Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες"

Transcript

1 Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες Ευάγγελος Ράπτης Τμήμα Πληροφορικής

2 Μέρος I Εναρξη μαθήματος Γραμμική άλγεβρα Ι Ευάγγελος Ράπτης 1 Τα παρακάτω κείμενα, γράφονται και ενημερώνονται καθημερινά για τις ανάγκες του μαθήματος Γραμμική άλγεβρα Ι. Καλούνται οι φοιτητές να επισημαίνουν λάθη και παραλείψεις. Τα μαθήματα θα αρχίσουν την Δευτέρα 1 Οκτωβρίου Παρακάτω θα βρείτε συγγράμματα και συνδέσμους σε ηλεκτρονική μορφή, όλα χρήσιμα για τη μελέτη σας: 1. Πρόκειται για το βιβλίο «Εισαγωγή στη Γραμμική Άλγεβρα, Τόμος Α, Δ. Βάρσος, Δ. Δεριζιώτης, Μ. Μαλιάκας, Στ. Παπασταυρίδης, Ε. Ράπτης, Ο, Ταλέλλη, Εκδ. Σοφία 2003 Δείτε εδώ 2. Ενα ακόμη αρκετά καλό βιβλίο Γραμμικής άλγεβρας εδώ 3. Δείτε επίσης και εδώ ένα μάθημα για το «Τί είναι η Γραμμική άλγεβρα» 4. Δείτε στη διεύθυνση εδώ ένα δυνατό υπολογιστικό πακέτο, το οποίο βρίσκεται ελεύθερο στο δίκτυο και θα μας χρειασθεί σύντομα. 5. Δείτε επίσης εδώ για προετοιμασία το πρώτο μάθημα Γραμμικής άλγεβρας στο Τμήμα Πληροφορικής και Τηλεπικοινωνιών το χειμερινό εξάμηνο Επίσης δείτε εδώ και εδώ 1 Ηλεκτρονική διεύθυνση: Γραφείο: 211, τηλ Ηλεκτρονική διεύθυνση Ηλεκτρονικής τάξης του μαθήματος: 5

3 Οι παράπλευρες σελίδες συζήτησης Μπορείτε να διατυπώνετε τις απορίες σας και τις σκέψεις σας: 1. Στον σύνδεσμο Τηλεσυνεργασία, είναι ο σύνδεσμος αριστερά στη σελίδα του μαθήματος. Στη σελίδα αυτή έχετε τη δυνατότητα να γράφετε και λίγα μαθηματικά σύμβολα 2. Στον σύνδεσμο Περιοχές Συζητήσεων, αριστερά στη σελίδα του μαθήματος. Τηλεδιασκέψεις Κατά τη διάρκεια του μαθήματος θα γίνουν πολλές Τηλεδιασκέψεις. Κάθε Τηλεδιάσκεψη θα ανακοινώνεται έγκαιρα 6

4 Μέρος II Αρχικά μαθήματα 1 Μάθημα 1 Δευτέρα 1 Οκτωβρίου Εισαγωγή Η Γραμμική άλγεβρα 2 είναι μέρος της προσπάθειας να κατανοήσουμε το χώρο και τον κόσμο γύρω μας. Θα δούμε στην αρχή σημαντικές έννοιες όπως τα σύνολα και οι απεικονίσεις. 1.2 Πορεία μελέτης 1. Δείτε από το βιβλίο Εισαγωγή στη Γραμμική άλγεβρα τον ορισμό του συνόλου 2. Δείτε και εδώ μία άλλη ματιά για τα σύνολα 3. Δείτε και εδώ την ελληνική εκδοχή των παραπάνω 4. Ορισμός 1.1. Δύο σύνολα Α και Β λέγονται ίσα (θα συμβολίζουμε Α=Β) εάν και μόνο εάν έχουν τα ίδια ακριβώς στοιχεία 5. Δείτε προσεκτικά τον ορισμό του κενού συνόλου: Ορισμός 1.2. Το σύνολο που δεν έχει στοιχεία το λέμε κενό σύνολο και το συμβολίζουμε με το σύμβολο 6. Δείτε από το βιβλίο Εισαγωγή στη Γραμμική άλγεβρα τον ορισμό της τομής δύο συνόλων, της ένωσης δύο συνόλων και της διαφοράς δύο συνόλων 2 Το βιβλίο αυτό γράφεται κατά τη διάρκεια του Φθινοπώρου 2012 για τις ανάγκες της διδασκαλίας του μαθήματος Γραμμική άλγεβρα Ι(121) Ευάγγελος Ράπτης Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών 7

