δομή επανάληψης Για... από... μέχρι. Αν δεν είναι γνωστός, τότε πρέπει να απαντήσουμε και την επόμενη ερώτηση. Ερώτηση: Η εκφώνηση της άσκησης μας δίνει συνθήκη τερματισμού του αλγορίθμου; Αν ναι, τότε θα χρησιμοποιήσουμε μια από τις δομές επανάληψης Όσο...επανάλαβε ή Αρχή-επανάληψης...Μέχρις_Οτου. Την Αρχή-επανάληψης...Μέχρις_Οτου θα τη χρησιμοποιήσουμε αν ο αλγόριθμος πρέπει να εκτελεστεί τουλάχιστον μια φορά. Αν δεν μας δίνεται συνθήκη τερματισμού του αλγορίθμου, τότε πρέπει να ζητήσουμε από τον χρήστη το πλήθος των αντικειμένων που θα επεξεργαστεί ο αλγόριθμος, δηλ. τον αριθμό των επαναλήψεων.

9 Η ΓΕΝΙΚΗ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΕ ΑΛΛΗ ΙΣΟΔΥΝΑΜΗ ΜΟΡΦΗ ΤΗΣ 1. Για τη μετατροπή θα πρέπει να προσέξουμε δυο σημεία: Επειδή η επανάληψη Όσο... επανάλαβε εκτελείται όσο η συνθήκη είναι αληθής, ενώ η Αρχή-επανάληψης...Μέχρις_Οτου εκτελείται όσο η συνθήκη είναι ψευδής, θα πρέπει να χρησιμοποιήσουμε τον τελεστή της άρνησης στη συνθήκη στο Μέχρις_Οτου, δηλ. Όχι Συνθήκη. Επειδή η Όσο... επανάλαβε μπορεί να μην εκτελεστεί ποτέ, ενώ η Αρχήεπανάληψης...Μέχρις_Οτου εκτελείται τουλάχιστον μια φορά, χρησιμοποιούμε μια απλή επιλογή μέσα στην οποία έχουμε την εντολή επανάληψης Αρχήεπανάληψης...Μέχρις_Οτου. Με αυτόν τον τρόπο, μόνο αν ισχύει από την αρχή η συνθήκη θα εκτελεστούν οι εντολές της Αρχή-επανάληψης...Μέχρις_Οτου. Όσο Συνθήκη επανέλαβε Αν Συνθήκη τότε Ομάδα Εντολών Αρχή Επανάληψης Τέλος Επανάληψης Ομάδα Εντολών Μέχρις_Ότου Όχι Συνθήκη Τέλος_Αν 1. Για τη μετατροπή θα πρέπει να προσέξουμε δυο σημεία: Επειδή η επανάληψη Αρχή-επανάληψης...Μέχρις_Οτου εκτελείται όσο η συνθήκη είναι ψευδής, ενώ η Όσο... επανάλαβε εκτελείται όσο η συνθήκη είναι αληθής, θα πρέπει να χρησιμοποιήσουμε τον λεστή της άρνησης στη συνθήκη στο Όσο... επανάλαβε, δηλ. Όχι Συνθήκη. Επειδή η Αρχή-επανάληψης...Μέχρις_Οτου εκτελείται τουλάχιστον μια φορά, ενώ η Όσο... επανάλαβε μπορεί να μην εκτελεστεί ποτέ, γράφουμε μια φορά τις εντολές της επανάληψης Αρχή-επανάληψης...Μέχρις Οτου πριν το Όσο επανάλαβε. Έτσι εξασφαλίζουμε ότι θα εκτελεστούν τουλάχιστον μια φορά. Αρχή Επανάληψης Ομάδα Εντολών Όσο Όχι Συνθήκη επανέλαβε Μέχρις_ότου Συνθήκη 2. Για τη μετατροπή από τη δομή επανάληψης Για...από...μέχρι τη δομή επανάληψης Όσο...επανάλαβε πρέπει: Πριν την επανάληψη Όσο... επανάλαβε, πρέπει να αρχικοποιήσουμε τη μεταβλητή της επανάληψης Για...από...μέχρι στην τιμή τ1, δηλ. μεταβλητή τ1. Η συνθήκη της επανάληψης Όσο... επανάλαβε θα γίνει μεταβλητή <= τ2 ή μεταβλητή >=τ2, ανάλογα αν η ισχύει τ1 <= τ2 ή τ1 >= τ2. ι Θα μεταφέρουμε τις εντολές της επανάληψης Για...από...μέχρι όπως είναι στην επανάληψη Όσο... επανάλαβε. Πριν το Τέλος-επανάληψης στην επανάληψη Όσο...επανάλαβε θα προσθέσουμε στη μεταβλητή την τιμή του βήματος (αν το με_βήμα λείπει θα την αυξήσουμε κατά 1). Για Μεταβλητή από τ1 μέχρι τ2 με_βήμα τ3 Μεταβλητή τ1 Όσο Μεταβλητή <= τ2 επανέλαβε Τέλος επανάληψης

