Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός"

Transcript

1 Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

2 7/15/2014 Ο νόμος του Gauss Νόμος Gauss Ο νόμος του Gauss μπορεί να χρησιμοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισμού του ηλεκτρικού πεδίου. Ο νόμος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική δύναμη που αναπτύσσεται μεταξύ σημειακών φορτίων ακολουθεί τον νόμο του αντίστροφου τετραγώνου. Μας διευκολύνει στον υπολογισμό του ηλεκτρικού πεδίου κατανομών φορτίου με υψηλό βαθμό συμμετρίας. Ο νόμος του Gauss είναι σημαντικός στην κατανόηση και την επαλήθευση των ιδιοτήτων των αγωγών που βρίσκονται σε ηλεκτροστατική ισορροπία. Εισαγωγή Ηλεκτρική ροή Η ηλεκτρική ροή ορίζεται ως το γινόμενο του μέτρου του ηλεκτρικού πεδίου επί το εμβαδόν A της επιφάνειας που είναι κάθετη στις γραμμές του πεδίου. Φ E = EA Μονάδες: N m 2 / C Η ηλεκτρική ροή που διέρχεται από μια τυχαία επιφάνεια υπό γωνία Η ηλεκτρική ροή είναι ανάλογη του πλήθους των γραμμών του ηλεκτρικού πεδίου που διαπερνούν την επιφάνεια. Οι γραμμές του πεδίου μπορεί να σχηματίζουν γωνία θ με την κάθετο στην επιφάνεια. Σε αυτή την περίπτωση, Φ E = EA cos θ Ηλεκτρική ροή Κατανόηση της εξίσωσης Η ηλεκτρική ροή έχει μέγιστη τιμή όταν η επιφάνεια είναι κάθετη στο πεδίο. θ = 0 Η ηλεκτρική ροή έχει μηδενική τιμή όταν η επιφάνεια είναι παράλληλη στο πεδίο. θ = 90 Αν το πεδίο δεν έχει την ίδια τιμή σε κάθε σημείο της επιφάνειας, τότε η σχέση Φ = EA cos θ ισχύει μόνο για μια στοιχειώδη επιφάνεια ΔΑ. Ηλεκτρική ροή Γενικά Στην πιο γενική περίπτωση, εξετάζουμε ένα στοιχειώδες τμήμα επιφάνειας. E A cosθ E A E i i i i i Η σχέση αυτή γράφεται E lim Ei Ai Ai 0 E da E επιφάνεια Η παραπάνω εξίσωση είναι ένα επιφανειακό ολοκλήρωμα, δηλαδή πρέπει να υπολογιστεί σε ολόκληρη την υπό εξέταση επιφάνεια. Γενικά, η τιμή της ηλεκτρικής ροής εξαρτάται τόσο από τη μορφή του πεδίου όσο και από την επιφάνεια. 1