5 1.3 Γραμμικά συστήματα Σε επόμενα μαθήματα θα μελετήσουμε συστηματικά τα γραμμικά συστήματα, διότι είναι σημαντικό μέρος της Γραμμικής άλγεβρας. Στο σημερινό μάθημα απλά θέτουμε τα ερωτήματα. Αρχίζουμε με ένα παράδειγμα γραμμικού συστήματος τριών εξισώσεων με τρείς αγνώστους: Ερωτήματα (Σ) x + 2y + 3z = 0 4x + 5y + 6z = 0 7x + 8y + 9z = 0 1. Τι είναι το σύνολο λύσεων του συστήματος (Σ); 2. Ποια είναι τα γεωμετρικά χαρακτηριστικά του (Σ); 3. Υπάρχουν άλλα συστήματα με το ίδιο σύνολο λύσεων; 4. Εχει το σύστημα (Σ) πεπερασμένο ή άπειρο σύνολο λύσεων; 5. Ποιο είναι το «απλούστερο» κατά την γνώμη σας γραμμικό σύστημα με το ίδιο σύνολο λύσεων όπως το (Σ); Τέλος του πρώτου μαθήματος 8

6 2 Μάθημα 2 Τετάρτη 3 Οκτωβρίου Εσωτερικά γινόμενα 1. Το σύνολο ζευγών πραγματικών αριθμών το συμβολίζουμε με R 2. Στο σύνολο αυτό ορίζουμε το εσωτερικό γινόμενο ως εξής: (α 1, α 2 ) (β 1, β 2 ) = α 1 β 1 + α 2 β 2 2. Το σύνολο τριάδων πραγματικών αριθμών το συμβολίζουμε με R 3. Στο σύνολο αυτό ορίζουμε το εσωτερικό γινόμενο ως εξής: (α 1, α 2, α 3 ) (β 1, β 2, β 3 ) = α 1 β 1 + α 2 β 2 + α 3 β 3 Τα εσωτερικά γινόμενα έχουν έναν σημαντικό ρόλο στη μελέτη της Γραμμικής άλγεβρας. Θα δούμε αρκετά στα επόμενα μαθήματα 2.2 Αρχίζοντας τη μελέτη της Γραμμικής άλγεβρας 1. Δείτε ξανά μία εισαγωγή στην Γραμμική άλγεβρα του καθηγητή W.Strang, MIT εδώ 2. Διαβάστε την Εισαγωγή από το βιβλίο «Εισαγωγή στη Γραμμική άλγεβρα Τόμος Α» 3 3. Ρίξτε επίσης μια ματιά και στη διεύθυνση Εγκυκλοπαίδεια wikipedia Στη διεύθυνση αυτή θα βρείτε και άλλα ιστορικά στοιχεία, όπως και υλικό για τη Γραμμική άλγεβρα 4. Αρχίζουμε να μελετάμε τους πίνακες. Οι πίνακες είναι πρωταρχικής σημασίας στο μάθημα αυτό. Συνοπτικά μιλώντας (ο ακριβής ορισμός θα δοθεί στη συνέχεια) πίνακας είναι μία ορθογώνια διευθέτηση αντικειμένων. Για παράδειγμα το σύμβολο είναι ένας πίνακας 4 γραμμών και 3 στηλών ή ένας 4 3 πίνακας. Ο όρος στα αγγλικά είναι matrix. 3 Το βιβλίο αυτό θα το βρείτε ηλεκτρονικά από την αρχική σελίδα του μαθήματος 9

7 5. Θα μπορούσαμε να πούμε ότι κύριος στόχος του μαθήματος είναι να μελετήσει τη δομή του συνόλου λύσεων Λ του γραμμικού συστήματος: (Σ) όπου τα α ij, β i είναι συντελεστές 4 α 11 x 1 + α 12 x α 1ν x ν = β 1 α 21 x 1 + α 22 x α 2ν x ν = β 2 α µ1 x 1 + α µ2 x α µν x ν = β µ 6. Δείτε επίσης το βίντεο εδώ και μελετήστε ένα δικό σας ομογενές σύστημα. 7. Ορισμός 2.1. Σύνολο λύσεων του συστήματος (Σ) είναι το σύνολο Λ = {(ξ 1, ξ 2,, ξ ν } που έχει την ιδιότητα αν θέσουμε x 1 = ξ 1, x 2 = ξ 2,, x ν = ξ ν, τότε όλες οι εξισώσεις του συστήματος επαληθεύονται. Σε κάθε γραμμικό σύστημα (Σ) όπως πιο πάνω αντιστοιχούν δύο πίνακες E = α 11 α 12 α 1ν β 1 α 21 α 22 α 2ν β 2 α µ1 α µ2 α µν β µ και ο πίνακας A = α 11 α 12 α 1ν α 21 α 22 α 2ν α µ1 α µ2 α µν Ορισμός 2.2. Ο πίνακας Α ονομάζεται πίνακας του συστήματος. Ο πίνακας Ε ονομάζεται επαυξημένος πίνακας του συστήματος Εύκολα παρατηρούμε ότι το ζεύγος των πινάκων Α και Ε κωδικοποιούν πλήρως όλες τις πληροφορίες του συστήματος. 4 Χωρίς λάθος μπορούμε να θεωρούμε ότι οι συντελεστές είναι πραγματικοί αριθμοί. Σε επόμενα μαθήματα θα αποσαφηνίσουμε περισσότερο το ρόλο των συντελεστών 10

8 2.3 Μελέτη εισαγωγικών εννοιών 1. Δείτε από το βιβλίο «Εισαγωγή στη Γραμμική άλγεβρα Τόμος Α» τον ορισμό του καρτεσιανού γινομένου συνόλων 2. Δείτε από το βιβλίο «Εισαγωγή στη Γραμμική άλγεβρα Τόμος Α» τον ορισμό της σχέσης ισοδυναμίας Ορισμός 2.3. Εστω Α ένα μη-κενό σύνολο. Διαμέριση του συνόλου Α είναι μία οικογένεια υποσυνόλων του A i, i I με τις παρακάτω ιδιότητες 1. A i i I 2. A i A j = εάν i j 3. i I A i = A Θα πρέπει κανείς να σταθεί πολύ στον ορισμό αυτό ξεκινώντας τη μελέτη στην Άλγεβρα. Στο σημείο αυτό δείτε το βίντεο εδώ Κάθε διαμέριση δημιουργεί μία σχέση μεταξύ των στοιχείων του Α ως εξής: Το στοιχείο χ του Α σχετίζεται με το στοιχείο ψ του Α εάν το χ και το ψ βρίσκονται σε κάποιο A i και τα δύο Θα συμβολίζουμε χ ψ Η παραπάνω σχέση έχει τις παρακάτω ιδιότητες: 1. χ χ για κάθε στοιχείο χ του Α. Αυτό είναι άμεσο. Η ιδιότητα αυτή λέγεται αυτοπαθής 2. Αν x y τότε x, y A i για κάποιο A i και άρα y, x A i, δηλαδή y x. Η ιδιότητα αυτή λέγεται συμμετρική 3. Αν x y και y z, τότε τα x, y, z A i για κάποιο κοινό A i οπότε x z. Η ιδιότητα αυτή λέγεται μεταβατική Μπορούμε εδώ να διατυπώσουμε την παρακάτω Πρόταση 2.4. Εστω Α ένα μη κενό σύνολο. Κάθε διαμέριση του συνόλου Α επάγει(δημιουργεί) μία σχέση ισοδυναμίας στο σύνολο Α Απόδειξη Άμεση από την παραπάνω συζήτηση Στην πραγματικότητα αν Α ένα μη κενό σύνολο, μία σχέση ισοδυναμίας στο Α είναι ένα μη κενό υποσύνολο R του καρτεσιανού γινομένου A A δηλαδή R A A με τις παρακάτω ιδιότητες: 11

9 1. (x, x) R για κάθε x A 2. Αν (x, y) R, τότε (y, x) R 3. Αν (x, y) R και (y, z) R, τότε (x, z) R Πολλές φορές θα συμβολίζουμε ή (x, y) R ή xry ή x y Με βάση αυτόν το γενικό ορισμό της σχέσης ισοδυναμίας στο μη κενό σύνολο Α δημιουργούμε υποσύνολα ως εξής: Αν x A, τότε [x] = {y A y x} Κάθε υποσύνολο [x] όπως παραπάνω θα το ονομάζουμε κλάση ισοδυναμίας με αντιπρόσωπο το x Πρόταση 2.5. Εστω μία σχέση ισοδυναμίας στο μη-κενό σύνολο Α 1. Κάθε κλάση ισοδυναμίας [x] περιέχει το x διότι x x. Άρα κάθε κλάση ισοδυναμίας είναι μη-κενό σύνολο 2. Αν [x] [y] δύο κλάσεις ισοδυναμίας, τότε είτε [x] = [y] είτε [x] [y] = 3. x A [x] = A Απόδειξη: Το σημείο 1 έχει ήδη αποδειχθεί Για το σημείο 2 τώρα. Αν [x] [y] = είναι δεκτό. Αν [x] [y], τότε υπάρχει ω [x] [y] και έτσι x ω και y ω. Τότε όμως λόγω της μεταβατικής ιδιότητας έχουμε x y και έτσι [x] = [y] Η τρίτη απαίτηση είναι άμεση, διότι κάθε x [x] και έτσι x A [x] = A Καταλήγουμε έτσι ότι το σύνολο [x] x A, δηλαδή το σύνολο των κλάσεων ισοδυναμίας σχηματίζει μία διαμέριση του Α Καταλήξαμε στο παρακάτω πολύ σημαντικό: Θεώρημα 2.6. Εστω Α ένα μη κενό σύνολο. Υπάρχει μία 1-1 και επί σχέση D I όπου D το σύνολο των διαμερίσεων του Α και I το σύνολο των σχέσεων ισοδυναμίας. Κάθε διαμέριση απεικονίζεται σε μία σχέση ισοδυναμίας που περιγράψαμε πιο πάνω. Αντίστροφα κάθε σχέση ισοδυναμίας δημιουργεί μία διαμέριση που επίσης περιγράψαμε πιο πάνω. Η μία απεικόνιση είναι αντίστροφη της άλλης Ορισμός 2.7. Εστω Α ένα μη κενό σύνολο και μία σχέση ισοδυναμίας στο σύνολο αυτό. 1. Το σύνολο {[x], x A} δηλαδή το σύνολο των κλάσεων ισοδυναμίας λέγεται σύνολο-πηλίκο και συμβολίζεται A/ 2. Η απεικόνιση A A/ με x [x] λέγεται προβολή 12

10 2.4 Και άλλες σκέψεις 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε τη σχέση: α β η διαφορά α β είναι ακέραιος αριθμός. Εξετάστε εάν η σχέση αυτή είναι σχέση ισοδυναμίας. Βρείτε και τις κλάσεις ισοδυναμίας αν είναι πράγματι σχέση ισοδυναμίας. Σκεφθείτε μία γεωμετρική προσέγγιση. 2. Στο σύνολο των ακεραίων αριθμών Z ορίζουμε τη σχέση: α β το 2 διαιρεί τη διαφορά α β. Δείξτε ότι η σχέση αυτή είναι σχέση ισοδυναμίας. ισοδυναμίας Τέλος του δευτέρου μαθήματος Βρείτε και τις κλάσεις 13

11 3 Μάθημα 3 Παρασκευή 4 Νοεμβρίου Μελέτη εισαγωγικών εννοιών 1. Δείτε από το βιβλίο «Εισαγωγή στη Γραμμική άλγεβρα Τόμος Α» 5 τον ορισμό της απεικόνισης και τα παραδείγματα 2. Πότε μία απεικόνιση λέγεται ότι είναι 1-1;, πότε επί; 3.2 Πορεία μελέτης 1. Μελετήστε την παράγραφο 2.1 του κεφαλαίου 2 (Πίνακες και Γραμμικές εξισώσεις) σελίδα 29 από το βιβλίο «Εισαγωγή στη Γραμμική άλγεβρα Τόμος Α» 6 2. Μελετήστε τους ορισμούς 2.2.1, 2.2.2, 2.2.3, καθώς και τα παραδείγματα 2.2.5, και σελ 31 και 32 από το βιβλίο «Εισαγωγή στη Γραμμική άλγεβρα Τόμος Α» 3. Δείτε στη διεύθυνση εδώ σχετικά με τους πίνακες. 3.3 Ασκήσεις Οι λύσεις των παρακάτω ασκήσεων να γίνουν στοιχειωδώς. Άσκηση Να βρεθεί το σύνολο λύσεων του παρακάτω συστήματος 3x + 5y + 6z = 28 x + y + z = 6 δηλαδή να βρεθεί το σύνολο Λ όλων των τριάδων (ξ 1, ξ 2, ξ 3 ) πραγματικών αριθμών, έτσι ώστε αν αντικαταστήσουμε x = ξ 1, y = ξ 2, z = ξ 3, ικανοποιούνται και οι δύο εξισώσεις του συστήματος. 2. Να κάνετε το ίδιο και για το σύστημα 3x + 5y + 6z = 0 x + y + z = 0 3. Αν Λ το σύνολο λύσεων του πρώτου συστήματος και Λ το σύνολο λύσεων του δευτέρου, να βρεθεί η τομή Λ Λ 5 Το βιβλίο αυτό θα το βρείτε ηλεκτρονικά από την αρχική σελίδα του μαθήματος 6 Το βιβλίο αυτό θα το βρείτε ηλεκτρονικά από την κεντρική σελίδα του μαθήματος 14

12 3.4 Σχόλια για τις προτεινόμενες ασκήσεις 1. Για την πρώτη άσκηση βρίσκουμε με οποιονδήποτε τρόπο ότι υπάρχει έστω και μία τριάδα (ξ 1, ξ 2, ξ 3 ) πραγματικών αριθμών, που είναι λύση. Αργότερα θα πούμε «σίγουρες» διαδικασίες για εύρεση λύσης. Μετά ( αφού δηλαδή εξασφαλίσουμε ότι το σύνολο λύσεων Λ είναι μη-κενό) σκεφθείτε «γεωμετρικά» τι περιμένουμε να είναι το Λ. Η πρώτη εξίσωση, λοιπόν, η 3x + 5y + 6z = 28 του συστήματος από μόνη της παριστάνει ένα επίπεδο στον χώρο που ζούμε 7. Το ίδιο και η δεύτερη εξίσωση x + y + z = 6 παριστάνει ένα επίπεδο. Επιστρατεύουμε εδώ τη φαντασία μας για να μαντέψουμε το αποτέλεσμα και τη μαθηματική μας διαίσθηση για να προχωρήσουμε αυστηρά. Αν τα δύο επίπεδα είναι παράλληλα, τότε δεν τέμνονται και έτσι το σύστημα δεν έχει λύσεις, δηλαδή το Λ είναι το κενό σύνολο. Υπάρχουν τώρα οι περιπτώσεις τα δύο επίπεδα να ταυτίζονται ή τα δύο επίπεδα να τέμνονται αλλά να μην ταυτίζονται. Σκεφθείτε λίγο την προσέγγιση αυτή αφού πρώτα δείτε και το βίντεο εδώ 2. Η δεύτερη άσκηση αντιμετωπίζεται όπως και η προηγούμενη. μόνο που στην περίπτωση αυτή κατά προφανή τρόπο το σύστημα έχει λύση την (0,0,0) Σύστημα σαν αυτό το ονομάζουμε ομογενές σύστημα. 3. Για το τρίτο ερώτημα σκεφθείτε ότι έχουμε να λύσουμε ένα σύστημα 4 εξισώσεων 7 Αυτό χρειάζεται απόδειξη 15

13 4 Μάθημα 4 Δευτέρα 8 Οκτωβρίου Πίνακες και γραμμικά συστήματα Θεωρούμε ξανά το γραμμικό σύστημα (Σ) α 11 x 1 + α 12 x α 1ν x ν = β 1 α 21 x 1 + α 22 x α 2ν x ν = β 2 α µ1 x 1 + α µ2 x α µν x ν = β µ 1. Αν «ξεχάσουμε» τα x 1, x 2,, x ν και τα σύμβολα της πρόσθεσης, καταλήγουμε σε δύο πίνακες 2. (αʹ) (βʹ) A = C = α 11 α 12 α 13 α 1ν α 21 α 22 α 23 α 2ν α 31 α 32 α 33 α 3ν α µ1 α µ2 α µ3 α µν α 11 α 12 α 13 α 1ν β 1 α 21 α 22 α 23 α 2ν β 2 α 31 α 32 α 33 α 3ν β 3 α µ1 α µ2 α µ3 α µν β µ Ορισμός 4.1. Ο πίνακας Α λέγεται πίνακας του συστήματος και ο πίνακας C λέγεται επαυξημένος πίνακας του συστήματος 3. Μπορούμε να διαπιστώσουμε ότι ο πίνακας Α του συστήματος και ο επαυξημένος πίνακας C του συστήματος έχει όλες τις πληροφορίες του συστήματος. 4. Σημαντικό ερώτημα: Πως μπορούμε να ορίσουμε αυστηρά ότι ένα σύστημα είναι απλούστερο από κάποιο άλλο; Είναι δυνατόν ένα σύστημα (Σ) να μετασχηματισθεί σε κάποιο άλλο απλούστερο (Σ ), ώστε το σύνολο λύσεων του Σ να είναι ίσο με το σύνολο λύσεων του (Σ ); 16

14 5. Το σύνολο των πινάκων με μ γραμμές και ν στήλες και συντελεστές πραγματικούς αριθμούς, το συμβολίζουμε με R µ ν 6. Στο σύνολο των πινάκων ορίζουμε ορισμένες πράξεις: (αʹ) την πράξη της πρόσθεσης. (βʹ) Την πράξη της αφαίρεσης (γʹ) Την πράξη του πολλαπλασιασμού πραγματικού αριθμού με πίνακα 4.2 Πορεία μελέτης 1. Μελετήστε την παράγραφο 2.3 του κεφαλαίου 2 (Πίνακες και Γραμμικές εξισώσεις) από το βιβλίο «Εισαγωγή στη Γραμμική άλγεβρα Τόμος Α» και ιδιαίτερα δείτε τον τρόπο που γίνονται οι παραπάνω τρείς πράξεις 2. Κατεβάστε και ξεφυλίστε το βιβλίο Γραμμικής άλγεβρας κάνοντας κλικ εδώ 3. Δείτε ξανά στη διεύθυνση εδώ σχετικά με τους πίνακες και τις πράξεις μεταξύ πινάκων. 4.3 Στοιχειώδεις μετασχηματισμοί γραμμών πινάκων Το ερώτημα που θα μας απασχολήσει επίσης στο μάθημα αυτό είναι ποιές είναι οι αλλαγές που μπορούμε να κάνουμε στο γραμμικό σύστημα: (Σ) α 11 x 1 + α 12 x α 1ν x ν = β 1 α 21 x 1 + α 22 x α 2ν x ν = β 2 α µ1 x 1 + α µ2 x α µν x ν = β µ έτσι ώστε το σύστημα να γίνει πιο απλό ως προς τη λύση του. Ποιές είναι οι επιπτώσεις των αλλαγών αυτών στον πίνακα του συστήματος και στον επαυξημένο; 1. Θεωρούμε το παραπάνω σύστημα (Σ) και το σύστημα: (Σ ) (α 11 + α 21 ) x 1 + (α 12 + α 22 ) x (α 1ν + α 2ν ) x ν = β 1 + β 2 α 21 x 1 + α 22 x α 2ν x ν = β 2 α µ1 x 1 + α µ2 x α µν x ν = β µ 2. Παρατηρούμε ότι το δεύτερο σύστημα το πήραμε προσθέτοντας στην πρώτη εξίσωση τη δεύτερη. Παρατηρούμε επίσης ότι η επίπτωση στους αντίστοιχους πίνακες είναι: (αʹ) Ο πίνακας A του συστήματος Σ προκύπτει από τον πίνακα Α του συστήματος Σ προσθέτοντας στην πρώτη γραμμή τη δεύτερη γραμμή. 17

15 (βʹ) Ο επαυξημένος πίνακας C του συστήματος Σ προκύπτει από τον επαυξημένο πίνακα C του συστήματος Σ προσθέτοντας στην πρώτη γραμμή τη δεύτερη γραμμή 3. Σημαντική παρατήρηση. Το σύνολο λύσεων Λ του συστήματος (Σ) είναι ίσο με το σύνολο λύσεων Λ του συστήματος Σ Απόδειξη 8 Εστω (ξ 1, ξ 2,, ξ ν ) ένα στοιχείο του Λ. Τότε η ν-άδα αυτή ικανοποιεί κάθε εξίσωση του Λ και προφανώς κάθε εξίσωση του Λ και αντίστροφα. 4. Αν κάποια εξίσωση του συστήματος Σ πολλαπλασιασθεί με ένα αριθμό διαφορετικό του μηδενός προκύπτει ένα σύστημα Σ, του οποίου το σύνολο λύσεων εξακολουθεί να είναι το ίδιο με το σύνολο λύσεων του Σ 5. Αν αλλάξουμε τη θέση δύο εξισώσεων του Σ το σύνολο λύσεων δεν μεταβάλλεται 6. Παρατηρούμε λοιπόν ότι μπορούμε να κάνουμε κάποιους μετασχηματισμούς στο γραμμικό σύστημα Σ, χωρίς να μεταβληθεί το σύνολο λύσεων Λ, με σκοπό πάντα να καταλήξουμε σε απλούστερο σύστημα. 7. Οι μετασχηματισμοί του συστήματος Σ, οδηγούν στους παρακάτω μετασχηματισμούς τους δύο πίνακες Α του συστήματος και C του επαυξημένου πίνακα του συστήματος. 8. (αʹ) Πολλαπλασιασμός μιας γραμμής του πίνακα με ένα στοιχείο λ διάφορο του μηδενός (βʹ) Πολλαπλασιασμός της κ-γραμμής με λ και πρόσθεσης του αποτελέσματος στην i-γραμμή, k i (γʹ) εναλλαγή δύο γραμμών Ορισμός 4.2. Οι παραπάνω μετασχηματισμοί πινάκων λέγονται στοιχειώδεις μετασχηματισμοί γραμμών. Δύο πίνακες Α και Β που προκύπτει ο ένας από τον άλλον με επαναλάψηψη στοιχειωδών μετασχηματισμών γραμμών λέγονται γραμμοϊσοδύναμοι πίνακες 4.4 Πορεία μελέτης 1. Μελετήστε καλά τα παραπάνω 2. Δείτε τον ορισμό του κλιμακωτού πίνακα από το βιβλίο «Εισαγωγή στη Γραμμική άλγεβρα Τόμος Α. 8 Ο αναγνώστης καλείται να κάνει την απόδειξη λεπτομερώς 18

16 3. Δείτε τον ορισμό του ανηγμένου κλιμακωτού πίνακα από το βιβλίο «Εισαγωγή στη Γραμμική άλγεβρα Τόμος Α. 4. Δείτε ξανά το βίντεο με την ομιλία του καθηγητή G.Strang εδώ 4.5 Και άλλες Ασκήσεις 1. Εστω Σ και Σ δύο γραμμικά συστήματα των οποίων οι επαυξημένοι πίνακες C και C αντίστοιχα ικανοποιούν τη σχέση C = λ C με λ 0. Εξετάστε εάν τα σύνολα λύσεων του Σ και Σ είναι ίσα 2. Δύο γραμμικά συστήματα Σ και Σ έχουν επαυξημένους πίνακες C και C αντίστοιχα. Η μόνη διαφορά των πινάκων αυτών είναι ότι η πρώτη γραμμή του C είναι το άθροισμα της πρώτης και της δεύτερης γραμμής του C. Εξετάστε εάν το Σ και το Σ έχουν το ίδιο σύνολο λύσεων 3. Δίνεται ο πίνακας A = Να βρείτε ένα ανηγμένο κλιμακωτό πίνακα A, ο οποίος να είναι γραμμοϊσοδύναμος με τον Α 4. Δείξτε ότι δύο οποιοιδήποτε ανηγμένοι κλιμακωτοί πίνακες γραμμοισοδύναμοι με τον πίνακα Α είναι ίσοι. Διατυπώστε και αποδείξτε ένα θεώρημα σχετικά με τους ανηγμένους κλιμακωτούς πίνακες κάθε πίνακα. Τέλος του τετάρτου μαθήματος 19

17 Σημειώματα Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Ράπτης Ευάγγελος «Γραμμική Άλγεβρα, Ενότητα 1 η, Εισαγωγικές Έννοιες». Έκδοση: 1.0. Αθήνα Διαθέσιμο από τη δικτυακή διεύθυνση: Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.

18 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

7 Μάθημα Πορεία μελέτης Άσκηση Πορεία μελέτης

7 Μάθημα Πορεία μελέτης Άσκηση Πορεία μελέτης Περιεχόμενα I Εναρξη μαθήματος 5 II Αρχικά μαθήματα 7 1 Μάθημα 1 7 1.1 Εισαγωγή............................... 7 1.2 Πορεία μελέτης............................ 7 1.3 Γραμμικά συστήματα.........................

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 12: Μήτρες (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Abstract Algebra: The Basic Graduate Year: Robert B. Ash

Abstract Algebra: The Basic Graduate Year: Robert B. Ash Περιεχόμενα I Εναρξη μαθήματος 2 II Βασική άλγεβρα. Αρχικά μαθήματα 4 1 Μάθημα 1 4 1.1 Πορεία μελέτης............................ 4 1.2 Διάφορα σχόλια............................ 5 1.3 Πορεία μελέτης............................

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 1: Συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 2: Θερμοδυναμικές συναρτήσεις Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή νέων θερμοδυναμικών συναρτήσεων

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 4: Οι αριθμητικοί πράξεις: Πολλαπλασιασμός - Διαίρεση Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 10: Συστήματα γραμμικών εξισώσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 5: Οι διαδοχικές επεκτάσεις της έννοιας του αριθμού: ακέραιος, κλάσμα, ρητός και πραγματικός αριθμός Δημήτρης Χασάπης

Διαβάστε περισσότερα

Διδακτική Απειροστικού Λογισμού

Διδακτική Απειροστικού Λογισμού Διδακτική Απειροστικού Λογισμού Ενότητα 4: Θέματα σχετικά με τη διδασκαλία της συνέχειας. Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 4. ΣΥΝΕΧΕΙΑ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Σε μια τάξη Γ Λυκείου στα μαθηματικά κατεύθυνσης

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Φιλοσοφία της Ιστορίας και του Πολιτισμού

Φιλοσοφία της Ιστορίας και του Πολιτισμού Φιλοσοφία της Ιστορίας και του Πολιτισμού Ενότητα 1: Εισαγωγή στις έννοιες Ιστορίας και Πολιτισμού Λάζου Άννα Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Aθηνών Τμήμα Φιλοσοφίας Παιδαγωγικής και Ψυχολογίας Φιλοσοφία

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 4: Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία ΚΛΑΣΜΑ ΚΑΙ ΚΛΑΣΜΑΤΙΚΟΣ ΑΡΙΘΜΟΣ ΤΙ ΕΙΝΑΙ ΤΟ ΚΛΑΣΜΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 2: Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία ΘΕΜΕΛΙΩΔΕΙΣ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΣΧΕΣΕΙΣ

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 3

Διδακτική των εικαστικών τεχνών Ενότητα 3 Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 7: Συγγραφή μιας εργασίας

Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 7: Συγγραφή μιας εργασίας Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 7: Πόταρη Δέσποινα, Σακονίδης Χαράλαμπος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Έλεγχος του περιεχομένου της έρευνας (1) Είναι σημαντικά

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 12: Ελαχιστοποίηση κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ελαχιστοποίηση κόστους

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Γραμμικοί Μετασχηματισμοί Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα Σκοποί ενότητας

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Θεωρία Συνόλων, Συναρτήσεις Πραγματικής Μεταβλητής, Όριο και Συνέχεια Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 7: Άλγεβρα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Ερευνητικά συμπεράσματα για τις ανισότητες Δυσκολίες

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 2.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Σοφία Μιχαλοπούλου.

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΟΠΤΙΚΗ (Ηλεκτροµαγνητισµός-Οπτική) Γεωµετρική Οπτική (Μάθηµα

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 4: Η έννοια της γωνίας και του εμβαδού Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό ΟΝΟΜΑ: 1) 2) ΗΜΕΡΟΜΗΝΙΑ:

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 18: Νόμοι Maxwell Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσίασει τις εξισώσεις Maxwell. 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Έννοιες Φυσικών Επιστημών Ι

Έννοιες Φυσικών Επιστημών Ι Έννοιες Φυσικών Επιστημών Ι Ενότητα 3: Εναλλακτικές όψεις της επιστήμης που προβάλλονται στην εκπαίδευση Βασίλης Τσελφές Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 13: Η ορίζουσα και το ίχνος μιας μήτρας (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διδακτική Πληροφορικής

Διδακτική Πληροφορικής Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 4: Διδακτικός μετασχηματισμός βασικών εννοιών πληροφορικής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 16: Αναπαράσταση τελεστών με μήτρες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναπτύξει την μεθοδολογία εύρεσης ιδιοτιμών

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Διδακτικές Προσεγγίσεις για τον Προγραμματισμό Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 3: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις μιας μεταβλητής Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή στην έννοια της Φιλοσοφίας του Δικαίου

Ενότητα 1: Εισαγωγή στην έννοια της Φιλοσοφίας του Δικαίου ΦΙΛΟΣΟΦΙΑ ΤΟΥ ΔΙΚΑΙΟΥ Ενότητα 1: Εισαγωγή στην έννοια της Φιλοσοφίας του Δικαίου Παρούσης Μιχαήλ Τμήμα Φιλοσοφίας Σκοποί της ενότητας Το μάθημα είναι εισαγωγικό και στοχεύει να καταγράψει τα εξής: 1.Τι

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Έλλη Χουντάλα.

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Μάρκετινγκ Αγροτικών Προϊόντων

Μάρκετινγκ Αγροτικών Προϊόντων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 4.4: Αρχιτεκτονική και Εικονογραφημένο Βιβλίο Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων

Διαβάστε περισσότερα

Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας)

Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας) Διαχείριση Έργων Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 4.7: Κινηματογράφος και Εικονογραφημένο Βιβλίο Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια πρώτη επαφή με την έννοια των τετραγωνικών

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ

Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ Ενότητα: 7 η Ελένη Περδικούρη Τμήμα Φιλοσοφίας 1 Ενότητα 7 η Πότε γνωρίζω; Α. Τα κριτήρια της γνώσης (Μετά τα Φυσικά Α 1 και Αναλυτικά Ύστερα Ι

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 3: Ασκήσεις Bayes Περιοχές Απόφασης Διακρίνουσες Συναρτήσεις Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Λογικός Προγραμματισμός Ασκήσεις

Λογικός Προγραμματισμός Ασκήσεις Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Α Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2011-12... 3 1.1 Άσκηση 1...

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 7: Εξίσωση Slutsky Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οι επιδράσεις μιας μεταβολής

Διαβάστε περισσότερα

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 2 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων Περιεχόμενα η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 5 4 η Άσκηση... 7 Χρηματοδότηση... 9 Σημείωμα Αναφοράς... 0 Σημείωμα Αδειοδότησης... 2 Ενδεικτικές λύσεις

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης

Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Ενότητα 5: Δρ. Θεοκλής-Πέτρος Ζούνης Σχολή : ΟΠΕ Τμήμα : Ε.Μ.Μ.Ε. Περιεχόμενα ενότητας Τι ορίζουμε ως Μάρκετινγκ ενός Πολιτιστικού Οργανισμού; Τα 4

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 2.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Κατερίνα Πετρουτσοπούλου.

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο

Διαβάστε περισσότερα

Λογικός Προγραμματισμός Ασκήσεις

Λογικός Προγραμματισμός Ασκήσεις Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Ασκήσεις "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2003-04... 3 1.1 Άσκηση 1 (0.2 μονάδες)...

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers)

Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers) Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers) Αναστασία Γεωργάκη Τμήμα Μουσικών Σπουδών Περιεχόμενα 5. Ελεγκτές MIDI μηνυμάτων (Midi Controllers)... 3 Σελίδα 2 5.

Διαβάστε περισσότερα

Διδακτική Μαθηματικών Ι Ενότητα 5: Διερευνητικές δραστηριότητες

Διδακτική Μαθηματικών Ι Ενότητα 5: Διερευνητικές δραστηριότητες Διδακτική Μαθηματικών Ι Ενότητα 5: Διερευνητικές δραστηριότητες Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό ΔΙΕΡΕΥΝΗΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Δραστηριότητα 1 Το εξωτερικό τετράγωνο αντιπροσωπεύει

Διαβάστε περισσότερα

Χριστιανική και Βυζαντινή Αρχαιολογία

Χριστιανική και Βυζαντινή Αρχαιολογία Χριστιανική και Βυζαντινή Αρχαιολογία Ενότητα A: Παλαιοχριστιανική Τέχνη (2 ος αι. αρχές 7 ου αι.) - Σαρκοφάγοι και Αγάλματα. Στουφή - Πουλημένου Ιωάννα Ἐθνικὸ καὶ Καποδιστριακὸ Πανεπιστήμιο Ἀθηνῶν Τμῆμα

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μελέτη

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου

Διαβάστε περισσότερα

Παιδαγωγική ή Εκπαίδευση ΙΙ

Παιδαγωγική ή Εκπαίδευση ΙΙ Παιδαγωγική ή Εκπαίδευση ΙΙ Ενότητα 2 Ζαχαρούλα Σμυρναίου Σχολή: Φιλοσοφική Τμήμα: Φιλοσοφίας Παιδαγωγικής Ψυχολογίας Μορφές διδασκαλίας Οι Μορφές διδασκαλίας Αναφέρονται στον τρόπο παρουσίασης του μαθήματος,

Διαβάστε περισσότερα

Παιδαγωγικά. Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι. Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας

Παιδαγωγικά. Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι. Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας Παιδαγωγικά Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας Σκοποί ενότητας Σύγχρονες προσεγγίσεις των γενικών σκοπών

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αλγόριθµοι γραµµικής άλγεβρας 1 Ο συµβολισµός µεγάλο O Εστω συναρτήσεις f(n), g(n)

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα