Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα"

Transcript

1 Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Θεωρία Συνόλων, Συναρτήσεις Πραγματικής Μεταβλητής, Όριο και Συνέχεια Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

2 Σελίδα

3 1 Σκοποί ενότητας 4 Περιεχόμενα ενότητας 4 3 Σύνολα 5 4 Σχέσεις 9 5 Συναρτήσεις μιας Πραγματικής Μεταβλητής 1 51 Βασικές Συναρτήσεις 13 5 Όριο Συνέχεια Όριο καθώς το (πεπερασμένο): f ( ) = 19 5 Όριο καθώς το (Μη πεπερασμένο): ± lim f ( ) = ± 3 53 Όριο καθώς το ± lim f( ) = l ή lim f ( ) = ± 4 6 Συνεχείς Συναρτήσεις 6 Σελίδα 3

4 1 Σκοποί ενότητας Παρουσιάζονται θέματα Θεωρίας Συνόλων, Συναρτήσεων Πραγματικής Μεταβλητής, Ορίου και Συνέχειας που είναι απαραίτητα για τον χρηματοοικονομικό και λογιστικό αναλυτή Περιεχόμενα ενότητας Σύνολα, Σχέσεις, Συναρτήσεις μιας Πραγματικής Μεταβλητής, Βασικές Συναρτήσεις, Όριο Συνέχεια, Όριο καθώς το (πεπερασμένο): f ( ) =, Όριο καθώς το (Μη πεπερασμένο): lim f ( ) = ±, Όριο καθώς το ± lim f( ) = l ή lim f ( ) = ±, Συνεχείς Συναρτήσεις ± Σελίδα 4

5 3 Σύνολα Σύνολο (set) είναι μια συλλογή διακεκριμένων αντικειμένων Νίκος, Μαρία, Γιάννης, Πέτρος Πχ } = {,1,,3, }, A= { ab, }, { } Τα αντικείμενα ενός συνόλου ονομάζονται στοιχεία (element) του συνόλου και αν ένα στοιχείο ανήκει σε ένα σύνολο το συμβολίζουμε a { ab, }, ενώ αν δεν ανήκει συμβολίζουμε c { ab, } Ένα σύνολο μπορεί να μην περιέχει στοιχεία, ένα τέτοιο σύνολο ονομάζεται κενό και συμβολίζεται με {} ή Ορισμός: Το σύνολο P είναι υποσύνολο του συνόλου Q εάν το κάθε στοιχείο του P είναι στοιχείο του Q και θα συμβολίζουμε με P Q Πχ { a} { ab, }, ενώ { abc,, } { ab, } Ορισμός: Δύο σύνολα P και Q ονομάζονται ίσα, αν αποτελούνται από τα ίδια ακριβώς στοιχεία Ορισμός: Έστω P ένα υποσύνολο του Q Θα λέμε ότι το P είναι γνήσιο υποσύνολο του Q εάν το P δεν είναι ίσο με το Q και θα συμβολίζουμε με P Q Τα σύνολα μπορούν να συνδυαστούν με διάφορους τρόπους και να παράγουμε νέα σύνολα Τα σύνολα που προέρχονται από συνδυασμό άλλων συνόλων μπορούν να αναπαρασταθούν γραφικά χρησιμοποιώντας τα διαγράμματα Venn Έτσι αν θεωρήσουμε δυο σύνολα P και Q, τα σύνολα αυτά αναπαρίστανται από τις γραμμοσκιασμένες περιοχές, όπως φαίνεται και στο σχήμα 1 παρακάτω Σχήμα 1 Τα σύνολα P και Q αναπαρίστανται από τις γραμμοσκιασμένες περιοχές Ορισμός: Η ένωση (union) δύο συνόλων P και Q είναι το σύνολο P Q του οποίου τα στοιχεία είναι ακριβώς τα στοιχεία που ανήκουν στο P ή στο Q { : ή } P Q= P Q Σελίδα 5

6 Παράδειγμα: { ab, } { cd, } { abcd,,, } = { ab, } { ac, } { abc,, } = { ab, } = { ab, } Σχήμα Ένωση των συνόλων P και Q Ορισμός: Η τομή (intersection) δύο συνόλων P και Q είναι το σύνολο P Q του οποίου τα στοιχεία είναι ακριβώς τα στοιχεία που ανήκουν τόσο P όσο και στο Q { : και } P Q= P Q Παράδειγμα: { ab, } { cd, } = { ab, } { ac, } { a} = { ab, } = Σχήμα 3 Η τομή των συνόλων P και Q Σελίδα 6