10 Μεταβλητή Μεταβλητή + τ3 Για Μεταβλητή από τ1 μέχρι τ2 με_βήμα τ3 Μεταβλητή τ1 Όσο Μεταβλητή >= τ2 επανέλαβε Μεταβλητή Μεταβλητή + τ3 3. Η μετατροπή της δομής επανάληψης Όσο... επανάλαβε σε δομή επανάληψης Για...από...μέχρι είναι δυνατή μόνο όταν η δομή επανάληψης Όσο... επανάλαβε έχει την εξής μορφή: μεταβλητή τ1 Όσο μεταβλητή τελεστής σύγκρισης τ2 επανάλαβε μεταβλητή μεταβλητή+τ3 Τέλος-επανάληψης όπου ο τελεστής σύγκρισης είναι ένας από τους: <, <=, >, >= Στην περίπτωση αυτή η ισοδύναμη μορφή επανάληψης Για...από...μέχρι είναι: Για μεταβλητή από τ1 μέχρι τ2 με-βήμα τ3 Τέλος-επανάληψης Γίνονται δηλαδή οι εξής αλλαγές: Αναγνωρίζουμε τη μεταβλητή που θα χρησιμοποιήσουμε στο Για...από...μέχρι. Αυτή καθορίζεται από τη συνθήκη της επανάληψης Όσο... επανάλαβε, βλέποντας ποια μεταβλητή συγκρίνουμε. Η αρχική τιμή τ1 της μεταβλητής είναι η τιμή που γράφουμε μετά το από στη δομή επανάληψης Για...από... μέχρι και η εντολή εκχώρησης μεταβλητή τ1 δεν μεταφέρεται. Η τελική τιμή τ2 είναι η τιμή που γράφουμε στο μέχρι στη δομή επανάληψης Για...από... μέχρι. Δηλ. η συνθήκη της Όσο...επανάλαβε είναι ουσιαστικά το μέχρι της Για..από... μέχρι. Γράφουμε την ομάδα εντολών της Όσο... επανάλαβε όπως είναι στη Για...από... μέχρι. Η τελευταία εντολή της επανάληψης Όσο... επανάλαβε καθορίζει το βήμα μεταβολής της μεταβλητής της επανάληψης Για...από... μέχρι και αντικαθίσταται από το με-βήμα. Προσοχή χρειάζεται στην περίπτωση όπου ο τελεστή ς σύγκρισης είναι> ή <, διότι η μεταβλητή της συνθήκης στο Όσο... επανάλαβε δεν θα πάρει την τιμή τ2. Όταν ο τελεστή ς σύγκρισης είναι ο < τότε η επανάληψη Για...από... μέχρι γίνεται: Για μεταβλητή από τ1 μέχρι τ2-1 με-βήμα τ3 Όταν ο τελεστή ς σύγκρισης είναι ο > τότε η επανάληψη Για... από... μέχρι γίνεται: Για μεταβλητή από τ1 μέχρι τ2+1 με-βήμα τ3

11

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου 2.87 Να περιγραφεί η δομή επανάληψης Μέχρις_ότου Ημορφή της δομής επανάληψης Μέχρις_ότου είναι: Μέχρις_ότου Συνθήκη Η ομάδα εντολών στο εσωτερικό της επανάληψης, εκτελείται μέχρις ότου ισχύει η συνθήκη

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1

Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1 Δομές Επανάληψης Όσο μέχρις ότου για 22/11/08 Ανάπτυξη εφαρμογών 1 Όσο. επανάλαβε Όσο Συνθήκη επανάλαβε Εντολή1 Εντολή2.. Ομάδα εντολών Συνθήκη Αληθής Ομάδα εντολών Εντολή Ν Τέλος_Επανάληψης Ψευδής 1.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο 2.114 Το ποσοστό απαξίωσης για ένα είδος υπολογίζεται από τον παρακάτω τύπο. 1 Αριθμός_Ετών Ποσοστό_Απαξίωσης = 1- Τιμή_Προσφοράς Αρχική_τιμή Να γραφεί αλγόριθμος που να υπολογίζει το ποσοστό απαξίωσης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία: Επικοινωνία: spzygouris@gmail.com Πότε χρησιμοποιείται η δομή επανάληψης και ποιες είναι οι τρεις επαναληπτικές δομές; Οι επαναληπτικές διαδικασίες εφαρμόζονται συχνά στις περιπτώσεις, όπου μία ακολουθία

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1. Η ομάδα εντολών μέσα στην Αρχή_επανάληψης..μέχρις_ότου

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Παραβιάζει τα κριτήρια της καθοριστικότητας και της περατότητας β. Αιτιολόγηση: ο αλγόριθμος παραβιάζει το κριτήριο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΣΧ... ΕΤΤΟΣΣ 22000099-22001100 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία

Διαβάστε περισσότερα

Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή ΑΠΑΝΤΗΣΗ ΑΡΧΗ_ΕΠΑΝΑΛΗΨΗΣ ΜΕΧΡΙΣ_ΟΤΟΥ Α<-54

Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή ΑΠΑΝΤΗΣΗ ΑΡΧΗ_ΕΠΑΝΑΛΗΨΗΣ ΜΕΧΡΙΣ_ΟΤΟΥ Α<-54 Άσκηση_1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή επανάληψης ΜΕΧΡΙΣ_ΟΤΟΥ. 1 η Περίπτωση Κ 0 ΌΣΟ Λ > 5 ΕΠΑΝΑΛΑΒΕ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 1/12/2013

ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 1/12/2013 ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 1/12/2013 ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο. αποτέλεσµα προς το χρήστη ή προς έναν άλλο αλγόριθµο. 7 ο ΓΕΛ Καλλιθέας Οδηγός Α.Ε.Π.Π.

ΚΕΦΑΛΑΙΟ 2 ο. αποτέλεσµα προς το χρήστη ή προς έναν άλλο αλγόριθµο. 7 ο ΓΕΛ Καλλιθέας Οδηγός Α.Ε.Π.Π. ΚΕΦΑΛΑΙΟ 2 ο 1. Τι είναι αλγόριθµος; Η θεωρία των αλγορίθµων έχει µεγάλη παράδοση και η ηλικία ορισµένων από αυτών είναι µερικών χιλιάδων χρόνων, όπως του Ευκλείδη για τον υπολογισµό του ΜΚ δύο αριθµών

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008. Τµήµα ΓΤ2 Όνοµα:...

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008. Τµήµα ΓΤ2 Όνοµα:... ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008 Τµήµα ΓΤ2 Όνοµα:... ΘΕΜΑ 1 ο. Α) Να γράψετε στο φύλλο απαντήσεών σας Σ εάν κρίνετε ότι η πρόταση είναι σωστή και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασµένες

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ 1 A. Να γράψετε τους κανόνες που πρέπει να ακολουθούνται στη χρήση των εμφωλευμένων βρόχων. B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) καθεμία από

Διαβάστε περισσότερα

Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασμένες (Λ).

Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασμένες (Λ). ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 6 ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Επαναληπτικό: 1 2 κεφάλαιο ΗΜ/ΝΙΑ :.. ΟΝΟΜΑΤΕΠΩΝΥΜΟ :.. ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-10 και δίπλα τη λέξη

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός...

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός... 1 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Διάρκεια 3 ώρες Στοιχεία Μαθητή: Όνομα... Επώνυμο... Βαθμός... 2 Θεμα Α (30%) Α1 ΣΩΣΤΟ - ΛΑΘΟΣ 1. Ένα υποπρόγραμμα δεν μπορεί να κληθεί περισσότερες

Διαβάστε περισσότερα

Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 210 50 20 990 210 50 27 990 25ης Μαρτίου 74 ΠΕΤΡΟΥΠΟΛΗ 210 50 50 658 210 50 60 845 Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ

Διαβάστε περισσότερα

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με:

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με: Αλγόριθμοι 2.2.1. Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά εντολών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Τα κυριότερα χρησιμοποιούμενα

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008. Τμήμα ΓΤ1 Όνομα:...

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008. Τμήμα ΓΤ1 Όνομα:... ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008 Τμήμα ΓΤ1 Όνομα:... ΘΕΜΑ 1 ο. Α) Να γράψετε στο φύλλο απαντήσεών σας Σ εάν κρίνετε ότι η πρόταση είναι σωστή και

Διαβάστε περισσότερα

Ορισµοί κεφαλαίου. Σηµαντικά σηµεία κεφαλαίου

Ορισµοί κεφαλαίου. Σηµαντικά σηµεία κεφαλαίου Ορισµοί κεφαλαίου Αλγόριθµος είναι µια πεπερασµένη σειρά ενεργειών, αυστηρά καθορισµένων και εκτελέσιµων σε πεπερασµένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήµατος. Σηµαντικά σηµεία κεφαλαίου Κριτήρια

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. Οι διαδικασίες μπορούν να εκτελέσουν οποιαδήποτε λειτουργία και δεν επιστρέφουν μια τιμή όπως οι συναρτήσεις. Κάθε διαδικασία έχει

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-4 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη

Διαβάστε περισσότερα

Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις με τη λέξη Σωστή ή με τη λέξη Λάθος.

Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις με τη λέξη Σωστή ή με τη λέξη Λάθος. ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ- ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 08-11-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ- Α.ΚΑΤΡΑΚΗ - Π.ΣΙΟΤΡΟΠΟΣ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

επιµέλεια Θοδωρής Πιερράτος

επιµέλεια Θοδωρής Πιερράτος Ερωτήσεις Σωστό Λάθος 1. Στη δοµή επανάληψης Όσο... επανάλαβε ο έλεγχος της συνθήκης γίνεται στην αρχή, δηλαδή πριν εκτελεστεί οποιαδήποτε εντολή που περιέχεται στη δοµή. 2. Ο µετρητής που ελέγχει τη συνθήκη

Διαβάστε περισσότερα

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Λάθος. Ποια η διαφορά μεταξύ διερμηνευτή και μεταγλωττιστή; Απάντηση:

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Λάθος. Ποια η διαφορά μεταξύ διερμηνευτή και μεταγλωττιστή; Απάντηση: ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασμένη. 1. Η ταξινόμηση είναι μια από τις βασικές

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή,

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς Βασικές Έννοιες Αλγορίθμων Δομή Ακολουθίας (κεφ. 2 και 7 σχολικού βιβλίου) 1. Οι μεταβλητές αντιστοιχίζονται από τον μεταγλωττιστή κάθε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο 43 2.55 Ποιες είναι οι δύο μορφές της δομής πολλαπλής επιλογής και ποτέ χρησιμοποιείται; 1 η Μορφή:Η πολλαπλή επιλογή εφαρμόζεται στα προβλήματα όπου μπορούν να ληφθούν διαφορετικές αποφάσεις ανάλογα με

Διαβάστε περισσότερα

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΚΠΑΙΔΕΥΤΙΚΉ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΛΥΚΕΙΟΥ - 02/05/2014 ΘΕΜΑ Α Α1. Έστω ο παρακάτω αλγόριθμος ταξινόμησης: Για κ από.. μέχρι 19 Για λ από 19 μέχρι κ με_βήμα -1

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα Α

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα Α Α1. Δίνονται οι παρακάτω εντολές από ένα τμήμα προγράμματος: ΔΙΑΒΑΣΕ α, β x α > β Να χαρακτηρίσετε αν κάθε μία από τις παρακάτω προτάσεις είναι

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 27 ΜΑΪΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1) Ποιοι είναι οι τελεστές σύγκρισης και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Θέμα 1ο I. Να γράψετε τι γνωρίζετε για την ολίσθηση. Ακολούθως, να αναφέρετε έναν αλγόριθμο στον οποίο χρησιμοποιείται.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 27 ΜΑΪΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

οµές Επανάληψης Π1. Να αναπτύξετε αλγόριθµο που θα εκτυπώνει τους αριθµούς από το 1 ως το 10.

οµές Επανάληψης Π1. Να αναπτύξετε αλγόριθµο που θα εκτυπώνει τους αριθµούς από το 1 ως το 10. Οι δοµές επανάληψης εφαρµόζονται στις περιπτώσεις, όπου µια οµάδα εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι κοινό. Οι τρεις µορφές δοµών επανάληψης είναι: 1. Επαναληπτική οµή

Διαβάστε περισσότερα

ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ

ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο Α. Δίνεται η εντολή εκχώρησης: τ κ < λ Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος. Να δικαιολογήσετε

Διαβάστε περισσότερα

α. Να συμπληρώσετε τις επόμενες εντολές εκχώρησης, ώστε τα κενά κελιά του πίνακα να αποκτήσουν τις επιθυμητές τιμές.

α. Να συμπληρώσετε τις επόμενες εντολές εκχώρησης, ώστε τα κενά κελιά του πίνακα να αποκτήσουν τις επιθυμητές τιμές. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 2 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 01 ΙΟΥΝΙΟΥ 2012 ΘΕΜΑ Α Α1. Να γράψετε

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ)

Διαβάστε περισσότερα

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ 11.0 13.0 Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 EKΠΑΙΔΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία -1-

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ 11.0 13.0 Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 EKΠΑΙΔΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία -1- ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ(ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ)

Διαβάστε περισσότερα

ΘΕΜΑ 1. 1. Συμβολική γλώσσα 2. Γλώσσες υψηλού επιπέδου 3. Γλώσσες τέταρτής γενιάς 4. Γλώσσα μηχανής

ΘΕΜΑ 1. 1. Συμβολική γλώσσα 2. Γλώσσες υψηλού επιπέδου 3. Γλώσσες τέταρτής γενιάς 4. Γλώσσα μηχανής ΘΕΜΑ 1 Α1Να γράψετε στο τετράδιο σας τον αριθμό καθεμίας από τις παρακάτω προτάσεις και δίπλα τη λέξη Σώστο,αν είναι σωστή και τη λέξη Λάθος, αν είναι λανθασμένη. 1.ο αλγόριθμος του πολλαπλασιασμού αλά

Διαβάστε περισσότερα

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ 11.0 13.0 Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ 11.0 13.0 Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές Βασικές Αλγοριθμικές Δομές 2 Εισαγωγή Οι αλγοριθμικές δομές εκφράζουν διαφορετικούς τρόπους γραφής ενός αλγορίθμου.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΕΔΟΜΕΝΑ // Ν // Σ 0 π 0 ΓΙΑ ι ΑΠΟ -10 ΜΕΧΡΙ Ν ΔΙΑΒΑΣΕ α, β Σ Σ + α+ β π

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. 1. Ποια είναι τα κυριότερα χρησιμοποιούμενα γεωμετρικά σχήματα σε ένα διάγραμμα ροής και τι ενέργεια ή λειτουργία δηλώνει το καθένα;

ΘΕΜΑ 1ο Α. 1. Ποια είναι τα κυριότερα χρησιμοποιούμενα γεωμετρικά σχήματα σε ένα διάγραμμα ροής και τι ενέργεια ή λειτουργία δηλώνει το καθένα; ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β)

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β) ΘΕΜΑ 1 ο (Μονάδες 40) A. Γράψτε τον αριθµό καθεµιάς από τις παρακάτω προτάσεις και διπλά τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος,

Διαβάστε περισσότερα

4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη.

4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. 4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. Η μετατροπή μιας εντολής επανάληψης σε μία άλλη ή στις άλλες δύο εντολές επανάληψης, αποτελεί ένα θέμα που αρκετές φορές έχει εξεταστεί σε πανελλαδικό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6 ΔΤ3 ΔΤ4 151

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6  ΔΤ3 ΔΤ4  151 ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Σε ένα μετεωρολογικό κέντρο χρειάζεται να βρεθεί η μέγιστη και η ελάχιστη θερμοκρασία από τις μέσες ημερήσιες θερμοκρασίες ενός μήνα. Να γραφεί ένας αλγόριθμος που θα διαβάζει τη

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς K εφ. 1 σχολικού βιβλίου 1. Επιλύσιμο είναι ένα πρόβλημα για το οποίο ξέρουμε ότι έχει λύση, αλλά αυτή δεν έχει βρεθεί ακόμη. 2. Για

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο 3.07 Να γραφεί αλγόριθμος που θα δημιουργεί πίνακα 100 θέσεων στον οποίο τα περιττά στοιχεία του θα έχουν την τιμή 1 και τα άρτια την τιμή 0. ΛΥΣΗ Θα δημιουργήσω άσκηση βάση κάποιων κριτηρίων. Δηλ. δεν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο Α. Να αναπτύξετε τις παρακάτω ερωτήσεις: 1. Τι καλείται βρόγχος; 2. Σε ποιες κατηγορίες διακρίνονται τα προβλήματα ανάλογα με

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α [Α.1.1]. Από ποιους παράγοντες εξαρτάται η επιλογή της

Διαβάστε περισσότερα

Στο παραπάνω τμήμα υπάρχουν περιττοί έλεγχοι. Να γράψετε ξανά το παραπάνω τμήμα χωρίς τους περιττούς ελέγχους.

Στο παραπάνω τμήμα υπάρχουν περιττοί έλεγχοι. Να γράψετε ξανά το παραπάνω τμήμα χωρίς τους περιττούς ελέγχους. ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 Α. Χαρακτηρίστε με τη λέξη Σωστή ή τη λέξη Λάθος καθεμία από τις παρακάτω προτάσεις: 1 Ο Γιάννης έχει ύψος 1.83εκ. και βάρος 82 κιλά. Ο Γιάννης χαρακτηρίζεται κανονικός. Το βάρος και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο 26 2.39 Ποια είναι η μορφή της σύνθετης επιλογής και που χρησιμοποιείται; Η συνθέτη επιλογή είναι: Αν Συνθήκη τότε Ομάδα Εντολών 1 Ομάδα Εντολών 2 Η Συνθήκη είναι παράσταση ή μια λογική μεταβλητή. Και

Διαβάστε περισσότερα

2. Ένα από τα στάδια αντιμετώπισης ενός προβλήματος είναι η ανάλυση.

2. Ένα από τα στάδια αντιμετώπισης ενός προβλήματος είναι η ανάλυση. ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ (ΟΜΑΔΑΣ Β ) ΣΑΒΒΑΤΟ 22 ΜΑΪΟΥ 2010 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε

Διαβάστε περισσότερα

8. Επιλογή και επανάληψη

8. Επιλογή και επανάληψη 8. Επιλογή και επανάληψη 8.1 Εντολές Επιλογής ΕΣΕΠ06-Θ1Β5 Η ιεραρχία των λογικών τελεστών είναι µικρότερη των αριθµητικών. ΕΣ07-Θ1Γ5 Η σύγκριση λογικών δεδοµένων έχει έννοια µόνο στην περίπτωση του ίσου

Διαβάστε περισσότερα

Ο βρόχος for Η εντολή for χρησιμοποιείται για τη δημιουργία επαναληπτικών βρόχων στη C

Ο βρόχος for Η εντολή for χρησιμοποιείται για τη δημιουργία επαναληπτικών βρόχων στη C Ο βρόχος for Η εντολή for χρησιμοποιείται για τη δημιουργία επαναληπτικών βρόχων στη C Επαναληπτικός βρόχος καλείται το τμήμα του κώδικα μέσα σε ένα πρόγραμμα, το οποίο εκτελείται από την αρχή και επαναλαμβάνεται

Διαβάστε περισσότερα

2. Στον παραπάνω πίνακα προσθέτουμε (εφόσον χρειάζεται) μια ακόμη στήλη που την ονομάζουμε έξοδο και στην οποία γράφουμε ότι εμφανίζεται.

2. Στον παραπάνω πίνακα προσθέτουμε (εφόσον χρειάζεται) μια ακόμη στήλη που την ονομάζουμε έξοδο και στην οποία γράφουμε ότι εμφανίζεται. Κατηγορία 1 η Πίνακες τιμών Τρόπος αντιμετώπισης: 1. Για να παρακολουθούμε τις τιμές των μεταβλητών δημιουργούμε ένα πίνακα τιμών ο οποίος έχει τόσες στήλες όσες και οι διαφορετικές μεταβλητές που υπάρχουν

Διαβάστε περισσότερα

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Τρίτη, 1 Ιουνίου 2004 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ

Τρίτη, 1 Ιουνίου 2004 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 ο ο Τρίτη, 1 Ιουνίου 2004 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΣΧΧ.. ΕΕΤΤΟΟΣΣ 22001100-22001111 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα Α Α1. Δίνονται οι παρακάτω

Διαβάστε περισσότερα

8. Λεξιλόγιο μιας γλώσσας είναι όλες οι ακολουθίες που δημιουργούνται από τα στοιχεία του αλφαβήτου της γλώσσας, τις λέξεις.

8. Λεξιλόγιο μιας γλώσσας είναι όλες οι ακολουθίες που δημιουργούνται από τα στοιχεία του αλφαβήτου της γλώσσας, τις λέξεις. ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΑ 1-6 ΟΝΟΜΑ: ΗΜΕΡΟΜΗΝΙΑ: ΒΑΘΜΟΣ: ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό,

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. S <-- 0 ιάβασε Υ Όσο α <= Υ επανάλαβε S <-- S +α. Τέλος_επανάληψης

ΘΕΜΑ 1 ο. S <-- 0 ιάβασε Υ Όσο α <= Υ επανάλαβε S <-- S +α. Τέλος_επανάληψης ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από

Διαβάστε περισσότερα

Γενικές εξετάσεις 2014 Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον Τεχνολογική Κατεύθυνση

Γενικές εξετάσεις 2014 Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον Τεχνολογική Κατεύθυνση Φροντιστήρια δυαδικό 1 ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γενικές εξετάσεις 2014 Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον Τεχνολογική Κατεύθυνση Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων «δυαδικό»

Διαβάστε περισσότερα

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµίας από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στην κόλλα σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη

Διαβάστε περισσότερα

Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο: ,

Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο: , Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο:210-61.24.000, http://www.akadimos.gr ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια θεμάτων

Διαβάστε περισσότερα

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Βάλβης Δημήτριος Μηχανικός Πληροφορικής ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία: Επικοινωνία: spzygouris@gmail.com Να δοθεί ο ορισμός του Αλγορίθμου. Αλγόριθμος, σύμφωνα με το βιβλίο, είναι μια πεπερασμένη σειρά ενεργειών (όχι άπειρες), αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο

Διαβάστε περισσότερα

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Αν τότε. αλλιώς. Τέλος_αν. Τέλος_αν

Αν τότε. αλλιώς. Τέλος_αν. Τέλος_αν Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Σ Ε Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Τ Ι Κ Ο Π Ε Ρ Ι Β Α Λ Λ Ο Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων; ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ 01/03/2015 Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1.

Διαβάστε περισσότερα

1 Ο Λύκειο Ρόδου. Β ΓΕΛ ΕισΑρχΕπ Η/Υ. Γεωργαλλίδης Δημήτρης

1 Ο Λύκειο Ρόδου. Β ΓΕΛ ΕισΑρχΕπ Η/Υ. Γεωργαλλίδης Δημήτρης 1 Ο Λύκειο Ρόδου Β ΓΕΛ ΕισΑρχΕπ Η/Υ Γεωργαλλίδης Δημήτρης Μάθημα 1 Παράγραφοι: 2.2.1 ορισμός αλγορίθμου (σελ.19) 2.2.7 Εντολές και δομές αλγορίθμου (σελ.. 31-34) 34) ΑΛΓΟΡΙΘΜΟΣ Πεπερασμένη σειρά βημάτων

Διαβάστε περισσότερα

Φύλλο εργασίας 4 ο Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ.

Φύλλο εργασίας 4 ο Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ. Φύλλο εργασίας 4 ο Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ. Λίγοι αλγόριθμοι χρησιμοποιούν μόνο τις δομές ακολουθίας και επιλογής. Στα ρεαλιστικά προβλήματα χρειάζεται συνήθως μια σειρά εντολών

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 7 Α1. Κάθε σωστή απάντηση

Διαβάστε περισσότερα

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σελίδα 1 από 12 www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σε συνεργασία µε τις εκδόσεις ΕΛΛΗΝΟΕΚ ΟΤΙΚΗ κυκλοφορούν τα βοηθήµατα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον:

Διαβάστε περισσότερα

ΘΕΜΑ Β Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις Θεωρητική ή Εφαρμοσμένη:

ΘΕΜΑ Β Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις Θεωρητική ή Εφαρμοσμένη: ΕΝΟΤΗΤΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Κεφάλαιο 1.1. Επιστήμη των Υπολογιστών >ΕΝΟΤΗΤΑ 1/ΚΕΦ.1.1/ ΤΥΠΟΥ Β1: ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ GI_V_EIY_0_19373 Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ 1 ΘΕΜΑ 1 o Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στην κόλλα σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 o ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στην κόλλα σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη

Διαβάστε περισσότερα

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων; ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ 01/03/2015 Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1.

Διαβάστε περισσότερα