3 7/15/2014 Ηλεκτρική ροή Κλειστή επιφάνεια (1) Θεωρούμε μια κλειστή επιφάνεια. Τα διανύσματα A i δείχνουν προς διαφορετικές κατευθύνσεις. Σε κάθε σημείο, είναι κάθετα στην επιφάνεια. Λόγω σύμβασης, δείχνουν προς τα έξω. Ηλεκτρική ροή Κλειστή επιφάνεια (2) Στο στοιχείο (1), οι γραμμές του πεδίου διαπερνούν την επιφάνεια από το εσωτερικό προς το εξωτερικό. θ < 90 o και η ροή Φ είναι θετική. Στο στοιχείο (2), οι γραμμές του πεδίου εφάπτονται στην επιφάνεια. θ = 90 o και η ροή Φ = 0. Στο στοιχείο (3), οι γραμμές του πεδίου διαπερνούν την επιφάνεια από το εξωτερικό προς το εσωτερικό. 180 o > θ > 90 o και η ροή Φ είναι αρνητική. Ηλεκτρική ροή Κλειστή επιφάνεια (3) Ροή που διέρχεται από κύβο Παράδειγμα Η συνολική ηλεκτρική ροή που διέρχεται από την επιφάνεια είναι ανάλογη του συνολικού πλήθους των γραμμών που εξέρχονται από την επιφάνεια. Ο συνολικός αριθμός των γραμμών ισούται με τη διαφορά του πλήθους των γραμμών που εξέρχονται από την επιφάνεια μείον το πλήθος των γραμμών που εισέρχονται σε αυτήν. Αν E n είναι η συνιστώσα του πεδίου η οποία είναι κάθετη στην επιφάνεια, τότε E E da EndA Η ολοκλήρωση γίνεται επί της κλειστής επιφάνειας. Οι γραμμές του ηλεκτρικού πεδίου διέρχονται κάθετα από δύο έδρες του κύβου και είναι παράλληλες στις άλλες τέσσερις. Για την έδρα 1, E = El 2 Για την έδρα 2, E = El 2 Για τις υπόλοιπες έδρες, E = 0 Επομένως, E συν. = 0 Karl Friedrich Gauss Ο νόμος του Gauss Εισαγωγή Συνεισέφερε στους παρακάτω τομείς: Ηλεκτρομαγνητισμό Θεωρία αριθμών Στατιστική Μη ευκλείδεια γεωμετρία Μηχανική των τροχιών των κομητών Ήταν ένας από τους ιδρυτές της Γερμανικής Ένωσης Μαγνητισμού. Η Γ.Ε.Μ. μελετά το μαγνητικό πεδίο της Γης. Ο νόμος του Gauss εκφράζει τη γενική σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου που αυτή περιέχει. Η κλειστή επιφάνεια συχνά λέγεται και επιφάνεια Gauss. Ο νόμος του Gauss έχει θεμελιώδη σημασία στη μελέτη των ηλεκτρικών πεδίων. 2

4 7/15/2014 Ο νόμος του Gauss Γενικά (1) Ο νόμος του Gauss Γενικά (2) Στο κέντρο μιας σφαίρας με ακτίνα r βρίσκεται ένα θετικό σημειακό φορτίο q. Το μέτρο του ηλεκτρικού πεδίου σε κάθε σημείο της επιφάνειας της σφαίρας είναι: E = k e q / r 2 Οι γραμμές του πεδίου κατευθύνονται ακτινικά προς τα έξω και είναι κάθετες σε κάθε σημείο της επιφάνειας. E E da E da Αυτή είναι η συνολική ροή που διέρχεται από την επιφάνεια Gauss στην προκειμένη περίπτωση, τη σφαίρα με ακτίνα r. Γνωρίζουμε ότι E = k e q/r 2 και A σφαίρας = 4πr 2 q E 4πk eq є 0 Ο νόμος του Gauss Γενικά (3) Η συνολική ηλεκτρική ροή που διέρχεται από οποιαδήποτε κλειστή επιφάνεια γύρω από ένα σημειακό φορτίο q δίνεται από τον λόγο q/є o και δεν εξαρτάται από το σχήμα της επιφάνειας αυτής. Η συνολική ηλεκτρική ροή που διέρχεται από μια κλειστή επιφάνεια η οποία δεν περικλείει φορτίο είναι ίση με μηδέν. Αφού το ηλεκτρικό πεδίο που δημιουργείται από πολλά φορτία ισούται με το διανυσματικό άθροισμα των επιμέρους ηλεκτρικών πεδίων που δημιουργεί κάθε φορτίο ξεχωριστά, η ροή που διέρχεται από οποιαδήποτε κλειστή επιφάνεια δίνεται από τη σχέση: E da E1 E2 da Eπιφάνεια Gauss Παράδειγμα Το φορτίο μπορεί να περιβάλλεται από κλειστές επιφάνειες διαφόρων σχημάτων. Μόνο η επιφάνεια S 1 είναι σφαιρική. Έτσι επιβεβαιώνεται ότι η συνολική ηλεκτρική ροή που διέρχεται από οποιαδήποτε κλειστή επιφάνεια, η οποία περιβάλλει ένα σημειακό φορτίο q, δίνεται από τον λόγο q/є o και δεν εξαρτάται από το σχήμα της επιφάνειας. Επιφάνεια Gauss Παράδειγμα 2 Ο νόμος του Gauss (τελική διαφάνεια) Το φορτίο βρίσκεται εκτός της κλειστής επιφάνειας τυχαίου σχήματος. Κάθε γραμμή του πεδίου η οποία εισέρχεται στην επιφάνεια εξέρχεται από κάποιο άλλο σημείο της επιφάνειας. Έτσι επιβεβαιώνεται ότι η συνολική ηλεκτρική ροή που διέρχεται από μια κλειστή επιφάνεια, η οποία δεν περιβάλλει φορτίο, είναι ίση με μηδέν. Η μαθηματική μορφή του νόμου του Gauss είναι: qεντός E E da є Όπου q εντός είναι το συνολικό o φορτίο εντός της επιφάνειας. E Το παριστάνει το ηλεκτρικό πεδίο σε οποιοδήποτε σημείο της επιφάνειας. είναι E το συνολικό ηλεκτρικό πεδίο και μπορεί να περιλαμβάνει συνεισφορές από φορτία που βρίσκονται τόσο στο εσωτερικό όσο και στο εξωτερικό της επιφάνειας. Αν και, θεωρητικά, μπορούμε να λύσουμε τη σχέση του νόμου του Gauss ως προς E για οποιαδήποτε διάταξη φορτίων, στην πράξη χρησιμοποιείται μόνο σε περιπτώσεις όπου υπάρχει συμμετρία. 3

5 7/15/2014 Εφαρμογή του νόμου του Gauss Ερώτηση 1. Οι τρεις μικρές μπάλες του διπλανού σχήματος έχουν φορτίο q1=3 nc, q2= -7 nc και q3 = 2 nc. Βρείτε τη ηλεκτρική ροή από τις επιφάνειες α) S1, β) S2, γ) S3, δ) S4, ε) S5. στ) Εξαρτάται η απάντησή σας στα προηγούμενα ερωτήματα από τον τρόπο που είναι κατανεμημένα τα φορτία μέσα στις επιφάνειες; Ναι ή όχι; Για να χρησιμοποιήσετε τον νόμο του Gauss, επιλέξτε μια επιφάνεια Gauss η οποία επιτρέπει την απλούστευση του επιφανειακού ολοκληρώματος και τον υπολογισμό του ηλεκτρικού πεδίου. Εκμεταλλευτείτε τη συμμετρία. Υπενθυμίζουμε ότι η επιφάνεια Gauss είναι μια επιφάνεια που επιλέγουμε, η οποία δεν είναι απαραίτητο να συμπίπτει με μια πραγματική επιφάνεια. Εξηγήστε (Δίνεται ότι ε 0 = C 2 /Nm 2 ) Συνθήκες που πρέπει να ικανοποιεί η επιφάνεια Gauss Προσπαθήστε να επιλέξετε μια επιφάνεια η οποία να ικανοποιεί μία ή περισσότερες από τις παρακάτω συνθήκες: Η τιμή του ηλεκτρικού πεδίου μπορεί να θεωρηθεί σταθερή, λόγω συμμετρίας, σε ολόκληρη την επιφάνεια. Το εσωτερικό γινόμενο μπορεί να εφραστεί ως απλό αλγεβρικό γινόμενο EdA, επειδή τα διανύσματα και E dείναι A παράλληλα. da Το εσωτερικό γινόμενο είναι ίσο με E 0, επειδή τα διανύσματα και είναι κάθετα μεταξύ τους. E da Το ηλεκτρικό πεδίο είναι ίσο με μηδέν στο συγκεκριμένο τμήμα επιφάνειας. Αν η κατανομή φορτίου δεν έχει επαρκή συμμετρία, ώστε να μπορεί να βρεθεί επιφάνεια Gauss η οποία θα ικανοποιεί αυτές τις συνθήκες, τότε ο νόμος του Gauss θα μας φανεί χρήσιμος στον προσδιορισμό του ηλεκτρικού πεδίου της συγκεκριμένης κατανομής. Το ηλεκτρικό πεδίο που δημιουργεί μια σφαιρικά συμμετρική κατανομή φορτίου (1) Επιλέγουμε ως επιφάνεια Gauss μια σφαίρα. Για r > α q E E da EdA є Q Q E k 2 e 2 4πє r r o εντός o Το ηλεκτρικό πεδίο που δημιουργεί μια σφαιρικά συμμετρική κατανομή φορτίου (2) Επιλέγουμε ως επιφάνεια Gauss μια σφαίρα, με r < α. q εντός < Q q εντός = ρ (4/3πr 3 ) q E E da EdA є qεντός Q E k 2 e r 3 4πє r α o εντός o Το ηλεκτρικό πεδίο που δημιουργεί μια σφαιρικά συμμετρική κατανομή φορτίου (3) Στο εσωτερικό της σφαίρας, το E μεταβάλλεται γραμμικά συναρτήσει του r. Καθώς η ακτίνα r 0, το πεδίο E 0. Το πεδίο στο εξωτερικό της σφαίρας είναι το ίδιο με εκείνο ενός σημειακού φορτίου που βρίσκεται στο κέντρο της σφαίρας. 4

6 7/15/2014 Το ηλεκτρικό πεδίο σε απόσταση r από μια φορτισμένη ευθεία Επιλέγουμε μια κυλινδρική κατανομή φορτίου. Ο κύλινδρος έχει ακτίνα r και μήκος ℓ. Στο καμπύλο τμήμα της επιφάνειας, το πεδίο E έχει σταθερό μέτρο και είναι κάθετο στην επιφάνεια σε κάθε σημείο της. Υπολογίζουμε το πεδίο χρησιμοποιώντας τον νόμο του Gauss. E E da EdA Το ηλεκτρικό πεδίο που δημιουργεί μια φορτισμένη ευθεία (συνέχεια) Η όψη από τη βάση του κύλίνδρου δείχνει ότι το πεδίο είναι κάθετο στην καμπύλη επιφάνεια. Η ροή που διέρχεται από τις βάσεις του κυλίνδρου είναι μηδενική, καθώς το πεδίο είναι παράλληλο με αυτές τις επιφάνειες. qεντός єo λ E 2πr єo E λ λ 2ke 2πєo r r Το ηλεκτρικό πεδίο που δημιουργεί ένα φορτισμένο επίπεδο Το ηλεκτρικό πεδίο που δημιουργεί ένα φορτισμένο επίπεδο (συνέχεια) Το πεδίοe πρέπει να είναι κάθετο στο επίπεδο και να έχει το ίδιο μέτρο σε όλα τα σημεία που ισαπέχουν από το επίπεδο. Το συνολικό φορτίο στην επιφάνεια είναι σa. Εφαρμόζουμε τον νόμο του Gauss: Επιλέγουμε ως επιφάνεια Gauss έναν μικρό κύλινδρο με άξονα κάθετο στο φορτισμένο επίπεδο. Επειδή το πεδίοe είναι παράλληλο στην καμπύλη επιφάνεια του κυλίνδρου, το εμβαδόν αυτής της επιφάνειας δεν λαμβάνεται υπόψη στο επιφανειακό ολοκλήρωμα. E 2EA σa σ και E єo 2єo Παρατηρήστε ότι το πεδίο δεν εξαρτάται από την ακτίνα r. Άρα το πεδίο είναι παντού ομογενές. Η ροή που διέρχεται από κάθε βάση του κυλίνδρου είναι EA οπότε η συνολική ροή είναι 2EA. Οι ιδιότητες ενός αγωγού που βρίσκεται σε ηλεκτροστατική ισορροπία Όταν δεν υπάρχει κίνηση φορτίου σε έναν αγωγό, τότε λέμε ότι ο αγωγός είναι σε ηλεκτροστατική ισορροπία. Το ηλεκτρικό πεδίο είναι ίσο με μηδέν σε κάθε σημείο του εσωτερικού του αγωγού. Είτε ο αγωγός είναι κοίλος είτε συμπαγής. Αν ο αγωγός είναι μονωμένος και φέρει φορτίο, τότε αυτό βρίσκεται στην επιφάνειά του. Το ηλεκτρικό πεδίο σε ένα σημείο που βρίσκεται ακριβώς έξω από έναν φορτισμένο αγωγό είναι κάθετο στην επιφάνεια του αγωγού και έχει μέτρο σ/єo. Όπου s είναι η επιφανειακή πυκνότητα φορτίου στο συγκεκριμένο σημείο. Σε έναν αγωγό με ακανόνιστο σχήμα, η επιφανειακή πυκνότητα φορτίου παίρνει τη μεγαλύτερη τιμή της σε θέσεις όπου η ακτίνα καμπυλότητας της επιφάνειας είναι ελάχιστη. Ιδιότητα 1: Πεδίοεντός = 0 Θεωρούμε μια αγώγιμη πλάκα σε ένα εξωτερικό ηλεκτρικό πεδίο. Αν το πεδίο στο εσωτερικό του αγωγού ήταν μη μηδενικό, τότε τα ελεύθερα ηλεκτρόνια του αγωγού θα δέχονταν μια ηλεκτρική δύναμη. Τα ηλεκτρόνια αυτά θα επιταχύνονταν. Τα ηλεκτρόνια δεν θα βρίσκονταν σε ισορροπία. Επομένως, στο εσωτερικό του αγωγού δεν υπάρχει ηλεκτρικό πεδίο. 5

7 7/15/2014 Ιδιότητα 1: Πεδίο εντός = 0 (συνέχεια) Πριν από την εφαρμογή του εξωτερικού πεδίου, τα ελεύθερα ηλεκτρόνια είναι κατανεμημένα ομοιόμορφα σε ολόκληρο τον αγωγό. Όταν εφαρμοστεί το εξωτερικό πεδίο, τα ελεύθερα ηλεκτρόνια ανακατανέμονται μέχρι το μέτρο του εσωτερικού πεδίου να είναι ίσο με το μέτρο του εξωτερικού πεδίου. Στο εσωτερικό του αγωγού, το συνολικό πεδίο είναι ίσο με μηδέν. Η ανακατανομή γίνεται μέσα σε s και μπορεί να θεωρηθεί ακαριαία. Αν ο αγωγός είναι κοίλος, τότε το ηλεκτρικό πεδίο στο εσωτερικό του είναι επίσης ίσο με μηδέν. Είτε θεωρήσουμε σημεία επάνω στον αγωγό είτε σημεία της κοιλότητας εντός του αγωγού. Ιδιότητα 2: Το φορτίο βρίσκεται στην επιφάνεια του αγωγού Επιλέγουμε μια επιφάνεια Gauss που βρίσκεται στο εσωτερικό του αγωγού, αλλά κοντά στην πραγματική επιφάνεια. Το ηλεκτρικό πεδίο στο εσωτερικό του αγωγού είναι ίσο με μηδέν (ιδιότητα 1). Η συνολική ροή που διέρχεται από την επιφάνεια Gauss είναι ίση με μηδέν. Εφόσον μπορούμε να θεωρήσουμε ότι η επιφάνεια Gauss βρίσκεται οσοδήποτε κοντά στην πραγματική επιφάνεια, συνεπάγεται ότι στο εσωτερικό της επιφάνειας δεν μπορεί να υπάρχει φορτίο. Ιδιότητα 2: Το φορτίο βρίσκεται στην επιφάνεια του αγωγού (συνέχεια) Εφόσον λοιπόν δεν μπορεί να υπάρχει φορτίο στο εσωτερικό της επιφάνειας, το όποιο συνολικό φορτίο φέρει ο αγωγός πρέπει να βρίσκεται επάνω στην επιφάνειά του. Ο νόμος του Gauss δεν επισημαίνει πώς κατανέμεται αυτό το φορτίο, αλλά μόνο ότι πρέπει να βρίσκεται στην επιφάνεια του αγωγού. Ιδιότητα 3: Το μέτρο και η κατεύθυνση του πεδίου Επιλέγουμε ως επιφάνεια Gausss έναν κύλινδρο. Το πεδίο πρέπει να είναι κάθετο στην επιφάνεια. Αν το E είχε παράλληλη συνιστώσα, τότε τα φορτία θα δέχονταν μια δύναμη, θα επιταχύνονταν επί της επιφάνειας και, επομένως, δεν θα βρίσκονταν σε ισορροπία. Ιδιότητα 3: Το μέτρο και η κατεύθυνση του πεδίου (συνέχεια) Η συνολική ροή που διέρχεται από την επιφάνεια Gauss είναι ίση με εκείνη που διέρχεται μόνο από την επίπεδη βάση που βρίσκεται εκτός του αγωγού. Το πεδίο σε αυτό το σημείο είναι κάθετο στην επιφάνεια. Εφαρμόζουμε σa τον νόμο σ του Gauss: E EA και E є є o o Σφαίρα και σφαιρικό κέλυφος Παράδειγμα (1) Μοντελοποίηση Αυτό το παράδειγμα είναι παρόμοιο με εκείνο της σφαίρας. Σε αυτή την περίπτωση, μια φορτισμένη σφαίρα περιβάλλεται από ένα κέλυφος. Προσέξτε τα φορτία. Κατηγοριοποίηση Το σύστημα έχει σφαιρική συμμετρία. Μπορούμε να εφαρμόσουμε τον νόμο του Gauss. 6

8 7/15/2014 Σφαίρα και σφαιρικό κέλυφος Παράδειγμα (2) Ανάλυση Σχεδιάστε μια σφαίρα Gauss μεταξύ της επιφάνειας της συμπαγούς σφαίρας και της εσωτερικής επιφάνειας του κελύφους. Περιοχή 2 α < r < b Το φορτίο στο εσωτερικό της επιφάνειας είναι +Q. Λόγω της σφαιρικής συμμετρίας, οι γραμμές του ηλεκτρικού πεδίου κατευθύνονται ακτινικά προς τα έξω και το ηλεκτρικό πεδίο έχει σταθερό μέτρο επάνω στην επιφάνεια Gauss. Σφαίρα και σφαιρικό κέλυφος Παράδειγμα (3) Ανάλυση (συνέχεια) Μπορούμε να υπολογίσουμε το ηλεκτρικό πεδίο σε κάθε περιοχή. Q E1 ke r ( για r α) 3 α Q E2 ke ( για α r b) 2 r E 0 ( για b r c) 3 E Q ke 2 r ( για r c) 4 Σφαίρα και σφαιρικό κέλυφος Παράδειγμα (4) Ολοκλήρωση Ελέγξτετο συνολικό φορτίο. Σκεφτείτε άλλους πιθανούς συνδυασμούς. Τι θα συνέβαινε αν η σφαίρα ήταν αγώγιμη αντί για μονωτική; 7

9 Τέλος Νόμος του Gauss

10 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Ηλεκτρομαγνητισμός 3

11 Σημειώματα

12 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Ηλεκτρομαγνητισμός 5

13 Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Βαρουτάς Δημήτρης. «Ηλεκρομαγνητισμός - Οπτική - Σύγχρονη Φυσική. Ηλεκτρομαγνητισμός». Έκδοση: 1.0. Αθήνα Διαθέσιμο από τη δικτυακή διεύθυνση: Ηλεκτρομαγνητισμός 6

14 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Ηλεκτρομαγνητισμός 7

15 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. Ηλεκτρομαγνητισμός 8

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 2: Ο νόμος του Gauss Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου

Διαβάστε περισσότερα

Ηλεκτρική ροή. Εμβαδόν=Α

Ηλεκτρική ροή. Εμβαδόν=Α Ηλεκτρική ροή Hλεκτρική ροή: φυσικό μέγεθος (μονόμετρο) που δηλώνει τον αριθμό των δυναμικών γραμών ενός ηλεκτρικού πεδίου που διαπερνούν μία επιφάνεια. Εμβαδόν=Α Για παράδειγμα, η ηλεκτρική ροή για την

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ

ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙΙ Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Σελίδα 2 ΑΣΚΗΣΕΙΣ... 4 Σελίδα 3 ΑΣΚΗΣΕΙΣ Ηλεκτροστατική 1. Στις κορυφές κανονικού n-πλεύρου τοποθετούνται ίδια φορτία q. Να δειχθεί ότι η

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS 1 1. ΗΛΕΚΤΡΙΚΗ ΡΟΗ O νόμος του Gauss και o νόμος του Coulomb είναι δύο εναλλακτικές διατυπώσεις της ίδιας βασικής σχέσης μεταξύ μιας κατανομής φορτίου και του

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 3: Ο Νόμος του Gauss. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 3: Ο Νόμος του Gauss. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 3: Ο Νόμος του Gauss Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία των δυναμικών γραμμών Παραδείγματα δυναμικών γραμμών σημειακού φορτίου,

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΟΠΤΙΚΗ (Ηλεκτροµαγνητισµός-Οπτική) Γεωµετρική Οπτική (Μάθηµα

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Στοιχεία Ηλεκτρικών Κυκλωμάτων

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Στοιχεία Ηλεκτρικών Κυκλωμάτων Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Στοιχεία Ηλεκτρικών Κυκλωμάτων Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Νόμος Faraday Η μεταβαλλόμενη μαγνητική

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Στοιχεία Ηλεκτρικών Κυκλωμάτων

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Στοιχεία Ηλεκτρικών Κυκλωμάτων Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Στοιχεία Ηλεκτρικών Κυκλωμάτων Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Νόμος Ampere Το ολοκλήρωμα του μαγνητικού

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 3: Η συνάρτηση Green σε επίπεδη γεωμετρία και η μέθοδος των ειδώλων σε σφαιρική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Αρχιτεκτονική και Οπτική Επικοινωνία 1 - Αναπαραστάσεις

Αρχιτεκτονική και Οπτική Επικοινωνία 1 - Αναπαραστάσεις Αρχιτεκτονική και Οπτική Επικοινωνία 1 - Αναπαραστάσεις Ενότητα: ΜΕΘΟΔΟΣ MONGE Διδάσκων: Γεώργιος Ε. Λευκαδίτης Τμήμα: Αρχιτεκτόνων Μηχανικών ΜΕΘΟΔΟΣ MONGE ΚΕΦΑΛΑΙΟ 1 ΠΑΡΑΣΤAΣΗ ΘΕΜΕΛΙΩΔΩΝ ΓΕΩΜΕΤΡΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 12: Συνάρτηση Green από ιδιοσυναρτήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει την συνάρτηση Green από

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5

Διαβάστε περισσότερα

Ορισμός κανονικής τ.μ.

Ορισμός κανονικής τ.μ. Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Διδακτική Απειροστικού Λογισμού

Διδακτική Απειροστικού Λογισμού Διδακτική Απειροστικού Λογισμού Ενότητα 4: Θέματα σχετικά με τη διδασκαλία της συνέχειας. Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 4. ΣΥΝΕΧΕΙΑ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Σε μια τάξη Γ Λυκείου στα μαθηματικά κατεύθυνσης

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 12: Ελαχιστοποίηση κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ελαχιστοποίηση κόστους

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 1

Διδακτική των εικαστικών τεχνών Ενότητα 1 Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 3

Διδακτική των εικαστικών τεχνών Ενότητα 3 Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός

Διαβάστε περισσότερα

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 6: Εναλλασσόμενα τριφασικά κυκλώματα μόνιμης κατάστασης Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 17: Μαγνητοστατική σε υλικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει τα στοιχεία θεωρίας που αφορούν

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΟΠΤΙΚΗ (Πεδία και Κύµατα) Φύση του φωτός Γεωµετρική Οπτική

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Κινητική

Γενική Φυσική Ενότητα: Κινητική Γενική Φυσική Ενότητα: Κινητική Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις κινητικής... 4 1.1 Άσκηση 1... 4 1.2 Άσκηση 2... 4 1.3 Άσκηση 3... 4 1.4 Άσκηση 4... 4 1.5 Άσκηση

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 2: Απόδειξη Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Η ΔΙΑΧΥΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΕΜΒΑΔΟΥ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ

Διαβάστε περισσότερα

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 7: Βασικές αρχές ηλεκτρομαγνητισμού Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροάθμιας εκπαίδευσης Ενότητα : Κρίσιμα συμάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό 3.4. H συνάρτηση = α + Η ευθεία με εξίσωση =

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ασκήσεις Μικροηλεκτρονικής

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ασκήσεις Μικροηλεκτρονικής Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ασκήσεις Μικροηλεκτρονικής Αραπογιάννη Αγγελική Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Σελίδα 2 1. Εισαγωγή... 4 2. Ανάπτυξη Κρυστάλλων... 4 3. Οξείδωση του πυριτίου...

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 1: E-L Συστήματα Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 13: Καμπύλες κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Μορφές καμπυλών κόστους Καμπύλη

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΑ ΠΕΔΙΑ ΣΤΗΝ ΥΛΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 5: H έννοια της μαθηματικής δραστηριότητας, H Θεωρία Διδακτικών Καταστάσεων ως πλαίσιο σχεδιασμού δραστηριοτήτων Δέσποινα Πόταρη, Γιώργος

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 7: Universal motor Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενο ενότητας (1 από 2) Τύποι τρανζίστορ επίδρασης πεδίου (JFET, MOSFET, MESFET). Ομοιότητες και διαφορές των FET με τα διπολικά

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Φιλοσοφία της Ιστορίας και του Πολιτισμού

Φιλοσοφία της Ιστορίας και του Πολιτισμού Φιλοσοφία της Ιστορίας και του Πολιτισμού Ενότητα 1: Εισαγωγή στις έννοιες Ιστορίας και Πολιτισμού Λάζου Άννα Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Aθηνών Τμήμα Φιλοσοφίας Παιδαγωγικής και Ψυχολογίας Φιλοσοφία

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ηλεκτρικά Κυκλώματα Γ. Βούλγαρης 2 Ασκήσεις κατανομές φορτίου 1) Ένα γραμμικό φορτίο με

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 14: Προσφορά επιχείρησης Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Προσφορά επιχείρησης

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 2: Εισοδηματικοί και άλλοι περιορισμοί στην επιλογή Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών

Διαβάστε περισσότερα

Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης

Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Ενότητα 5: Δρ. Θεοκλής-Πέτρος Ζούνης Σχολή : ΟΠΕ Τμήμα : Ε.Μ.Μ.Ε. Περιεχόμενα ενότητας Τι ορίζουμε ως Μάρκετινγκ ενός Πολιτιστικού Οργανισμού; Τα 4

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 23: Υπολογισμοί σε Κβαντικά Κυκλώματα ΙΙ Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Υπολογισμοί

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 18: Νόμοι Maxwell Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσίασει τις εξισώσεις Maxwell. 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 4: Η έννοια της γωνίας και του εμβαδού Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό ΟΝΟΜΑ: 1) 2) ΗΜΕΡΟΜΗΝΙΑ:

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 7: Εξίσωση Laplace σε σφαιρικές συντεταγμένες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει και να επιλύσει

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 8: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ) για συστήματα διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Βασιλική Λεβέντη.

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 1: Έλεγχος Μηχανών Συνεχούς Ρεύματος με ξένη διέγερση Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 10 Μοριακή Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 (α) Να υπολογιστεί το ολικό πλάτος του κανονικοποιημένου δεσμικού

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 8: Πλεόνασμα καταναλωτή Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Χρηματικά μέτρα των ωφελειών

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα