ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 14ης ΑΠΡΙΛΙΟΥ 2000 ΑΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ. ΜΕΡΟΣ Ι Κανονιστικές Διοικητικές Πράξεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 14ης ΑΠΡΙΛΙΟΥ 2000 ΑΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ. ΜΕΡΟΣ Ι Κανονιστικές Διοικητικές Πράξεις"

Transcript

1 ΚΛ.Ϊ. 97/000 ΠΑΑΤΗΜΑ ΤΤ ΤΗΣ ΕΠΣΗΜΗΣ ΕΦΗΜΕΔΑΣ ΤΗΣ ΔΗΜΚΑΤΑΣ Αρ. 40 της 4ης ΑΠΛΥ 000 ΑΚΗΤΚΕΣ ΠΑΞΕΣ ΜΕΣ Κννστκές Δκητκές Πράξς Αρθμός 97 ΠΕ ΕΛΕΓΧΥ ΤΗΣ ΥΠΑΝΣΗΣ ΤΩΝ ΝΕΩΝ ΝΜΣ (ΝΜ 69 ΤΥ 99 ΚΑ 76() ΤΥ 99) Δάτγμ μ βάση τ άρθρ Υπυργός Γργς, Φυσκών Πόρν κ Πρβάλλντς σκώντς την ξυσ πυ τυ ν τ άρθρ τν πρ Ελέγχυ της ύπνσης τν Νρών Νόμν τυ 99 κ 99 κ τ π κάτ Δάτγμ.. Τ Δάτγμ υτό θ νφέρτ ς τ πρ Ελέγχυ της ύπνσης τν Νρών (Πότητ τν Επφνκών Νρών πυ Πρρζντ γ την Πργγή Πόσμυ Νρύ) Δάτγμ τυ Στ Δάτγμ υτό κτός ν νφέρτ φρτκά στ κμν "πόσμ νρά" σημν όλ τ πφνκά νρά πυ πρρζντ γ νθρώπνη κτνάλση κ χτύντ πό κτυ πρχής στη ημόσ χρήση.. Τ Δάτγμ υτό φρά την πότητ τν γλυκών πφνκών νρών πυ χρησμπύντ ή πρρζντ ν χρησμπηθύν γ την πργγή πόσμυ νρύ μτά πό φρμγή κτάλληλης πξργσς: Ντ ότ τ υπόγ κ τ υφάλμυρ νρά κ τ νρά πυ πρρζντ γ τν μπλυτσμό τν υρφόρν στρμάτν ν υπάγντ στ Δάτγμ υτό. 4. Τ πφνκά νρά υπρύντ σ τρς κτηγρς ρκών τμών Α, Α κ A πυ ντστχύν στς κτάλληλς μθόυς πξργσς πυ πρσρζντ στν Πρώτ Πνκ κ σ τρς φρτκές πότητς πφνκών νρών τν πν τ φυσκά, χημκά κ μκρβλγκά χρκτηρστκά φνντ στ Δύτρ Πνκ τυ Δτάγμτς υτύ. (40) 69 τυ 99 76() τυ 99. Συνπτκός ττλς. Ερμην. Π φρμγής. Κτηγρς. Πρώτς Πνκς. Χρκτηρστκά κθρσμύ τν κτηγρών. Δύτρς Πνκς.

2 Τμές γ τ σημ γμτληψς. Δύτρς Πνκς. Νρό πότητς κτώτρης της Κτηγρς A. Πράμτρ κ πκλσς τμών. Δύτρς Πνκς. Πρπτώσς μη φρμγής τυ Δτάγμτς υτύ. Κ.Δ.Π. 97/ Γ κάθ σημ γμτληψς φρμστές τμές στ πφνκά νρά πρέπ ν ν σύμφνς μ τς πρμέτρυς πυ πρσρζντ στ Δύτρ Πνκ. 6. Γ την πργγή πόσμυ νρύ θ χρησμπύντ, τ πφνκά νρά τ π έχυν φυσκά, χημκά κ μκρβλγκά χρκτηρστκά κτώτρ τν υπχρτκών πρρστκών τμών πυ ντστχύν στη μέθ πξργσς A: Ντ ότ τ νρό Κτηγρς A μπρ ν χρησμπηθ ν υπστ κτάλληλη πξργσ, συμπρλμβνμένης της νάμξης, ώστ ν νκτήσ πτκά χρκτηρστκά νρύ σύμφν μ τ πρότυπ της πότητς τυ πόσμυ νρύ. 7. () Τ πφνκά νρά πληρύν τς πρμέτρυς πυ πρσρζντ στ Δύτρ Πνκ ότν τ γμτ τυ νρύ πυ λμβάνντ πό τ σημ γμτληψς τ π χρησμπτ γ την πργγή πόσμυ νρύ, πληρύν τς τμές τν πρμέτρν σ πσστό 95% τν γμάτν γ τς πρμέτρυς πυ ν σύμφνς μ τς πρσρζόμνς στς στήλς "Υ" τυ Δύτρυ Πνκ, 90% τν γμάτν σ' όλς τς άλλς πρπτώσς, κ φόσν γ τ 5 ή 0% τν γμάτν τ π κτά πρπτση πκλνυν () τ νρό ν πκλν πρσσότρ πό τ 50% της τμής τν σχτκών πρμέτρν ξρυμένν της θρμκρσς, τυ ρη, τυ λυμένυ ξυγόνυ κ τν μκρβλγκών πρμέτρν, (β) ν μπρ ν πρκύψ κνένς κνυνς γ τη ημόσ υγ, (γ) τ γμτ νρύ πυ λμβάνντ ν πκλνυν πό τς τμές τν πρμέτρν πυ νφέρντ σ' υτές: Ντ ότ υπρβάσς τν νφρόμνν σ Δύτρ Πνκ τμών θ λμβάνντ, υπόψη κτά τν υπλγσμό τν πσστών τν πρμέτρν πυ φρύν την ν λόγ πότητ τυ νρύ, ότν ν πτέλσμ πλημμύρν, φυσκών κτστρφών ή ξρτκών μτρλγκών συνθηκών. () Γ τυς σκπύς τυ άρθρυ υτύ, "σημ γμτληψς" σημν τη θέση όπυ ντλτ τ πφνκό νρό πρν στλ γ ν υπστ τη κσ κθρσμύ. 8. () Τηρύμνης της νάγκης γ πρστσ της ημόσς υγς, τ Δάτγμ υτό ν φρμόζτ () Σ πρπτση πλημμύρν ή φυσκών κτστρφών, (β) γ τς πρμέτρυς πυ χρκτηρζντ μ τ στχ (ΕΞ) στ Δύτρ Πνκ, λόγ ξρτκών μτρλγκών ή γγρφκών συνθηκών, (γ) ότν τ πφνκά νρά υφστντ φυσκό μπλυτσμό μ ρσμένς υσς, μ πτέλσμ ν υπρβνντ τ όρ πυ κθρζντ γ τς κτηγρς Α, Α κ A στ Δύτρ Πνκ, () σ πρπτση στάσμν νρών ή πφνκών βθών λμνών τν πν τ βάθς ν υπρβν τ 0 μέτρ κ τν πν τ νρό ννώντ σ άστημ μγλύτρ τυ νός έτυς κ στς πς ν πβάλλντ κάθρτ νρά γ ρσμένς πρμέτρυς πυ σημώνντ μ στρσκ στ Δύτρ Πνκ.

3 40 Κ.Δ.Π. 97/000 () Γ τυς σκπύς τυ άρθρυ υτύ "φυσκός μπλυτσμός" σημν τη κσ κτά την π ένς κθρσμένς όγκς νρύ πρλμβάν πό τ έφς ρσμένς υσς πυ πρέχντ σ' υτό χρς νθρώπνη πέμβση.

4 K.4.JJ. 9 7/ c w w χ» s J s o 0. /" c: Of Q UJ Q ρ G Q.0 UJ en.0 S ^ Ό..o Q. ~ cr c 5 cr ^ to. ρ Sf y 5 o cr D. -cr 5" σ ν:. Ϊ ^ Λ-. ~ S f - cr ^ ν Τ.» cr c ό ν -.7. D «ST ^ / 5? υ.. Sf.. ν, : c,. ρ -c- e S cr cr ^Λ c.. ^c ^ ^ ^ OL b -cr ^ σ en.σ X ^ S? S" σ 5. «5 = 5 5 Q. fc. U ^^. u. σ '

5 405 Κ.Δ.Π. 97/000. ll h - H. b Ό t - = ',t= 9 ό " Η σ χ Q.. G. ^ «to - =L s «ON n oo" A. " r Μ ) H ) - Ε tr - Χ O. Η β. " w τ» [] ) ) «Τ ) OJ ] ) b. Ά. τ.. υ e OJ Έ -?- σ t_p 6 '. S " ^ ) ' - ν ΐ ϊ ; [] W. ΪΖ» _J» "» " "» "5b 9. θ "St r5. V ^ ) " " _Γ. S9 W υ -. " " 9 Μ ν _ " " ~Sfc Ε υ V. - Χ OJ ν " c "S6. «to & Ί - D Q "5D - Q τΐc W

6 Κ.Δ.Π. 97/ cf " " " " 0_ η = " ; '/. '/~.. '. Γ. 'Λ "5 ', ΐ :.; _ ; ' /, ; /~. J~ OJ ^ Ί ~^ ; /. r r : = U Us ' : _. ~ \ ^ : r Ol J =? "5b. o "So =0 = = ~=b en ~5 ~=b "=ρ τ- O 5, '"cb to "Ξρ = = y) r~ Jo c c ;o, "" Χ ' Σ M ΓΜ 5.. {Ν " ΓΜ 04 g c. Ol 5? " s 5: 9 S κ y D Γ η «^ X & 9 Τ ;r ". 9 t; ^ ^ - ' u p= S 5 " " ^ p y y ^. ^ y. 5 rf\ ^,. Ζ ' g ρ X J Ol "5 ht «

7 407 Κ.Δ.Π. 97/000 υπ " η; Ξ J ("Π Τ' \ ". ; φ. f. Π_ ] r. c~l ( ~. Γ Ί r?? s ζ "Ξ? "So ρ U ". Η ν S ^ ρ U. ( " LP c " L "? u ρ" χημκά πτύμν ξυγόν (B0D5) (στυς 0 χρς πρσθήκη] ντρκών)» " ^, c U P _ Ά ϊ Ϊ, ) s? ^ 0.. g 5 g f " Q sr β Υπόλμμ ργνκύ άνθρκ μτά Ν πό κρκύση κ ήθηση μ μμβράνη (5 μ) TO O ^ '5L ρ c=. c " _ 5 r " & so " w. «: =L O «: O "" T o Η J Q. _p

8 Κ.Δ.Π. 97/ _ c 5. '^ w.st c ==. = -^ θΰ ^ -

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 2782 της 19ης ΜΑΡΤΙΟΥ 1993 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Π

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 2782 της 19ης ΜΑΡΤΙΟΥ 1993 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Π Ν. 8(Π)/9 ΠΑΡΑΡΤΜΑ ΠΡΩΤ ΤΣ ΕΠΙΣΜΣ ΕΦΜΕΡΙΔΑΣ ΤΣ ΔΜΚΡΑΤΙΑΣ Αρ. 2782 της 19ης ΜΑΡΤΙΥ 199 ΝΜΘΕΣΙΑ ΜΕΡΣ Π περί Πρϋπλγισμύ της Αρής λεκτρισμύ Κύπρυ Νόμς τυ 199 εκδίδετι με δημσίευση στην Επίσημη Εφημερίδ της

Διαβάστε περισσότερα

Εξέδρα συναυλίας στο Πανθεσσαλικό στάδιο Βόλου

Εξέδρα συναυλίας στο Πανθεσσαλικό στάδιο Βόλου Δ π λ ω μ τ κ ρ γ σ Δ π λ ω μ τ κ ρ γ σ Εξέδρ συνυλίς στ Πνθσσλκό στάδ Βόλυ Φτήτρ: Αντωνίυ Ουρνί Επβλέπντς κθγτές : Σπύρς Ππδόπυλς, Μρί Βρντίσ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ Εσγωγή

Διαβάστε περισσότερα

! # %& # () & +( (!,+!,. / #! (!

! # %& # () & +( (!,+!,. / #! (! ! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /

Διαβάστε περισσότερα

ΠΟΛΥΕΛΕΟΣ ''Λόγον Ἀγαθόν''

ΠΟΛΥΕΛΕΟΣ ''Λόγον Ἀγαθόν'' «ΑΕΛΙΟΣ ΧΟΡΟΣ» Ι.. ΣΙΩΟΣ ΕΤΡΑΣ ΟΛΥΕΛΕΟΣ ''Λόγον Ἀγθόν'' Ἦχος 1. ο γο ον γ θο ον Α λ λη η η λ Ε ξη ρ υ ξ το η η η κ ρ δ µ λο ο ο γον γ θον Χ ρ πν τ ν σ σ π νυ υ υ µνη η η η τ µη η η τηρ Χρ στ τ Θ η η η

Διαβάστε περισσότερα

Κ Ω Δ Ι Κ Α Σ Δ Ε Ο Ν Τ Ο Λ Ο Γ Ι Α Σ

Κ Ω Δ Ι Κ Α Σ Δ Ε Ο Ν Τ Ο Λ Ο Γ Ι Α Σ Κ Ω Δ Ι Κ Α Σ Δ Ε Ο Ν Τ Ο Λ Ο Γ Ι Α Σ Ψ η φ ί σ τ η κ ε α π ό τ η Γ ε ν ι κ ή Σ υ ν έ λ ε υ σ η τ ω ν Μ ε λ ώ ν τ ο υ Σ Ε Π Ε τ η ν 1 9 η Ο κ τ ω β ρ ί ο υ 1 9 9 6 Π ρ ό λ ο γ ο ς Τ ο π ρ ώ τ ο α ι ρ ε

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

1384 Ν. 28(Π)/96. Ε.Ε. Παρ. I(II) Αρ. 3050, 5.4.96

1384 Ν. 28(Π)/96. Ε.Ε. Παρ. I(II) Αρ. 3050, 5.4.96 .. Π. () Α. 050, 5.4.96 184 Ν. 28(Π)/96 πεί Πϋπλγμύ τυ γνμύ μτδτήες Στέγς Νόμς τυ 1996 εκδίδετ με δμίευ τν πίμ φμείδ τς Κυπκής Δμκτίς ύμφν με τ Άθ 52 τυ Συντάγμτς. Πίμ. 194 τυ 1987 18 τυ 1987 52 τυ 1988.

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και

Διαβάστε περισσότερα

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς 9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1

Διαβάστε περισσότερα

Κ Α Τ Α Σ Τ Α Τ Ι Κ Ο

Κ Α Τ Α Σ Τ Α Τ Ι Κ Ο Κ Α Τ Α Σ Τ Α Τ Ι Κ Ο Κ Ε Φ Α Λ Α Ι Α Α. Σ Υ Σ Τ Α Σ Η - Ε Π Ω Ν Υ Μ Ι Α - Ε Δ Ρ Α - Δ Ι Α Ρ Κ Ε Ι Α Β. Μ Ε Λ Η Τ Ο Υ Σ Υ Ν Δ Ε Σ Μ Ο Υ Γ. Ο Ρ Γ Α Ν Α Δ Ι Ο Ι Κ Η Σ Η Σ Δ. Π Ο Ρ Ο Ι Τ Ο Υ Σ Υ Ν Δ Ε Σ Μ

Διαβάστε περισσότερα

2399 Ν. 89/88. Αριθμός 89 του 1988

2399 Ν. 89/88. Αριθμός 89 του 1988 E.E., Πρ. I, Αρ. 2, 22.6.88 299 Ν. 89/88 περί Πρϋπλγισμύ τυ Κυπρικύ ργνισμύ Τυρισμύ Νόμς τυ 1988 εκδίδετι με δμσίευσ στν επίσμ εφμερίδ τς Κυπρικής Δμκρτίς σύμφν με τ Άρθρ 52 τυ Συντάγμτς. Αριθμός 89 τυ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3231 της 30ής ΜΑΡΤΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Ι

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3231 της 30ής ΜΑΡΤΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Ι "Ν. 11(Ι)/98 ΠΑΡΑΡΤΗΜΑ ΠΡΩΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 21 της 0ής ΜΑΡΤΙΥ 1998 ΝΜΘΕΣΙΑ ΜΕΡΣ Ι περί Τελνεικών Δμών κι Φόρν Κτνλώες Νόμς τυ 1998 εκδίδετι με δημίευη την Επίημη Εφημερίδ της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.

Διαβάστε περισσότερα

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6 # % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 16ης ΦΕΒΡΟΥΑΡΙΟΥ 1990 ΝΟΜΟΘΕΣΙΑ

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 16ης ΦΕΒΡΟΥΑΡΙΟΥ 1990 ΝΟΜΟΘΕΣΙΑ Ν. 9/9 ΠΑΑΤΑ ΠΩΤ ΤΣ ΕΠΙΣΣ ΕΦΕΙΔΑΣ ΤΣ ΔΚΑΤΙΑΣ Αρ. 248 της 16ης ΦΕΒΥΑΙΥ 199 ΝΘΕΣΙΑ περί Πρϋπλγισμύ τυ Κυπριύ ργνισμύ Ανπτύξες Γης Νόμς τυ 199 εδίδετι με δημσίευση στην επίσημη εφημερίδ της Κυπριής Δημρτίς

Διαβάστε περισσότερα

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΕΓΓΡΑΦΗ ΣΤΟ ΜΗΤΡΩΟ ΣΥΜΒΟΥΛΩΝ ΤΗΣ ΠΡΑΞΗΣ

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΕΓΓΡΑΦΗ ΣΤΟ ΜΗΤΡΩΟ ΣΥΜΒΟΥΛΩΝ ΤΗΣ ΠΡΑΞΗΣ ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΕΓΓΡΑΦΗ ΣΤΟ ΜΗΤΡΩΟ ΣΥΜΒΟΥΛΩΝ ΤΗΣ ΠΡΑΞΗΣ Κατάρτιση, πιστοποίηση και συμβουλευτική με στόχο την ενδυνάμωση των δεξιοτήτων άνεργων νέων 18-24 ετών σε ειδικότητες του

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693

Διαβάστε περισσότερα

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ Ε ο ζ δ μ ΝΝ λ Α σ λ Π Ι Λ Ρ υ λ δ ο Ρ β ε Δ Ο υ Π ο π λ ρ υ Ι ξ ρ ρ Ν μ υ β γ α ρ δ ψ λ ε Δ υ λ Π Κ Ο υ ξ δ Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ

Διαβάστε περισσότερα

Νέο Λύκειο: Μετά το «Νέο Σχολείο» και πριν το «Νέο ΑΕΙ»

Νέο Λύκειο: Μετά το «Νέο Σχολείο» και πριν το «Νέο ΑΕΙ» Νέ Λύκε: Μετά τ «Νέ Σχλεί» κα πρν τ «Νέ ΑΕΙ» Παρυσάζυμε σήμερα τς πρτάσες τυ Υπυργείυ Παδείας γα τ «Νέ Λύκε». Στη δαμόρφωση τυς έχυν ληφθεί υπόψη : Ο μελέτες τυ Παδαγωγκύ Ινσττύτυ. Τ πόρσμα τυ Εθνκύ Συμβυλίυ

Διαβάστε περισσότερα

8 ) / 9! # % & ( ) + )! # 2. / / # % 0 &. # 1& / %. 3 % +45 # % ) 6 + : 9 ;< = > +? = < + Α ; Γ Δ ΓΧ Η ; < Β Χ Δ Ε Φ 9 < Ε & : Γ Ι Ι & Χ : < Η Χ ϑ. Γ = Φ = ; Γ Ν Ι Μ Κ Λ Γ< Γ Χ Λ =

Διαβάστε περισσότερα

(α) Στη στήλη «Θέσεις 1993» ο αριθμός «36» αντικαθίσταται. (β) Στη στήλη των επεξηγήσεων αναγράφεται η ακόλουθη

(α) Στη στήλη «Θέσεις 1993» ο αριθμός «36» αντικαθίσταται. (β) Στη στήλη των επεξηγήσεων αναγράφεται η ακόλουθη E.E. Παρ. Ι(Π) 1197 Ν. 63(11)/93 Αρ. 2842,10.12.93 Ο περί Πρϋπλγισμύ (Τρππιητικός) (Αρ. 6) Νόμς τυ 1993 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας σύμφωνα με τ Άρθρ 52 τυ Συντάγματς.

Διαβάστε περισσότερα

1354 Ν. 25(ΙΙ)/97. E.E. Παρ. Ι(ΙΙ) Αρ. 3145, 24.4.97

1354 Ν. 25(ΙΙ)/97. E.E. Παρ. Ι(ΙΙ) Αρ. 3145, 24.4.97 E.E. Πρ. () Αρ. 4, 24.4.97 4 Ν. 2()/97 περ Πρϋπλγσμύ της Αρής Τηλεπκνωνών Κύπρυ Νόμς τυ 997 εκδδετ με δημσευση στην Επσημη Εφημερδ της Κυπρκής Δημκρτς σύμφων με τ Άρθρ 2 τυ Συντάγμτς. Πρμ. 94 τυ 987 8

Διαβάστε περισσότερα

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ 1 1.1 Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΘΕΩΡΙ 1. ιάνυσµα Λέγεται κάθε πρσανατλισµέν ευθύγραµµ τµήµα. (έχει αρχή και πέρας) A B 2. Μηδενικό διάνυσµα 0 Λέγεται τ διάνυσµα τυ πίυ η αρχή και τ πέρας συµπίπτυν. AA= 0 3.

Διαβάστε περισσότερα

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt Μία ιστρία στην ΕΞΝΓΚΣΜΕΝΗ ΤΛΝΤΩΣΗ Κατά την περσινή σχλική χρνιά, στα πλαίσια της Π.Δ.Σ. πρσπάησα, αντί να λύσ ασκήσεις πυ μπρεί να υπάρχυν σε πλλά ιαφρετικά εξσχλικά βιβλία, να εάν ι μαητές μυ έχυν πραγματικά

Διαβάστε περισσότερα

1367 Ν. 67(Η)/94. E.E. Παρ. Ι(ΙΙ) Αρ. 2890, 8.7.94

1367 Ν. 67(Η)/94. E.E. Παρ. Ι(ΙΙ) Αρ. 2890, 8.7.94 E.E. Π. Ι(ΙΙ) Α. 290,.7.94 167 Ν. 67(Η)/94 πεί Πϋπλγιμύ τυ Πνεπιτημίυ Κόπυ Νόμς τυ 1994 εκδίδετι με δημίευη την πίημη φημείδ της Κυπικής Δημκτίς ύμφν με τ 'Αθ 2 τυ Συντάγμτς. Αιθμός 67(11) τυ 1994 ΝΜΣ

Διαβάστε περισσότερα

Κ. Μέτρηση Κύκλου. Παράρτημα. Ι13. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση:

Κ. Μέτρηση Κύκλου. Παράρτημα. Ι13. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση: Ι12. Αν σε ένα τρίγων ΑΒΓ ισχύει η σχέση ημ 3 Β ημ 2 ΑημΒ ημ 2 ΑημΓ ημ 3 Γ, να απδείξετε ότι Βˆ Γˆ 120. Ι13. Αν σε ένα τρίγων ΑΒΓ ισχύει η σχέση: 1 1 2 1, να α β α β γ α β γ β γ 2 απδείξετε ότι 4συν Β

Διαβάστε περισσότερα

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1 ΕΠΙΛΥΣΗ ΤΥΠΩΝ Στην ενότητα αυτή, πιστεύω να καταλάβετε ότι τα Μαθηµατικά έγιναν και αναπτύχθηκαν για να αντιµετωπίζυν καθηµερινά πρβλήµατα. εν χρειάζνται όµως πλλά λόγια, ας πρχωρήσυµε σε παραδείγµατα.

Διαβάστε περισσότερα

E.E., Παρ. ί, Αρ. 2577, Ν. 22/91

E.E., Παρ. ί, Αρ. 2577, Ν. 22/91 E.E., Πρ. ί, Αρ. 2577,15.2.91 86 Ν. 22/91 περί Πρϋπλγισμύ τυ Κυπρικύ Πρκτρείυ Ειδήσεν Νόμς τυ 1991 εκδίδετι με δημσίευση στην Επίσημη Εφημερίδ της Κυπρικής Δημκρτίς σύμφν με τ Άρθρ 52 τυ Συντάγμτς. Αριθμός

Διαβάστε περισσότερα

Πτερυγιοφόροι σωλήνες

Πτερυγιοφόροι σωλήνες ΛΕΒΗΤΕΣ ΑΤΜΟΥ Πτερυγιοφόροι σωλήνε ΑΤΜΟΛΕΒΗΤΕΣ Εύκολη λειτουργία και συντήρηση Για όλου του τύπου καυήρων και καυσίµων Ο οπίσθιο θάλαµο αναροφή καυσαερίων είναι λυόµενο, γεγονό που επιτρέπει τον πλήρη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 2

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 2 - 7 - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. ίνετι η συνάρτηση f η οποί είνι συνεχής στο διάστηµ [, ]. Ν ποδείξετε ότι υπάρχει έν τουλάχιστον ξ (, τέτοιο, ώστε: ξ f(d=ξf(ξ. ( Θ. Rolle στην F(= f( d. ίνετι

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ ιπλ ωµατ ική Εργασία του Φοιτητή ιονύση Παππά Τ µ ή µ α Μ ε τ α ν α σ τ ε υ τ ι κ ή ς π ο λ ι τ ι κ ή ς Τίτλος Εργασίας: Η Συµβολή της Τοπικής Αυτοδιοίκησης στην καταπολέµηση

Διαβάστε περισσότερα

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2 1 11. 11.7 Μέτρηση κύκλυ ΘΩΡΙ Μήκς τόξυ µ : µ 180 Μήκς τόξυ α rad : αr Σχέση µιρών ακτινίων : α π µ 180 µβαδόν κυκλικύ δίσκυ : ( ) µβαδόν κυκλικύ τµέα µ : µ µβαδόν κυκλικύ τµέα α rad : ( ) 1 αr µβαδόν

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

* * } t. / f. i ^ . «-'. -*.. ;> * ' ί ' ,ΐ:-- ΙΣ Τ Ο Λ Ο Γ ΙΑ Τ Α ΣΥΣΤΗ Μ Α ΤΑ ΟΡΓΑΝΟΝ. Ο.Β.Κ δτο ΥΛΑΣ

* * } t. / f. i ^ . «-'. -*.. ;> * ' ί ' ,ΐ:-- ΙΣ Τ Ο Λ Ο Γ ΙΑ Τ Α ΣΥΣΤΗ Μ Α ΤΑ ΟΡΓΑΝΟΝ. Ο.Β.Κ δτο ΥΛΑΣ % r,r,»v: ' $ & '"- -.,.. -., * *» # t -..* ' T. < - 'ί" : ', *».- 7 Λ CV';y * ' f y \ '. :.-ή ; / ' w, * * } t ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΠΑΝΝΙΝΠΝ ΙΑΤΡΙΚΗ ΣΧΟΛΗ V* ι Λ-Α..;. «* '. ft A 1^>>,- 7 - ^Λ' :.-.. ν -»V-

Διαβάστε περισσότερα

Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων

Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων Τιµή και απόδση µετχής Ανάλυση χαρτφυλακίυ Τιµές Απδόσεις και Κίνδυνς µετχών ιαφρπίηση κινδύνυ Χαρτφυλάκια µετχών Η απόδση µιας µετχής είναι ίση πρς τη πσστιαία διαφρά µεταξύ της αρχικής και της τελικής

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Στην προηγούµενη ενότητ συζητήσµε µετσχηµτισµούς της µορφής Y g( µίς τυχίς µετβλητής Όµως σε έν πολυµετβλητό φινόµενο ενδέχετι ν θέλουµε ν µετσχηµτίσουµε τις ρχικές

Διαβάστε περισσότερα

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο 0 ΜΑΘΗΜΑ.4. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ.4.. Συνέχει συνάρτησης στ o Ορισμός: Μι συνάρτηση f/α νμάζετι συνεχής στ σημεί Α, ότν υπάρχει τ lim f () ι είνι: lim f() = f( ) ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ Ότν υπάρχει δ > 0 ώστε

Διαβάστε περισσότερα

Πρόγραµµα Day 1 Συγκέντρωση στο αεροδρόµιο Λάρνακας και αναχώρηση για τη Σκιάθο µε απευθείας πτήση. Άφιξη και µεταφορά στο ξενοδοχείο.

Πρόγραµµα Day 1 Συγκέντρωση στο αεροδρόµιο Λάρνακας και αναχώρηση για τη Σκιάθο µε απευθείας πτήση. Άφιξη και µεταφορά στο ξενοδοχείο. ΚΑΛΟΚΑΙΡΙ ΣΤΗ ΣΚΙΑΘΟ (ΤΡΙΤΗ) - 8 Μέρς Η Σκιάθς συνδυάζι την κσµπλίτικη τµόσφιρ µ την πράµιλλη φυσική µρφιά κι τη νησιώτικη γλήνη. Η πόλη της Σκιάθυ ίνι ένς γρφικός ικισµός πυ τν χρκτηρίζι η ξχωριστή γητί

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:

Διαβάστε περισσότερα

5. Ό παρών Νόμος τίθεται έν ίσχύϊ τήν Ιην ήμέραν τοο 'Απριλίου Ί967. ΠΑΓΙΟΙ ΜΙΣΘΟΙ Δευτέρα στήλη Νέος Μισθός. Πρώτη στήλη. Δεύτερος Πι vat'..

5. Ό παρών Νόμος τίθεται έν ίσχύϊ τήν Ιην ήμέραν τοο 'Απριλίου Ί967. ΠΑΓΙΟΙ ΜΙΣΘΟΙ Δευτέρα στήλη Νέος Μισθός. Πρώτη στήλη. Δεύτερος Πι vat'.. 40 Ό περί Δημσίων Υπαλλήλων (Συγχώνευσις μετά των μισθών μέρυς τυ τιμαριθμικύ επιδόματς) Νόμς τυ 1967 εκδίδεται δια δημσιεύσεως είς την έπίσημν εφημερίδα της Κυπριακής Δημκρατίας συμφώνως τω "Αρθρω 52

Διαβάστε περισσότερα

Βόμβα στην Καρδιά της Ελληνικής Οικονομίας

Βόμβα στην Καρδιά της Ελληνικής Οικονομίας Restart Λθεμπό Κπύ: Βόμβ τη Κδ της Εηής Ομίς Γης Αθδης Δευθυτής Χημ/ώ & Τεωεώ Θεμτω Νέμβς 2015, Θείη Ο δς τω πώ τη εηή μί Κθ έδ ττύ πϋπγμύ (2014)* 47 δ. Ευώ 100% 6δ πό Εδό Φό Κτωης (ΕΦΚ) ΦΠΑ πό Κπ Πϊότ

Διαβάστε περισσότερα

3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α

3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α 3.3 Η ΕΛΛΕΙΨΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµ έλλιψη µ στίς τ σηµί Ε ι Ε, το γωµτριό τόπο των σηµίων του πιπέδου των οποίων το άθροισµ των ποστάσων πό τ Ε ι Ε ίνι στθρό ι µγλύτρο του Ε Ε.. Άµση συνέπι (ΜΕ )

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

Τα μαθήματα. της. Μαρίας Κιουρί. Έκθεση-Εργαστήριο

Τα μαθήματα. της. Μαρίας Κιουρί. Έκθεση-Εργαστήριο Έκθεσ-Εγστήο Τ θήτ τς Μίς Κουί www.maison-des-sciences.ac-versailles.fr La Maison des Sciences 2011 Μ έκθεσ-εγστήο που ογνώθκε στο La Maison des Sciences et le CNRS (laboratoire MSC) σε συνεγσί ε το Μουσείο

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Β ΓΥΜΝΑΣΙΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ

ΧΗΜΕΙΑ Β ΓΥΜΝΑΣΙΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ ΧΗΜΕΙΑ Β ΓΥΜΝΑΣΙΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ 1. Στη σελίδα 27, πίνακας 3, να μπει υπσημείωση «ι πσότητες τυ νερύ δίννται σε εκατμμύρια κυβικά χιλιόμετρα». 2. Στη σελίδα 43, χάρτης εννιών τυ «Συνψίζντας» έχει χαμηλή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΜΑΘΗΜΑ 6.4.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ R Η έννια τυ ρίυ Όρι ταυττικής σταθερής συνάρτησης Ι ΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ Όρι και διάταξη Όρια και πράξεις Κριτήρι παρεµβλής Τριγωνµετρικά όρια Όρι σύνθετης συνάρτησης Θεωρία

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχεδίση µε τη χρήση Η/Υ Κ Ε Φ Λ Ι 1 Γ Ε Ω Μ Ε Τ Ρ Ι Κ Ε Σ Κ Τ Σ Κ Ε Υ Ε Σ Ρ Λ Ε Ω Ν Ι Σ Ν Θ Π Υ Λ Σ, Ε Π Ι Κ Υ Ρ Σ Κ Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Ι Ι Κ Η Σ Η Σ Κ Ι Ι Χ Ε Ι Ρ Ι Σ Η Σ Ε Ρ Γ Ω Ν Τ Ε Ι Λ Ρ Ι Σ Σ

Διαβάστε περισσότερα

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίδς από 6/0/ έως 06// γραπτή εξέταση στ µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τµήµα: Βαθµός: Ονµατεπώνυµ: Καθηγητές: ΑΤΡΕΙ ΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Στις παρακάτω ερωτήσεις να γράψετε

Διαβάστε περισσότερα

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Σωµάτι α (πυρήνας 4 He ) µε µάζα m a και φρτί q a =e και πυρήνας ασβεστίυ 40 Ca 0 µε µάζα mπυρ = 10m a και φρτί Q = 0 e πυρ, βρίσκνται αρχικά σε πλύ µεγάλη απόσταση µεταξύ

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµ ο Α) Ν χρκτηρίσετε τις πρκάτω ερωτήσεις ως σωστές (Σ) ή άθος (Λ): I) Αν ( γ) //γ, τότε ( γ) // II) Αν γ, τότε γ III) Το συµµετρικό του σηµείου Μ (,5) ως

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Μθηµτικά Γ Γυµνσίου ** Άρης Νικολΐδης ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. ίνετι η εξίσση Πόσες λύσεις έχει η εξίσση υτή; Σε ποι σηµεί η ευθεί, τέµνει τους άξονες; Ν κάνετε τη ρφική πράστση της προηούµενης ευθείς..

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι

Διαβάστε περισσότερα

ροή ιόντων και µορίων

ροή ιόντων και µορίων ρή ιόντων και µρίων Θεωρύµε ένα διάλυµα µίας υσίας Α. Αν εξαιτίας της ύπαρξης διαφρών συγκέντρωσης ή ηλεκτρικύ πεδίυ όλες ι ντότητες (µόρια ή ιόντα) της υσίας Α κινύνται µέσα σ αυτό µε την ίδια ριακή ταχύτητα

Διαβάστε περισσότερα

# %&! & (%!) +!, (.! & / # ( %. 0! 0 %&! 0 0% 1(&! &!. 2,, / , 7 /,8, 8 / 9 7,, 2 /! 5 78 (.! && / 9.& +! (1 & : / # ( %.! %& &)!

# %&! & (%!) +!, (.! & / # ( %. 0! 0 %&! 0 0% 1(&! &!. 2,, / , 7 /,8, 8 / 9 7,, 2 /! 5 78 (.! && / 9.& +! (1 & : / # ( %.! %& &)! ! # % #& () # ++, ! # %&! & (%!) +!, (.!&/ # ( %.0! 0 %&!0 0% 1(&! &!. 2,,/ 3 4 5 6, 7/,8, 8/9 7,, 2/! 5 78 (.!&&/ 9.& +!(1 & : / # ( %.! %& &)! 7; (.!&&&/ # 0 (!#%0. ( 8,? 4 7> 8 7 %

Διαβάστε περισσότερα

Dimitris Balios 18/12/2012

Dimitris Balios 18/12/2012 18/12/2012 Κστλόγηση εξατμικευμένης και συνεχύς Δρ. Δημήτρης Μπάλις Συστήματα κστλόγησης ανάλγα με τη μρφή της παραγωγικής διαδικασίας Κστλόγηση συνεχύς Κστλόγηση εξατμικευμένης ή κστλόγηση κατά φάση ή

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΜΒΟΛΟΦΟΡΩΝ ΜΗΧΑΝΩΝ Ι ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13 Διάγνωση Δυσλειτυργιών και βλαβών σύγχρνυ

Διαβάστε περισσότερα

! # % &! ( )! % +,.! / 0 1 )2 3

! # % &! ( )! % +,.! / 0 1 )2 3 ! !! # % &! ( )! % +,.! / 0 1 )2 3 ) 4 5! 5 ) 6 2 2 ) 2 3 #! 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 83 % ) 1

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Καθηγητές: Δ. ΚΑΛΛΙΓΕΡΟΠΟΥΛΟΣ & Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επιστημνικός Συνεργάτης: Σ. ΒΑΣΙΛΕΙΑΔΟΥ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟΝ ΤΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ύπ* *Αρ. 1125 της 26ης ΑΥΓΟΥΣΤΟΥ 1974 ΝΟΜΟΘΕΣΙΑ

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟΝ ΤΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ύπ* *Αρ. 1125 της 26ης ΑΥΓΟΥΣΤΟΥ 1974 ΝΟΜΟΘΕΣΙΑ Ν. 6/74 ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΝ ΤΗΣ ΕΠΙΣΗΜΥ ΕΦΗΜΕΡΙΔΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ ύπ* *Αρ. 1125 της 26ης ΑΥΓΥΣΤΥ 1974 ΝΜΘΕΣΙΑ Ό περί Τελνειακών Δασμών και Φόρν Καταναλώσες (Τρππιητικός) Νόμς τΰ 1974 εκδίδεται δια δημσιεύσες

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

1640 Ν. 35(10/99. E.E. Παρ. Ι(ΙΙ) Αρ. 3338,

1640 Ν. 35(10/99. E.E. Παρ. Ι(ΙΙ) Αρ. 3338, E.E. Πρ. Ι(ΙΙ) Αρ. 3338,16.7.99 1640 Ν. 35(10/99 περί Πρϋπλγισμύ τυ Κυπρικύ ργνισμύ Τυρισμύ Νόμς τυ 1999 εκδίδετι με δημσίευση στην Επίσημη Εφημερίδ της Κυπρικής Δημκρτίς σύμφων με τ Άρθρ 52 τυ Συντάγμτς.

Διαβάστε περισσότερα

Κυκλική κίνηση. Ονομάζεται η κίνηση η οποία πραγματοποιείται σε κυκλική τροχιά. Μελέτη της κυκλικής κίνησης. R θ S R

Κυκλική κίνηση. Ονομάζεται η κίνηση η οποία πραγματοποιείται σε κυκλική τροχιά. Μελέτη της κυκλικής κίνησης. R θ S R Κυκλική κίνηση Ονμάζετι η κίνηση η πί πρμτπιείτι σε κυκλική τρχιά. Μελέτη της κυκλικής κίνησης S Ως νστόν πό τη εμετρί ισχύσει : S S Η τχύτητ η πί εκφράζει τ πόσ ρήρ διράφει η επιβτική κτίν τη νί νμάζετι

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ ι ε α τ Τ εγνα α α ετ κ λε τ υργικ ο τημα Η οτ ρ α τ υ αρ Γ ζε τ τη Φ λα δ α απ τ α φ ιτητ τ υ Πα ετ τημ υ τ υ λ νκ ξεκ νη ε αν μ α τ ρ τ Θε α να δημ υργηθε ακαλ τερ Ενα τ υ αμτ ρε ααντατ κρ ετα καλ τερα

Διαβάστε περισσότερα

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα.

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα. 2.2. ΕΝΟΤΗΤΑ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ 8 ΜΑΘΗΜΑ ΔΕΔΟΜΕΝΩΝ Σπός Σπός της ενότητας αυτής είναι να παρυσιάσει σύντμα αλλά περιετιά τυς τρόπυς με τυς πίυς παρυσιάζνται τα στατιστιά δεδμένα. Πρσδώμενα απτελέσματα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. γ < ΟΑ + ΟΒ ΜΓ< ΟΜ + ΟΓ γ + ΜΓ < ΟΑ + ΟΒ + ΟΜ + ΟΓ γ + ΜΓ < (ΟΑ + ΟΓ) + (ΟΜ + ΟΒ) γ + ΜΓ < ΑΓ + ΜΒ γ + ΜΓ < β + ΜΒ

ΑΣΚΗΣΕΙΣ. γ < ΟΑ + ΟΒ ΜΓ< ΟΜ + ΟΓ γ + ΜΓ < ΟΑ + ΟΒ + ΟΜ + ΟΓ γ + ΜΓ < (ΟΑ + ΟΓ) + (ΟΜ + ΟΒ) γ + ΜΓ < ΑΓ + ΜΒ γ + ΜΓ < β + ΜΒ 3.0 3. ΘΕΩΡΙ. νισοτικές σχέσεις σε τρίωνο Κάθε εξωτερική ωνί τριώνου είνι µελύτερη πό τις πένντι εσωτερικές. πένντι πό άνισες πλευρές βρίσκοντι άνισες ωνίες κι ντίστροφ. Τριωνική νισότητ : β < < β + (υποτίθετι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

Εισαγωγική ενότητα, Μαθαίνω να γράφω 1 Όνομα:.. 1. Βάζω η μπροστά από τα κορίτσια και ο μπροστά από τα αγόρια: ...η...

Εισαγωγική ενότητα, Μαθαίνω να γράφω 1 Όνομα:.. 1. Βάζω η μπροστά από τα κορίτσια και ο μπροστά από τα αγόρια: ...η... Εισγωγική ενότητ, Μθίνω ν γράφω 1 Όνμ: 1. Βάζω η μπρστά πό τ κρίτσι κι μπρστά πό τ γόρι:.η............. η... η. τ.. τ... Εισγωγική ενότητ, Μθίνω ν γράφω 2 Όνμ: Κυκλώνω τ : μεγάλς τρπέζι έρς ερπλάν νάσ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ' ΛΥΚΕΙΟΥ 2005

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ' ΛΥΚΕΙΟΥ 2005 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ' ΛΥΚΕΙΟΥ 25 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στς ρωτήσς - να γράψτ στο ττράδό σας τον αρθµό της ρώτησης κα δίπλα το γράµµα, που αντστοχί στη σωστή απάντηση.. Το έτος 25 ορίστηκ ως έτος Φυσκής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ Ο

ΤΥΠΟΛΟΓΙΟ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ Ο ΤΥΠΟΛΟΓΙΟ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ Ο ΟΡΙΣΜΟΣ : Mι υθί έετι ριθµητιή πρόδς, άθε όρς της πρύπτει πό τ πρηύµε τυ µε πρόσθεση τυ ίδιυ πάττε ριθµύ. Ο ριθµός υτός συµίζετι µε ι έετι διφρά της πρόδυ. + Εύρεση όρυ

Διαβάστε περισσότερα

ΠΡΟΫΠΟΘΕΣΕΙΣ: Δίπλωμα Α ή Β Μηχανικού Ε.Ν.

ΠΡΟΫΠΟΘΕΣΕΙΣ: Δίπλωμα Α ή Β Μηχανικού Ε.Ν. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΝΑΥΤΙΛΙΑΣ & ΑΙΓΑΙΟΥ ΚΕΝΤΡΟ ΕΠΙΜΟΡΦΩΣΗΣ ΣΤΕΛΕΧΩΝ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ (ΚΕΣΕΝ) Τμήμα Γραμματείας Σχολής Μηχανικών Τηλέφωνο: 210-4810615 Διεύθυνση: ΦΛΕΜΙΝΓΚ 43, Άγιος Ιωάννης Ρέντης

Διαβάστε περισσότερα

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ Kεφ. (part, pages - Σχέση διασπράς Exυμε βρεί την εξίσωση κύματς: λν = υ, όπυ υ = Τ /μ στη περίπτωση της χρδς. Οπότε υ ν = = λ ω = Τ /μ Τ /μ λ k H σχέση αυτ πυ συνδέει την γωνιακ συχνότητα ω με τν κυματαριθμό

Διαβάστε περισσότερα

+ (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6

+ (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6 # % ( + (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# 2 + + 3 + 4 5 # 6 5 7 + 8 # # 6 (! 9 # ( 6 & 0 6 ) 1 5 + # 6 2 # # + 6 # # 6 # + # # + 6 + # #! 5 # # 6 & # : # # : 6 0 ) 5 + 6 1 # # 2 + # + # # 4 + # 6

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

ΘΕΜΑ: ΕΓΓΡΑΦΗ-ΦΟΙΤΗΣΗ ΣΤΟ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΣΗΣ SHIP SECURITY OFFICER - ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ (SSO-ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ)

ΘΕΜΑ: ΕΓΓΡΑΦΗ-ΦΟΙΤΗΣΗ ΣΤΟ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΣΗΣ SHIP SECURITY OFFICER - ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ (SSO-ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΝΑΥΤΙΛΙΑΣ & ΑΙΓΑΙΟΥ ΚΕΝΤΡΟ ΕΠΙΜΟΡΦΩΣΗΣ ΣΤΕΛΕΧΩΝ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ (ΚΕΣΕΝ) Τμήμα Γραμματείας Σχολής Πλοιάρχων Τηλεφωνικό κέντρο: 210-4823853, -854 Διεύθυνση: ΦΛΕΜΙΝΓΚ 43,

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο).

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο). 1 ΑΣΚΗΣΕΙΣ ΑΠΟ ΕΙΞΗΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ (η τεχνική τυ αρκεί να απδείξυµε ότι... ) Παναγιώτης Λ. Θεδωρόπυλς Σχλικός Σύµβυλς κλάδυ ΠΕ03 ΠΡΟΛΟΓΟΣ Οι σηµειώσεις αυτές γράφτηκαν µε σκπό να βηθήσυν τυς µαθητές της

Διαβάστε περισσότερα

2 Γ Ε Ν Ι Κ Η Σ Υ Ν Ε Λ Ε Υ Σ Η Τ Ω Ν Μ Ε Λ Ω Ν Τ Ο Υ Σ Ε Π Ε, 2 8 Μ Α Ϊ Ο Υ 2 0 1 5

2 Γ Ε Ν Ι Κ Η Σ Υ Ν Ε Λ Ε Υ Σ Η Τ Ω Ν Μ Ε Λ Ω Ν Τ Ο Υ Σ Ε Π Ε, 2 8 Μ Α Ϊ Ο Υ 2 0 1 5 3 Μ ή ν υ μ α Π ρ ό ε δ ρ ο υ Δ ι ο ι κ η τ ι κ ο ύ Σ υ μ β ο υ λ ί ο υ 4 Μ ή ν υ μ α Γ ε ν ι κ ο ύ Δ ι ε υ θ υ ν τ ή 5 Ό ρ α μ α κ α ι Σ τ ρ α τ η γ ι κ ή 6 Ε κ π ρ ο σ ώ π η σ η κ α ι Σ υ ν ε ρ γ α σ

Διαβάστε περισσότερα

f = VF, 2 +F 2 Κεφάλαιο Με βάση τα δεδομένα το παραλληλόγραμμο των δυνάμεων θα είναι τετράγωνο. ^ Ρ Έτσι έχουμε:

f = VF, 2 +F 2 Κεφάλαιο Με βάση τα δεδομένα το παραλληλόγραμμο των δυνάμεων θα είναι τετράγωνο. ^ Ρ Έτσι έχουμε: Κεφάλαιο 1.3 1. Με βάση τα δεδομένα το παραλληλόγραμμο των δυνάμεων θα είναι τετράγωνο. ^ Ρ Έτσι έχουμε: F = F, + F = Fj η Fj = και με αντικατάσταση F, = F = λ/50 Ν ή F, = F, = 5λ/ Ν. Η συνισταμένη των

Διαβάστε περισσότερα

ΘΕΜΑ: ΑΠΟΚΤΗΣΗ ΠΙΣΤΟΠΟΙΗΤΙΚΟΥ ΣΥΝΕΧΟΥΣ ΙΚΑΝΟΤΗΤΑΣ ΚΑΙ ΕΚΣΥΓΧΡΟΝΙΣΜΟΥ ΤΩΝ ΓΝΩΣΕΩΝ ΠΙΣΤΟΠOΙΗΤΙΚΟΥ ΠΕΡΙΟΡΙΣΜΕΝΗΣ ΧΡΗΣΗΣ GMDSS (ROC)

ΘΕΜΑ: ΑΠΟΚΤΗΣΗ ΠΙΣΤΟΠΟΙΗΤΙΚΟΥ ΣΥΝΕΧΟΥΣ ΙΚΑΝΟΤΗΤΑΣ ΚΑΙ ΕΚΣΥΓΧΡΟΝΙΣΜΟΥ ΤΩΝ ΓΝΩΣΕΩΝ ΠΙΣΤΟΠOΙΗΤΙΚΟΥ ΠΕΡΙΟΡΙΣΜΕΝΗΣ ΧΡΗΣΗΣ GMDSS (ROC) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΝΑΥΤΙΛΙΑΣ & ΑΙΓΑΙΟΥ ΚΕΝΤΡΟ ΕΠΙΜΟΡΦΩΣΗΣ ΣΤΕΛΕΧΩΝ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΡΑΔΙΟΗΛΕΚΤΡΟΝΙΚΩΝ ΡΑΔΙΟΕΠΙΚΟΙΝΩΝΙΩΝ (ΚΕΣΕΝ Ρ/Η-Ρ/Ε) Τμήμα Γραμματείας Τηλέφωνο: 210-5570450, 210-5574956

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ..4: Ρυθμός Μεταβλής τυ σχλικύ βιβλίυ]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα 1. Δίνεται η συνάρτηση f() = 3 3. α) Να βρεθεί ρυθμός μεταβλής της

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Το στοιχείο 19Χ έχει παρόμοιες χημικές ιδιότητες με το στοιχείο: α. 1Ψ β. 9Φ γ. 3Ζ δ. 20Ω Μονάδες 5

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Το στοιχείο 19Χ έχει παρόμοιες χημικές ιδιότητες με το στοιχείο: α. 1Ψ β. 9Φ γ. 3Ζ δ. 20Ω Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / A ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 13 11 2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου, Σταυρούλα Γκιτάκου, Ιωάννα Βασιλείου ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A1. Το στοιχείο 19Χ έχει παρόμοιες χμικές

Διαβάστε περισσότερα

! # % & ( ) ( ( +,. ( )/) + ( 0 12 DOCUMENTO PROTEGIDO PELA LEI DE DIREITO AUTORAL

! # % & ( ) ( ( +,. ( )/) + ( 0 12 DOCUMENTO PROTEGIDO PELA LEI DE DIREITO AUTORAL ! # % & () (( +,. ( )/) + (0 12 DOCUMENTO PROTEGIDO PELA LEI DE DIREITO AUTORAL %/ 3)! 456 /( ( 4 #3!(#(/56 7/ 4 3( 898 4 ( #(/! 8 ( 3(%:) % ( 3+ )56 ( (%(! #(/ ( # 8+;, 3+ 4)+% ( 39%8+ )56 ( +/(/(+3 (#

Διαβάστε περισσότερα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ. Να βρείτε το πεδίο ορισµού των παρακάτω συναρτήσεων: ( = g( = + 4 h( = t( = 5 φ( = ln σ( = ln(ln p( = ln m( = λ R λ - λ - k( = ln 4 s( = ηµ. Να εξετάσετε αν για τις παραπάνω συναρτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ. 1 Συμπληρώνονται μόνο τα κελιά των στηλών των οποίων οι επικεφαλίδες έχουν πράσινο χρώμα

ΟΔΗΓΙΕΣ. 1 Συμπληρώνονται μόνο τα κελιά των στηλών των οποίων οι επικεφαλίδες έχουν πράσινο χρώμα ΟΔΗΓΙΕΣ 1 Συμπληρώννται μόν τα κελιά των στηλών των πίων ι επικεφαλίδε έχυν πράσιν χρώμα 2 Δεν συμπληρώννται τα κελιά των στηλών των πίων ι επικεφαλίδε έχυν πρτκαλί χρώμα 3 Στη στλη ι υπψφιι θα κατατάσσνται

Διαβάστε περισσότερα