7 Ιδιότητες: 1 Προσεταιριστική P P P = P P P ( ) 1 ( ) P P P = P P P Αντιμεταθετική 1 P P = P P 1 1 P P = P P Ουδέτερο στοιχείο 31 P = P 3 P Ω= P (όπου το Ω είναι το σύνολο αναφοράς) 4 Επιμεριστική (Σχήμα 4) 41 ( P1 P) P3 ( P1 P3) ( P P3) 4 ( P P ) P ( P P ) ( P P ) = = Σχήμα 4 Επιμεριστική ιδιότητα Ορισμός: Η διαφορά δύο συνόλων P και Q, είναι το σύνολο P Q που περιέχει ακριβώς τα στοιχεία του P τα οποία δεν είναι στοιχεία του Q { και Q} P Q= P (συμπλήρωμα του Q ως προς P) Παράδειγμα: { ab, } { ac, } { bc, } = Σχήμα 5 Η διαφορά των συνόλων P και Q Σελίδα 7

8 Ορισμός: Το δυναμοσύνολο ενός συνόλου Α είναι το σύνολο το οποίο περιέχει ακριβώς όλα τα υποσύνολα του Α, το σύνολο αυτό το συμβολίζουμε με ( A) ή A { } ( A) = X X A Παράδειγμα: ({ ab, }) { },{ a},{ b},{ ab, } = { } Θεώρημα: Το δυναμοσύνολο ενός συνόλου με n στοιχεία έχει n ( A) = A πλήθος στοιχείων, δηλαδή Ορισμός: Αν P, Q δύο σύνολα τότε ονομάζουμε καρτεσιανό γινόμενο των P και Q το σύνολο που αποτελείται από όλα τα διατεταγμένα ζεύγη (a, b) όπου a P και b Q, δηλαδή {(, ): και } P Q= a b a P b Q Σελίδα 8

9 4 Σχέσεις Έστω Α και Β δύο σύνολα, τότε κάθε υποσύνολο R του καρτεσιανού γινομένου Α Β λέγεται σχέση (relation) μεταξύ του Α και του Β Παράδειγμα: Ορίζουμε την σχέση R : «μικρότερος ή ίσος πραγματικός αριθμός», συμβολικά Ry {(, ) : } R= y y y Σχήμα 6 Γραφική απεικόνιση της σχέσης R Σελίδα 9

10 5 Συναρτήσεις μιας Πραγματικής Μεταβλητής Γενικά, µε τον όρο συνάρτηση (function) από ένα σύνολο Α σε ένα σύνολο Β ορίζουμε μια σχέση μεταξύ του Α και του Β ώστε κάθε στοιχείο του Α να σχετίζεται μόνο με ένα στοιχείο του Β f : Α Β, με τύπο y = f ( ) Το σύνολο Α ονομάζεται πεδίο ορισμού Το σύνολο Β σύνολο αφίξεως Το σύνολο f ( Α) Β πεδίο τιμών Η ανεξάρτητη μεταβλητή A μπορεί να παριστάνει µία ή περισσότερες πραγματικές ή μιγαδικές μεταβλητές µε y B την αντίστοιχη τιμή της εξαρτημένης μεταβλητής Αν A η συνάρτηση θα λέμε ότι είναι μιας πραγματικής μεταβλητής Αν f ( Α) η συνάρτηση θα λέμε ότι είναι συνάρτηση πραγματικών τιμών Παραδείγματα: 1 Η Η 3 Η f( ) = είναι συνάρτηση με πεδίο ορισμού A = και πεδίο τιμών ( ) f A = + f( ) = 3 + είναι συνάρτηση με πεδίο ορισμού A = και πεδίο τιμών 3 f( A) = 3 f( ) = 1 είναι συνάρτηση με πεδίο ορισμού το A = [ 1,1] και πεδίο τιμών το f( A ) = [,1] Ορισμός: Το σύνολο των σημείων του επιπέδου που οι συντεταγμένες τους είναι διατεταγμένα ζεύγη μιας συνάρτησης (, f( )), ονομάζεται γραφική παράσταση {(, ) ( )} Grf = y y y = f ή C f Σχήμα 7 Γραφική παράσταση συνάρτησης Σελίδα 1

11 Ορισμός: Έστω f : A B αν 1, τότε f ( ) f ( ) για οποιαδήποτε 1, A, τότε η f 1 λέγεται αμφιμονοσήμαντη, συμβολίζεται 1-1 και διαβάζεται «ένα προς ένα» Ορισμός: Έστω f : A B μια αμφιμονοσήμαντη συνάρτηση από το Α στο Β, τότε η αντίστροφη συνάρτηση (inverse function) της f, συμβολίζεται με αντιστοιχεί το μοναδικό A 1 f, είναι η συνάρτηση που σε κάθε y B Σχήμα 8 Με κόκκινο χρώμα απεικονίζεται η, με μπλε η αντίστροφή της και με πράσινο η y= ως άξονας αναφοράς Ορισμός: Μια συνάρτηση f με πεδίο ορισμού το Α ονομάζεται: Άρτια, όταν για κάθε A Περιττή, όταν για κάθε A είναι A και f ( ) = f ( ) είναι A και f ( ) = f ( ) * Περιοδική, όταν υπάρχει T, τέτοιος ώστε για κάθε A είναι Παράδειγμα: ( ) ( ) + T A και f + T = f Η συνάρτηση Η συνάρτηση f( ) f( ) = είναι άρτια 3 = είναι περιττή Η συνάρτηση f( ) cos( ) = είναι περιοδική Σελίδα 11

12 Ορισμός: Μια συνάρτηση f με πεδίο ορισμού το Α ονομάζεται: Γνησίως αύξουσα, όταν για 1 < f ( 1) < f ( ) Γνησίως φθίνουσα, όταν για 1 f ( 1) f ( ) Αύξουσα, όταν για 1 < f ( 1) f ( ) Φθίνουσα, όταν για < f ( ) f ( ) < > 1 1 Μια συνάρτηση που είναι αύξουσα ή φθίνουσα ονομάζεται μονότονη Ορισμός: Μια συνάρτηση f με πεδίο ορισμού το Α ονομάζεται: Φραγμένη άνω, όταν υπάρχει ϕ τέτοιος ώστε για κάθε A Φραγμένη κάτω, όταν υπάρχει ϕ τέτοιος ώστε για κάθε A Φραγμένη, όταν είναι φραγμένη άνω και κάτω ισχύει ( ) ισχύει ( ) f ϕ f ϕ Πρόταση : Μια συνάρτηση f είναι φραγμένη, αν και μόνο αν υπάρχει δ τέτοιος ώστε για κάθε f ( ) δ Ορισμός: Έστω μια συνάρτηση f : A Αν υπάρχει στοιχείο A τέτοιο ώστε για κάθε A συνάρτηση παρουσιάζει στο μέγιστο Αν υπάρχει στοιχείο A τέτοιο ώστε για κάθε A συνάρτηση παρουσιάζει στο ελάχιστο Ορισμός: (Πράξεις συναρτήσεων) Ορίζουμε ως: Άθροισμα f g: A1 A να είναι ( ) ( ) f f να είναι ( ) ( ) f f +, με τύπο ( f + g)( ) = f ( ) + g( ) Διαφορά f g: A1 A, με τύπο ( f g)( ) = f ( ) g( ) Γινόμενο f g: A1 A, με τύπο ( f g)( ) = f ( ) g( ) Πηλίκο f/ g: A A\ { g ( ) = }, με τύπο ( f / g)( ) f ( ) / g( ) 1 =, τότε λέμε ότι η, τότε λέμε ότι η Ορισμός: Αν f : A1, g: A η σύνθεση της f με τη g είναι η συνάρτηση g f : A ( ) με A { A : f( ) A } με τύπο ( g f )( ) = g f ( ) 3 Παράδειγμα: Η f ( ) sin ( ) = = 1 Σελίδα 1

13 51 Βασικές Συναρτήσεις 1 Πολυωνυμική: n f( ) = a + a + + a+ a, a, i = 1,, n έχουν πεδίο ορισμού το n n 1 n 1 1 Αποτελείται από n υποδιαστήματα στα οποία είναι μονότονη (με διαφορετική μονοτονία) i Σχήμα 9 Παράδειγμα Πολυωνυμικής Συνάρτησης Ρητή: P ( ) f( ) =, όπου P ( ), Q ( ) πολυώνυμα πεπερασμένου βαθμού Πεδίο ορισμού το Q ( ) { ( ) } A= Q 3 Εκθετική με βάση το α: : με f( ) = a και a > f + Πεδίο ορισμού το και πεδίο τιμών το (, + ) Σχήμα 1 Εκθετική συνάρτηση με βάση το α Σελίδα 13

14 Ιδιότητες πράξεων με δυνάμεις: y y aa = a + a a y a = a ( ) y a b = y = y a ab ( ) 4 Λογαριθμική με βάση α: f : Πεδίο ορισμού A = (, + ) με f ( ) ( ) + = log a Σχήμα 11 Λογαριθμική συνάρτηση με βάση α Ιδιότητες πράξεων με λογαρίθμους: y loga = y a = loga a = και log a a = loga a = 1 και logα 1 = log = log + log ( ) α 1 α 1 α 1 log = log log α α 1 α k log = klog log α α 1 α 1 α = log = Αν a > 1 τότε: logα 1 < logα 1 < Αν < a < 1 τότε: logα 1 < logα 1 > ln y = y e = ln a ln a a = e, διότι a = e logβ logα = log β α Σελίδα 14

15 5 Τριγωνομετρικές: 51 Ημίτονο: f( ) = sin Πεδίο ορισμού: A = Σύνολο τιμών f ( A) [, ] = 1 1 Σχήμα 1 Συνάρτηση ημιτόνου 5 Συνημίτονο: f( ) cos( ) = Πεδίο ορισμού: A = Σύνολο τιμών f ( A) [, ] = 1 1 Σχήμα 13 Συνάρτηση συνημίτονου 53 Εφαπτομένη: f( ) tan ( ) = π Πεδίο ορισμού: A \ = κπ +, κ Z Σύνολο τιμών f ( A)= R Σχήμα 14 Συνάρτηση εφαπτομένης Σελίδα 15

16 6 Αντίστροφες Τριγωνομετρικές: 61 Τόξο Ημιτόνου: arcsin() π π Η συνάρτηση f( ) = sin περιορισμένη στο διάστημα, είναι αντιστρέψιμη 1 Συμβολίζουμε με sin ή arcsin την αντίστροφη της arcsin :[ 1,1] π π Πεδίο Τιμών είναι το, Πίνακας 1 Ενδεικτικές τιμές ημιτόνου και τόξου ημιτόνου α/α Ενδεικτικές τιμές ημιτόνου: Ενδεικτικές τιμές τόξου ημιτόνου: 1 sin( π π ) = 1 arcsin(1) = sin() = arcsin() = 3 π π sin( 1) = arcsin( 1) = Σχήμα 15 Συνάρτηση Τόξου Ημιτόνου 6 Τόξο Συνημιτόνου: arcos() Η συνάρτηση f( ) = cos περιορισμένη στο διάστημα [, π ] είναι αντιστρέψιμη Συμβολίζουμε με cos arccos :[ 1,1] 1 Πεδίο Τιμών είναι το [, π ] ή arccos την αντίστροφη της Πίνακας Ενδεικτικές τιμές συνημιτόνου και τόξου συνημιτόνου α/α Ενδεικτικές τιμές συνημιτόνου: Ενδεικτικές τιμές τόξου συνημιτόνου: 1 cos() = 1 arcos(1) = cos( π π ) = arcos() = 3 cos( π ) = 1 arcos( 1) = π Σελίδα 16

17 Σχήμα 16 Συνάρτηση Τόξου Συνημιτόνου 63 Τόξο Εφαπτομένης: arctan() π π Η συνάρτηση f( ) = tan περιορισμένη στο διάστημα, Συμβολίζουμε με tan 1 ή arctan την αντίστροφη της είναι αντιστρέψιμη arctan : π π Πεδίο Τιμών είναι το, Σχήμα 17 Συνάρτηση Τόξου Εφαπτομένης Σελίδα 17

18 5 Όριο Συνέχεια Ορισμός: Έστω V και d : V V με τις ιδιότητες: 1 d( y, ) για κάθε y, V και ( ) d( y, ) = d( y, ) 3 d(, y) d(, z) + d( z, y) d y, = αν και μόνο αν = y Η πραγματική συνάρτηση d ονομάζεται μετρική και ο αριθμός d( y, ) απόσταση του από το y Το ζεύγος ( V, d ) ονομάζεται μετρικός χώρος (Metric Space) Στο σύνολο των πραγματικών αριθμών μια απόσταση είναι η: d1 ( y, ) = y (συνήθης απόσταση) Ορισμός: Έστω ( V, +, ) ένας πραγματικός γραμμικός χώρος μια απεικόνιση νόρμα αν: :V ονομάζεται 1 για κάθε V και = αν και μόνο αν = λ = λ για κάθε V και λ 3 + y + y για κάθε y, V Το ζεύγος ( V, ) ονομάζεται χώρος με νόρμα Έτσι η απεικόνιση d( y, ) = y είναι μια μετρική στον V Στον γραμμικό χώρο ( ) n μια νόρμα (η ευκλείδεια νόρμα) είναι n = 1,,, n και έτσι η απόσταση μεταξύ δύο στοιχείων y, y είναι ( ) ( ) ( ) ( ) d, y = y = y + y + + y n n 1 1 Ορισμός: Έστω ένα σύνολο V και ώστε d(, ) < ε ( ε >) ονομάζεται περιοχή του = n αν V τότε το σύνολο όλων των σημείων V τέτοιων Στο σύνολο των πραγματικών αριθμών με τη συνήθη απόσταση, μια περιοχή είναι ένα ανοικτό διάστημα (, ) d = < ε ε < < ε 1 (, ) ε + < < ε + ε + ε Ορισμός: Έστω A Ένα σημείο ονομάζεται σημείο συσσώρευσης του Α, αν και μόνο αν κάθε περιοχή του περιέχει τουλάχιστον ένα σημείο του Α διαφορετικό του Σελίδα 18

19 51 Όριο καθώς το (πεπερασμένο): f ( ) = Διαισθητικά: Όταν οι τιμές μιας συνάρτησης προσεγγίζουν όσο «κοντά» θέλουμε έναν πραγματικό αριθμό, καθώς το προσεγγίζει με οποιονδήποτε τρόπο το είναι το, τότε το όριο της συνάρτησης f ( ) Σχήμα 18 Διαισθητική απεικόνιση του ορίου Ορισμός: Έστω f : A μια συνάρτηση και ένα σημείο συσσώρευσης του Α τότε θα λέμε ότι η f έχει στο όριο το όταν για κάθε ε> υπάρχει δ ( ε ) > τέτοιο ώστε για κάθε A με < < δ, να ισχύει f( ) ε και συμβολίζουμε lim f( ) = Σχήμα 19 Απεικόνιση του ορίου Σελίδα 19

20 Ορισμός: Έστω f :(, ) b λέμε ότι η f έχει στο δεξιό πλευρικό όριο το όταν για με < < + δ, να ισχύει f( ) ε κάθε ε> υπάρχει δ ( ε ) > τέτοιο ώστε για κάθε A και συμβολίζουμε lim f( ) = + Ορισμός: Έστω :(, ) f a λέμε ότι η f έχει στο για κάθε ε> υπάρχει δ ( ε ) > τέτοιο ώστε για κάθε A και συμβολίζουμε Παρατηρήσεις: lim f( ) = + αριστερό πλευρικό όριο το όταν με δ < <, να ισχύει f( ) ε 1 Αν το όριο της f στο υπάρχει, τότε αυτό είναι μοναδικό f : α,, b, τότε lim f( ) = lim f( ) = lim f( ) = Έστω ( ) ( ) 3 Έστω f :(, ) 4 Έστω f :( α, ) 5 Αν b, τότε + 6 lim c = c 7 lim =, τότε + + lim f( ) = lim f( ) lim f( ) = lim f( ) lim f( ) lim f( ),τότε δεν υπάρχει το όριο της f στο Σχήμα Αριστερά: Τα πλευρικά όρια είναι ίσα Δεξιά: Τα πλευρικά όρια δεν είναι ίσα Σελίδα

21 Θεώρημα (κριτήριο Παρεμβολής): Έστω f, gh, : A και έστω σημείο συσσώρευσης του συνόλου Α Αν: h ( ) f( ) g ( ) για κάθε A, και όριο lim f( ) υπάρχει και lim f( ) = lim h ( ) = lim g ( ) = τότε το Θεώρημα: Αν υπάρχουν τα όρια lim f( ) και lim g ( ) =, τότε: 1 lim( f ( ) + g( )) = lim f ( ) + lim g( ) lim( κf ( )) = κ lim f ( ), για κάθε κ 3 lim( f( ) g ( )) = lim f( ) lim g ( ) 4 lim ( ) lim f ( ) f =, εφόσον lim g( ) g( ) lim g( ) 5 lim f ( ) = lim f ( ) 6 lim κ f ( ) = κ lim f ( ) εφόσον f( ) για κάθε, με (α, ) (,β) 7 lim[ f ( )] = [ lim f ( )] ν ν 8 lim = ν ν 9 Αν p ( ) πολυώνυμο βαθμού n,τότε: lim p( ) = p( ) 1 Αν p, ( ) q( ) πολυώνυμα, τότε: p ( ) p ( ) = lim, q ( ) q ( ) q ( ) Παραδείγματα: Αν 3 f( ) = + 5 τότε: f = + = + = + = + = = f lim ( ) lim 5 lim lim 5 lim lim 5lim lim (1) lim = lim = lim = ( ) ( )( ) ( ) π π lim 3sin + cos = 3 sin + cos = 3 + π ( ) ( ) ( )( ) lim = lim = ( 5)( + 5) = lim = lim = = Σελίδα 1

22 Πρόταση: Αποδεικνύεται με χρήση του ορισμού ότι: lim sin = sin lim cos = cos lim tan = tan sin lim = 1 sin a lim = 1 a cos 1 lim = Σελίδα

23 5 Όριο καθώς το (Μη πεπερασμένο): lim f ( ) = ± Ορισμός: Το Το lim f( ) = + αν για κάθε Μ > υπάρχει δ > τέτοιο ώστε, για όλα τα με < δ f( ) > M lim f( ) = αν για κάθε Μ > υπάρχει δ > τέτοιο ώστε, για όλα τα με < δ f( ) < M Σχήμα 1 Η συνάρτηση αποκλίνει στο άπειρο καθώς το Παρατηρήσεις: Αν lim f ( ) = +, τότε lim ( f ( )) = Αν lim f ( ) =, τότε lim ( f ( )) = + 1 Αν lim f ( ) = + ή, τότε lim = f ( ) 1 Αν lim f ( ) = και f ( ) > κοντά στο, τότε lim = + f ( ) Αν lim f ( ) = και f ( ) < κοντά στο, τότε lim Αν lim f ( ) = + ή, τότε lim f ( ) = + Αν lim f ( ) = +, τότε lim k f ( ) = + 1 f ( ) = α/α Όρια Τιμές Τιμές Τιμές Τιμές Τιμές Τιμές Τιμές Τιμές lim f ( ) lim g ( ) 3 lim ( f( ) g ( )) 4 lim ( f( ) g ( )) Α Α > + < < > Σελίδα 3

24 53 Όριο καθώς το ± lim f( ) = l ή ± lim f ( ) = ± Ορισμός: Το lim f( ) Μ< f( ) < ε = αν για δοθέν ε > υπάρχει ένας αριθμός Μ τέτοιος ώστε, για όλα τα με Σχήμα Όριο ημιτονοειδούς συνάρτησης Θεώρημα: Αν υπάρχουν τα lim f( ) = 1, lim g ( ) =,τότε: lim( f( ) ± g ( )) = 1 ± lim( f( ) g ( )) = 1 lim( k f( )) k 1 = 1 g ( ) f( ) lim =, Πρόταση: Αποδεικνύεται με χρήση του ορισμού ότι: lim n = +, lim n lim =, lim + n = 1 1 lim =, lim n = + = av n άρτiος av n περρiτ ός Σελίδα 4

25 lim α n + α n + + α = lim ( α n ) 1 ( 1 ) + n n n + 1 ( ) lim α ν + α ν + + α = lim ( α ν ) ν ν 1 ν n n 1 n αn + αn α1+ α αn lim = lim n n 1 n ± βn + βn 1 β1 β ± βn lim a =, < a < 1, lim a = +, < a < 1 + lim a = +, a > 1, lim a =, a > lim 1+ = e, + lim log = + + Παραδείγματα: 1 lim 1+ = e 1 lim lim = lim = lim = = = lim 3 lim lim = lim = lim lim 1 3 lim + lim 1 1 lim lim lim = = = = 1 1 lim lim Σελίδα 5

26 6 Συνεχείς Συναρτήσεις Μια συνάρτηση είναι συνεχής αν η γραφική της παράσταση δεν παρουσιάζει διακοπές, χάσματα ή άλματα Μια συνάρτηση y = f( ) είναι συνεχής σε ένα εσωτερικό σημείο του πεδίου ορισμού της αν lim f( ) = f( ) Μια συνάρτηση y = f( ) είναι συνεχής στο αριστερό ακραίο σημείο του πεδίου ορισμού της αν lim f( ) = f( ) + Μια συνάρτηση y = f( ) είναι συνεχής στο δεξιό ακραίο σημείο του πεδίου ορισμού της αν lim f( ) = f( ) Μια συνάρτηση είναι συνεχής εάν είναι συνεχής σε κάθε σημείο του πεδίου ορισμού της Σχήμα 3 Γραφική παράσταση συνεχούς συνάρτησης Μια συνάρτηση y = f( ) είναι συνεχής στο αν και μόνο αν ισχύουν τα ακόλουθα: 1 Το ανήκει στο πεδίο ορισμού Το lim f( ) υπάρχει 3 lim f( ) = f( ) Παρατηρήσεις: Τα πολυώνυμα και τα πηλίκα πολυωνύμων είναι συνεχείς στο πεδίο ορισμού τους Αν οι συναρτήσεις f( ), g ( ) είναι συνεχείς στο τότε και οι f( ) ± g ( ), f( ) g ( ), kf ( ), f( ) g ( ) είναι συνεχείς στο Η σύνθεση συνεχών συναρτήσεων είναι συνεχής συνάρτηση Σελίδα 6

27 Οι συναρτήσεις sin, cos, tan, e είναι συνεχής sin Παράδειγμα: Η συνάρτηση f( ) = είναι συνεχής ως πηλίκο συνεχών συναρτήσεων εκτός από το σημείο = όπου δεν ορίζεται Σχήμα 4 Γραφική παράσταση της f( ) Μπορούμε όμως να επεκτείνουμε αυτή την συνάρτηση ώστε να είναι συνεχής και στο =, ορίζοντάς την ως εξής sin, f( ) = (γεμίσαμε το σημείο ασυνέχειας) 1, = Σχήμα 5 Γραφική παράσταση της f( ) (μετά την επέκταση) Σελίδα 7

28 Παράδειγμα: Η συνάρτηση f( ) = είναι συνεχής στο πεδίο ορισμού της Αν βγάλουμε το, > απόλυτο, η συνάρτηση γράφεται f( ) = +, < y Σχήμα 6 Γραφική παράσταση της f( ) Παράδειγμα: Η συνάρτηση 3, 1 f( ) =, < 1 στο = 1 είναι διαφορετικά, άρα δεν υπάρχει το από τη γραφική της παράσταση είναι ασυνεχής στο = 1 Πράγματι, τα πλευρικά όρια lim f( ) (ασυνέχεια α-είδους) Αυτό προκύπτει και Σχήμα 7 Γραφική παράσταση της f( ) Σελίδα 8

29 Σημειώματα Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1 Σημείωμα Αναφοράς Copyright Οικονομικό Πανεπιστήμιον Αθηνών, Ανδριανός Ε Τσεκρέκος, 15 Ανδριανός Ε Τσεκρέκος «Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα» Έκδοση: 1 Αθήνα 15 Διαθέσιμο από τη δικτυακή διεύθυνση: https://opencoursesauebgr/modules/document/?course=loxr1 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4 [1] ή μεταγενέστερη, Διεθνής Έκδοση Εξαιρούνται τα αυτοτελή έργα τρίτων πχ φωτογραφίες, διαγράμματα κλπ, τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων» [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (πχ διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων

30 το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους Σελίδα 3

31 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στο πλαίσιο του εκπαιδευτικού έργου του διδάσκοντα Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Οικονομικό Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους Σελίδα 31

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 4: Συναρτήσεις Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 10 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 5: Όρια και Συνέχεια Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διανυσματικοί Χώροι και Υπόχωροι: Βάσεις και Διάσταση Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 3: Συναρτήσεις πολλών μεταβλητών Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πραγματικές Συναρτήσεις Πολλών Μεταβλητών (μέρος 1) Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Γραμμικοί Μετασχηματισμοί Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα Σκοποί ενότητας

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διαφορικός Λογισμός Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 1 Σκοποί ενότητας 4

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.10: Αναπτύγματα σε Σειρά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.10: Αναπτύγματα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.08: Υπερβολικές Συναρτήσεις Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.08: Υπερβολικές

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.07: Ολοκληρώματα με Ριζικά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Εισαγωγή στις Διαφορικές Εξισώσεις Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα . Σκοποί

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός 1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 8 : Μιγαδικοί Αριθμοί & Ακολουθίες Αριθμών Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

P (B) P (B A) = P (AB) = P (B). P (A)

P (B) P (B A) = P (AB) = P (B). P (A) Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Διαισθητική έννοια ανεξαρτησίας Διαισθητική

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.03: Μέθοδοι Ολοκλήρωσης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.5.1: Μελέτη Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.5.1: Μελέτη

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 2: Συναρτήσεις Χώροι - Μεταβλητές Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.07: Εκθετικές και Λογαριθμικές Συναρτήσεις Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.02: Βασικά Θεωρήματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.02: Βασικά

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Διδακτική Απειροστικού Λογισμού

Διδακτική Απειροστικού Λογισμού Διδακτική Απειροστικού Λογισμού Ενότητα 4: Θέματα σχετικά με τη διδασκαλία της συνέχειας. Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 4. ΣΥΝΕΧΕΙΑ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Σε μια τάξη Γ Λυκείου στα μαθηματικά κατεύθυνσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πραγματικές Συναρτήσεις Πολλών Μεταβλητών (μέρος 2) Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 6: Όριο και συνέχεια συναρτήσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Ορισμός κανονικής τ.μ.

Ορισμός κανονικής τ.μ. Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Λογιστική Κόστους. Ενότητα 4: ΣΥΜΠΕΡΙΦΟΡΑ - ΦΥΣΗ ΚΟΣΤΟΥΣ. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής

Λογιστική Κόστους. Ενότητα 4: ΣΥΜΠΕΡΙΦΟΡΑ - ΦΥΣΗ ΚΟΣΤΟΥΣ. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Λογιστική Κόστους Ενότητα 4: ΣΥΜΠΕΡΙΦΟΡΑ - ΦΥΣΗ ΚΟΣΤΟΥΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 6: ΜΕΓΕΘΟΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα : Ακολουθίες και Σειρές Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Commos. Για

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 2: Ακολουθίες Πραγματικών Αριθμών Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος I Εναρξη μαθήματος 5 7 Υπολογιστική Άλγεβρα (439) ) Ευάγγελος

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 4: Εκθετικές και λογαριθμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.: Επίπεδα Εμβαδά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 8: Ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mil: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 12: Μήτρες (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροάθμιας εκπαίδευσης Ενότητα : Κρίσιμα συμάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό 3.4. H συνάρτηση = α + Η ευθεία με εξίσωση =

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.: Η Παράγωγος Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.: Η Παράγωγος

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.1: Μήκος Τόξου Καμπύλης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διδακτική Πληροφορικής

Διδακτική Πληροφορικής Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 4: Διδακτικός μετασχηματισμός βασικών εννοιών πληροφορικής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 2: Όψεις Όνομα Καθηγητή: Παρασκευοπούλου Ροδούλα Α.Π.Θ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τεχνικό Σχέδιο - CAD. Τόξο Κύκλου. Τόξο Κύκλου - Έλλειψη. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Τεχνικό Σχέδιο - CAD. Τόξο Κύκλου. Τόξο Κύκλου - Έλλειψη. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τεχνικό Σχέδιο - CAD Τόξο Κύκλου - Έλλειψη ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τόξο Κύκλου Τόξο κύκλου Στην ορολογία του Autocad: Arc Εντολή: arc

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 6: Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιγραφική στατιστική ΕΡΩΤΗΜΑ ΑΠΑΝΤΗΣΗ Όλες

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Εφαρμογές Σειρών Tylor Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα