Κεφάλαιο Η2. Ο νόµος του Gauss

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο Η2. Ο νόµος του Gauss"

Transcript

1 Κεφάλαιο Η2 Ο νόµος του Gauss

2 Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική δύναµη που αναπτύσσεται µεταξύ σηµειακών φορτίων ακολουθεί τον νόµο του αντίστροφου τετραγώνου. Μας διευκολύνει στον υπολογισµό του ηλεκτρικού πεδίου κατανοµών φορτίου µε υψηλό βαθµό συµµετρίας. Ο νόµος του Gauss είναι σηµαντικός στην κατανόηση και την επαλήθευση των ιδιοτήτων των αγωγών που βρίσκονται σε ηλεκτροστατική ισορροπία. Εισαγωγή

3 Ηλεκτρική ροή Η ηλεκτρική ροή ορίζεται ως το γινόµενο του µέτρου του ηλεκτρικού πεδίου επί το εµβαδόν A της επιφάνειας που είναι κάθετη στις γραµµές του πεδίου. Φ E = EA Μονάδες: N m 2 / C Ενότητα Η2.1

4 Η ηλεκτρική ροή που διέρχεται από µια τυχαία επιφάνεια υπό γωνία Η ηλεκτρική ροή είναι ανάλογη του πλήθους των γραµµών του ηλεκτρικού πεδίου που διαπερνούν την επιφάνεια. Οι γραµµές του πεδίου µπορεί να σχηµατίζουν γωνία θ µε την κάθετο στην επιφάνεια. Σε αυτή την περίπτωση, Φ E = EA cos θ Ενότητα Η2.1

5 Ηλεκτρική ροή Κατανόηση της εξίσωσης Η ηλεκτρική ροή έχει µέγιστη τιµή όταν η επιφάνεια είναι κάθετη στο πεδίο. θ = 0 Η ηλεκτρική ροή έχει µηδενική τιµή όταν η επιφάνεια είναι παράλληλη στο πεδίο. θ = 90 Αν το πεδίο δεν έχει την ίδια τιµή σε κάθε σηµείο της επιφάνειας, τότε η σχέση Φ = EA cos θ ισχύει µόνο για µια στοιχειώδη επιφάνεια ΔΑ. Ενότητα Η2.1

6 Ηλεκτρική ροή Γενικά Στην πιο γενική περίπτωση, εξετάζουµε ένα στοιχειώδες τµήµα επιφάνειας.!!!" = E! A cosè = E #! A E i i i i i Η σχέση αυτή γράφεται Φ = lim E ΔA Φ = i r r E da E i i ΔA 0 E επ ιφάνεια Η παραπάνω εξίσωση είναι ένα επιφανειακό ολοκλήρωµα, δηλαδή πρέπει να υπολογιστεί σε ολόκληρη την υπό εξέταση επιφάνεια. Γενικά, η τιµή της ηλεκτρικής ροής εξαρτάται τόσο από τη µορφή του πεδίου όσο και από την επιφάνεια. Ενότητα Η2.1

7 Ηλεκτρική ροή Κλειστή επιφάνεια (1) Θεωρούµε µια κλειστή επιφάνεια. Τα διανύσµατα!a! i δείχνουν προς διαφορετικές κατευθύνσεις. Σε κάθε σηµείο, είναι κάθετα στην επιφάνεια. Λόγω σύµβασης, δείχνουν προς τα έξω. Ενότητα Η2.1

8 Ηλεκτρική ροή Κλειστή επιφάνεια (2) Στο στοιχείο (1), οι γραµµές του πεδίου διαπερνούν την επιφάνεια από το εσωτερικό προς το εξωτερικό. θ < 90 o και η ροή Φ είναι θετική. Στο στοιχείο (2), οι γραµµές του πεδίου εφάπτονται στην επιφάνεια. θ = 90 o και η ροή Φ = 0. Στο στοιχείο (3), οι γραµµές του πεδίου διαπερνούν την επιφάνεια από το εξωτερικό προς το εσωτερικό. 180 o > θ > 90 o και η ροή Φ είναι αρνητική. Ενότητα Η2.1

9 Ηλεκτρική ροή Κλειστή επιφάνεια (3) Η συνολική ηλεκτρική ροή που διέρχεται από την επιφάνεια είναι ανάλογη του συνολικού πλήθους των γραµµών που εξέρχονται από την επιφάνεια. Ο συνολικός αριθµός των γραµµών ισούται µε τη διαφορά του πλήθους των γραµµών που εξέρχονται από την επιφάνεια µείον το πλήθος των γραµµών που εισέρχονται σε αυτήν. Αν E n είναι η συνιστώσα του πεδίου η οποία είναι κάθετη στην επιφάνεια, τότε!!! = E " da = E da E "# "# n Η ολοκλήρωση γίνεται επί της κλειστής επιφάνειας. Ενότητα Η2.1

10 Ροή που διέρχεται από κύβο Παράδειγµα Οι γραµµές του ηλεκτρικού πεδίου διέρχονται κάθετα από δύο έδρες του κύβου και είναι παράλληλες στις άλλες τέσσερις. Για την έδρα 1, E = El 2 Για την έδρα 2, E = El 2 Για τις υπόλοιπες έδρες, E = 0 Εποµένως, E συν. = 0 Ενότητα Η2.1

11 Karl Friedrich Gauss Συνεισέφερε στους παρακάτω τοµείς: Ηλεκτροµαγνητισµό Θεωρία αριθµών Στατιστική Μη ευκλείδεια γεωµετρία Μηχανική των τροχιών των κοµητών Ήταν ένας από τους ιδρυτές της Γερµανικής Ένωσης Μαγνητισµού. Η Γ.Ε.Μ. µελετά το µαγνητικό πεδίο της Γης. Ενότητα Η2.2

12 Ο νόµος του Gauss Εισαγωγή Ο νόµος του Gauss εκφράζει τη γενική σχέση µεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από µια κλειστή επιφάνεια και του φορτίου που αυτή περιέχει. Η κλειστή επιφάνεια συχνά λέγεται και επιφάνεια Gauss. Ο νόµος του Gauss έχει θεµελιώδη σηµασία στη µελέτη των ηλεκτρικών πεδίων. Ενότητα Η2.2

13 Ο νόµος του Gauss Γενικά (1) Στο κέντρο µιας σφαίρας µε ακτίνα r βρίσκεται ένα θετικό σηµειακό φορτίο q. Το µέτρο του ηλεκτρικού πεδίου σε κάθε σηµείο της επιφάνειας της σφαίρας είναι: E = k e q / r 2 Ενότητα Η2.2

14 Ο νόµος του Gauss Γενικά (2) Οι γραµµές του πεδίου κατευθύνονται ακτινικά προς τα έξω και είναι κάθετες σε κάθε σηµείο της επιφάνειας.!!! E = E " da = E da "# "# Αυτή είναι η συνολική ροή που διέρχεται από την επιφάνεια Gauss στην προκειµένη περίπτωση, τη σφαίρα µε ακτίνα r. Γνωρίζουµε ότι E = k e q/r 2 και A σφαίρας = 4πr 2 Φ = 4πk q = E e q є 0 Ενότητα Η2.2

15 Ο νόµος του Gauss Γενικά (3) Η συνολική ηλεκτρική ροή που διέρχεται από οποιαδήποτε κλειστή επιφάνεια γύρω από ένα σηµειακό φορτίο q δίνεται από τον λόγο q/є o και δεν εξαρτάται από το σχήµα της επιφάνειας αυτής. Η συνολική ηλεκτρική ροή που διέρχεται από µια κλειστή επιφάνεια η οποία δεν περικλείει φορτίο είναι ίση µε µηδέν. Αφού το ηλεκτρικό πεδίο που δηµιουργείται από πολλά φορτία ισούται µε το διανυσµατικό άθροισµα των επιµέρους ηλεκτρικών πεδίων που δηµιουργεί κάθε φορτίο ξεχωριστά, η ροή που διέρχεται από οποιαδήποτε κλειστή επιφάνεια δίνεται από τη σχέση:!!!!! E! da = E + E! da " " ( 1 2 ) Ενότητα Η2.2

16 Eπιφάνεια Gauss Παράδειγµα Το φορτίο µπορεί να περιβάλλεται από κλειστές επιφάνειες διαφόρων σχηµάτων. Μόνο η επιφάνεια S 1 είναι σφαιρική. Έτσι επιβεβαιώνεται ότι η συνολική ηλεκτρική ροή που διέρχεται από οποιαδήποτε κλειστή επιφάνεια, η οποία περιβάλλει ένα σηµειακό φορτίο q, δίνεται από τον λόγο q/є o και δεν εξαρτάται από το σχήµα της επιφάνειας. Ενότητα Η2.2

17 Επιφάνεια Gauss Παράδειγµα 2 Το φορτίο βρίσκεται εκτός της κλειστής επιφάνειας τυχαίου σχήµατος. Κάθε γραµµή του πεδίου η οποία εισέρχεται στην επιφάνεια εξέρχεται από κάποιο άλλο σηµείο της επιφάνειας. Έτσι επιβεβαιώνεται ότι η συνολική ηλεκτρική ροή που διέρχεται από µια κλειστή επιφάνεια, η οποία δεν περιβάλλει φορτίο, είναι ίση µε µηδέν. Ενότητα Η2.2

18 Ο νόµος του Gauss (τελική διαφάνεια) Η µαθηµατική µορφή του νόµου του Gauss είναι: Φ = r r qεντός E E da = є o Όπου q εντός είναι το συνολικό φορτίο εντός της επιφάνειας. Το E! παριστάνει το ηλεκτρικό πεδίο σε οποιοδήποτε σηµείο της επιφάνειας. E! είναι το συνολικό ηλεκτρικό πεδίο και µπορεί να περιλαµβάνει συνεισφορές από φορτία που βρίσκονται τόσο στο εσωτερικό όσο και στο εξωτερικό της επιφάνειας. Αν και, θεωρητικά, µπορούµε να λύσουµε τη σχέση του νόµου του Gauss ως προς E! για οποιαδήποτε διάταξη φορτίων, στην πράξη χρησιµοποιείται µόνο σε περιπτώσεις όπου υπάρχει συµµετρία. Ενότητα Η2.2

19 Εφαρµογή του νόµου του Gauss Για να χρησιµοποιήσετε τον νόµο του Gauss, επιλέξτε µια επιφάνεια Gauss η οποία επιτρέπει την απλούστευση του επιφανειακού ολοκληρώµατος και τον υπολογισµό του ηλεκτρικού πεδίου. Εκµεταλλευτείτε τη συµµετρία. Υπενθυµίζουµε ότι η επιφάνεια Gauss είναι µια επιφάνεια που επιλέγουµε, η οποία δεν είναι απαραίτητο να συµπίπτει µε µια πραγµατική επιφάνεια. Ενότητα Η2.3

20 Συνθήκες που πρέπει να ικανοποιεί η επιφάνεια Gauss Προσπαθήστε να επιλέξετε µια επιφάνεια η οποία να ικανοποιεί µία ή περισσότερες από τις παρακάτω συνθήκες: Η τιµή του ηλεκτρικού πεδίου µπορεί να θεωρηθεί σταθερή, λόγω συµµετρίας, σε ολόκληρη την επιφάνεια.!! Το εσωτερικό γινόµενο E!dA µπορεί να εφραστεί ως απλό αλγεβρικό γινόµενο EdA, επειδή τα διανύσµατα E! και da! είναι παράλληλα. Το εσωτερικό γινόµενο είναι ίσο µε 0, επειδή τα διανύσµατα E! και da! είναι κάθετα µεταξύ τους. Το ηλεκτρικό πεδίο είναι ίσο µε µηδέν στο συγκεκριµένο τµήµα επιφάνειας. Αν η κατανοµή φορτίου δεν έχει επαρκή συµµετρία, ώστε να µπορεί να βρεθεί επιφάνεια Gauss η οποία θα ικανοποιεί αυτές τις συνθήκες, τότε ο νόµος του Gauss θα µας φανεί χρήσιµος στον προσδιορισµό του ηλεκτρικού πεδίου της συγκεκριµένης κατανοµής. Ενότητα Η2.3

21 Το ηλεκτρικό πεδίο που δηµιουργεί µια σφαιρικά συµµετρική κατανοµή φορτίου (1) Επιλέγουµε ως επιφάνεια Gauss µια σφαίρα. Για r > α r r Φ = E da = EdA = E Q Q E = = k 2 e 2 4πє r r o q εντός є o Ενότητα Η2.3

22 Το ηλεκτρικό πεδίο που δηµιουργεί µια σφαιρικά συµµετρική κατανοµή φορτίου (2) Επιλέγουµε ως επιφάνεια Gauss µια σφαίρα, µε r < α. q εντός < Q q εντός = ρ (4/3πr 3 ) r r Φ = E da = EdA = E qεντός Q E = = k 2 e r 3 4πє r α o q εντός є o Ενότητα Η2.3

23 Το ηλεκτρικό πεδίο που δηµιουργεί µια σφαιρικά συµµετρική κατανοµή φορτίου (3) Στο εσωτερικό της σφαίρας, το E µεταβάλλεται γραµµικά συναρτήσει του r. Καθώς η ακτίνα r 0, το πεδίο E 0. Το πεδίο στο εξωτερικό της σφαίρας είναι το ίδιο µε εκείνο ενός σηµειακού φορτίου που βρίσκεται στο κέντρο της σφαίρας. Ενότητα Η2.3

24 Το ηλεκτρικό πεδίο σε απόσταση r από µια φορτισµένη ευθεία Επιλέγουµε µια κυλινδρική κατανοµή φορτίου. Ο κύλινδρος έχει ακτίνα r και µήκος l. Στο καµπύλο τµήµα της επιφάνειας, το πεδίο έχει σταθερό µέτρο και είναι κάθετο στην επιφάνεια σε κάθε σηµείο της. Υπολογίζουµε το πεδίο χρησιµοποιώντας τον νόµο του Gauss. r r q Φ E = E da = EdA = є E E ( 2πrl ) = λl є λ λ = = 2ke 2πє r r o o εντός o E! Ενότητα Η2.3

25 Το ηλεκτρικό πεδίο που δηµιουργεί µια φορτισµένη ευθεία (συνέχεια) Η όψη από τη βάση του κύλίνδρου δείχνει ότι το πεδίο είναι κάθετο στην καµπύλη επιφάνεια. Η ροή που διέρχεται από τις βάσεις του κυλίνδρου είναι µηδενική, καθώς το πεδίο είναι παράλληλο µε αυτές τις επιφάνειες. Ενότητα Η2.3

26 Το ηλεκτρικό πεδίο που δηµιουργεί ένα φορτισµένο επίπεδο Το πεδίο E! πρέπει να είναι κάθετο στο επίπεδο και να έχει το ίδιο µέτρο σε όλα τα σηµεία που ισαπέχουν από το επίπεδο. Επιλέγουµε ως επιφάνεια Gauss έναν µικρό κύλινδρο µε άξονα κάθετο στο φορτισµένο επίπεδο. Επειδή το πεδίο E! είναι παράλληλο στην καµπύλη επιφάνεια του κυλίνδρου, το εµβαδόν αυτής της επιφάνειας δεν λαµβάνεται υπόψη στο επιφανειακό ολοκλήρωµα. Η ροή που διέρχεται από κάθε βάση του κυλίνδρου είναι EA οπότε η συνολική ροή είναι 2EA. Ενότητα Η2.3

27 Το ηλεκτρικό πεδίο που δηµιουργεί ένα φορτισµένο επίπεδο (συνέχεια) Το συνολικό φορτίο στην επιφάνεια είναι σa. Εφαρµόζουµε τον νόµο του Gauss: σa Φ E = 2 EA = και E = є o σ 2є Παρατηρήστε ότι το πεδίο δεν εξαρτάται από την ακτίνα r. Άρα το πεδίο είναι παντού οµογενές. o Ενότητα Η2.3

28 Οι ιδιότητες ενός αγωγού που βρίσκεται σε ηλεκτροστατική ισορροπία Όταν δεν υπάρχει κίνηση φορτίου σε έναν αγωγό, τότε λέµε ότι ο αγωγός είναι σε ηλεκτροστατική ισορροπία. Το ηλεκτρικό πεδίο είναι ίσο µε µηδέν σε κάθε σηµείο του εσωτερικού του αγωγού. Είτε ο αγωγός είναι κοίλος είτε συµπαγής. Αν ο αγωγός είναι µονωµένος και φέρει φορτίο, τότε αυτό βρίσκεται στην επιφάνειά του. Το ηλεκτρικό πεδίο σε ένα σηµείο που βρίσκεται ακριβώς έξω από έναν φορτισµένο αγωγό είναι κάθετο στην επιφάνεια του αγωγού και έχει µέτρο σ/є o. Όπου σ είναι η επιφανειακή πυκνότητα φορτίου στο συγκεκριµένο σηµείο. Σε έναν αγωγό µε ακανόνιστο σχήµα, η επιφανειακή πυκνότητα φορτίου παίρνει τη µεγαλύτερη τιµή της σε θέσεις όπου η ακτίνα καµπυλότητας της επιφάνειας είναι ελάχιστη. Ενότητα Η2.4

29 Ιδιότητα 1: Πεδίο εντός = 0 Θεωρούµε µια αγώγιµη πλάκα σε ένα εξωτερικό ηλεκτρικό πεδίο. Αν το πεδίο στο εσωτερικό του αγωγού ήταν µη µηδενικό, τότε τα ελεύθερα ηλεκτρόνια του αγωγού θα δέχονταν µια ηλεκτρική δύναµη. Τα ηλεκτρόνια αυτά θα επιταχύνονταν. Τα ηλεκτρόνια δεν θα βρίσκονταν σε ισορροπία. Εποµένως, στο εσωτερικό του αγωγού δεν υπάρχει ηλεκτρικό πεδίο. Ενότητα Η2.4

30 Ιδιότητα 1: Πεδίο εντός = 0 (συνέχεια) Πριν από την εφαρµογή του εξωτερικού πεδίου, τα ελεύθερα ηλεκτρόνια είναι κατανεµηµένα οµοιόµορφα σε ολόκληρο τον αγωγό. Όταν εφαρµοστεί το εξωτερικό πεδίο, τα ελεύθερα ηλεκτρόνια ανακατανέµονται µέχρι το µέτρο του εσωτερικού πεδίου να είναι ίσο µε το µέτρο του εξωτερικού πεδίου. Στο εσωτερικό του αγωγού, το συνολικό πεδίο είναι ίσο µε µηδέν. Η ανακατανοµή γίνεται µέσα σε s και µπορεί να θεωρηθεί ακαριαία. Αν ο αγωγός είναι κοίλος, τότε το ηλεκτρικό πεδίο στο εσωτερικό του είναι επίσης ίσο µε µηδέν. Είτε θεωρήσουµε σηµεία επάνω στον αγωγό είτε σηµεία της κοιλότητας εντός του αγωγού. Ενότητα Η2.4

31 Ιδιότητα 2: Το φορτίο βρίσκεται στην επιφάνεια του αγωγού Επιλέγουµε µια επιφάνεια Gauss που βρίσκεται στο εσωτερικό του αγωγού, αλλά κοντά στην πραγµατική επιφάνεια. Το ηλεκτρικό πεδίο στο εσωτερικό του αγωγού είναι ίσο µε µηδέν (ιδιότητα 1). Η συνολική ροή που διέρχεται από την επιφάνεια Gauss είναι ίση µε µηδέν. Εφόσον µπορούµε να θεωρήσουµε ότι η επιφάνεια Gauss βρίσκεται οσοδήποτε κοντά στην πραγµατική επιφάνεια, συνεπάγεται ότι στο εσωτερικό της επιφάνειας δεν µπορεί να υπάρχει φορτίο. Ενότητα Η2.4

32 Ιδιότητα 2: Το φορτίο βρίσκεται στην επιφάνεια του αγωγού (συνέχεια) Εφόσον λοιπόν δεν µπορεί να υπάρχει φορτίο στο εσωτερικό της επιφάνειας, το όποιο συνολικό φορτίο φέρει ο αγωγός πρέπει να βρίσκεται επάνω στην επιφάνειά του. Ο νόµος του Gauss δεν επισηµαίνει πώς κατανέµεται αυτό το φορτίο, αλλά µόνο ότι πρέπει να βρίσκεται στην επιφάνεια του αγωγού. Ενότητα Η2.4

33 Ιδιότητα 3: Το µέτρο και η κατεύθυνση του πεδίου Επιλέγουµε ως επιφάνεια Gausss έναν κύλινδρο. Το πεδίο πρέπει να είναι κάθετο στην επιφάνεια. Αν το E! είχε παράλληλη συνιστώσα, τότε τα φορτία θα δέχονταν µια δύναµη, θα επιταχύνονταν επί της επιφάνειας και, εποµένως, δεν θα βρίσκονταν σε ισορροπία. Ενότητα Η2.4

34 Ιδιότητα 3: Το µέτρο και η κατεύθυνση του πεδίου (συνέχεια) Η συνολική ροή που διέρχεται από την επιφάνεια Gauss είναι ίση µε εκείνη που διέρχεται µόνο από την επίπεδη βάση που βρίσκεται εκτός του αγωγού. Το πεδίο σε αυτό το σηµείο είναι κάθετο στην επιφάνεια. Εφαρµόζουµε τον νόµο του Gauss: σa σ Φ E = EA = και E = є є o o Ενότητα Η2.4

35 Σφαίρα και σφαιρικό κέλυφος Παράδειγµα (1) Μοντελοποίηση Αυτό το παράδειγµα είναι παρόµοιο µε εκείνο της σφαίρας. Σε αυτή την περίπτωση, µια φορτισµένη σφαίρα περιβάλλεται από ένα κέλυφος. Προσέξτε τα φορτία. Κατηγοριοποίηση Το σύστηµα έχει σφαιρική συµµετρία. Μπορούµε να εφαρµόσουµε τον νόµο του Gauss. Ενότητα Η2.4

36 Σφαίρα και σφαιρικό κέλυφος Παράδειγµα (2) Ανάλυση Σχεδιάστε µια σφαίρα Gauss µεταξύ της επιφάνειας της συµπαγούς σφαίρας και της εσωτερικής επιφάνειας του κελύφους. Περιοχή 2 α < r < b Το φορτίο στο εσωτερικό της επιφάνειας είναι +Q. Λόγω της σφαιρικής συµµετρίας, οι γραµµές του ηλεκτρικού πεδίου κατευθύνονται ακτινικά προς τα έξω και το ηλεκτρικό πεδίο έχει σταθερό µέτρο επάνω στην επιφάνεια Gauss. Ενότητα Η2.4

37 Σφαίρα και σφαιρικό κέλυφος Παράδειγµα (3) Ανάλυση (συνέχεια) Μπορούµε να υπολογίσουµε το ηλεκτρικό πεδίο σε κάθε περιοχή. Q E1 = ke r 3 α ( για r < α) Q E2 = ke 2 r ( για α < r < b) E = 0 ( για b < r < c) 3 Q E4 = ke ( για r > c) 2 r Ενότητα Η2.4

38 Σφαίρα και σφαιρικό κέλυφος Παράδειγµα (4) Ολοκλήρωση Ελέγξτε το συνολικό φορτίο. Σκεφτείτε άλλους πιθανούς συνδυασµούς. Τι θα συνέβαινε αν η σφαίρα ήταν αγώγιµη αντί για µονωτική; Ενότητα Η2.4

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου

Διαβάστε περισσότερα

Ηλεκτρική ροή. Εμβαδόν=Α

Ηλεκτρική ροή. Εμβαδόν=Α Ηλεκτρική ροή Hλεκτρική ροή: φυσικό μέγεθος (μονόμετρο) που δηλώνει τον αριθμό των δυναμικών γραμών ενός ηλεκτρικού πεδίου που διαπερνούν μία επιφάνεια. Εμβαδόν=Α Για παράδειγμα, η ηλεκτρική ροή για την

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 2: Ο νόμος του Gauss Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Κεφάλαιο 22 Νόµος του Gauss. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 22 Νόµος του Gauss. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 22 Νόµος του Gauss Περιεχόµενα Κεφαλαίου 22 Ηλεκτρική Ροή Ο Νόµος του Gauss Εφαρµογές του Νόµου του Gauss Πειραµατικές επιβεβαιώσεις για τους Νόµους των Gauss και Coulomb 22-1 Ηλεκτρική Ροή Ηλεκτρική

Διαβάστε περισσότερα

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)

ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) ΑΣΚΗΣΗ 1 ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση 30-06-08 ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) Α) Τρία σηµειακά ϕορτία τοποθετούνται στις κορυφές ενός τετραγώνου πλευράς α, όπως ϕαίνεται στο σχήµα 1. Υπολογίστε

Διαβάστε περισσότερα

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική.

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική. Ηλεκτρική δυναµική ενέργεια Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική. e o Έστω δοκιµαστικό φορτίο,

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014 ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 214 Ασκηση συνολικό φορτίο λεκτρικό φορτίο Q είναι κατανεμημένο σε σφαιρικό όγκο ακτίνας R με πυκνότητα ορτίου ανάλογη του

Διαβάστε περισσότερα

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014 Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,

Διαβάστε περισσότερα

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α.

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α. 1. Ένα σφαιρικό κέλυφος που θεωρούμε ότι έχει αμελητέο πάχος έχει ακτίνα α και φέρει φορτίο Q, ομοιόμορφα κατανεμημένο στην επιφάνειά του. Βρείτε την ένταση του ηλεκτρικού πεδίου στο εξωτερικό και στο

Διαβάστε περισσότερα

Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1

Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1 Ηλεκτρική Δυναμική Ενέργεια Ένα ζεύγος παράλληλων φορτισμένων μεταλλικών πλακών παράγει ομογενές ηλεκτρικό πεδίο Ε. Το έργο που παράγεται πάνω σε θετικό δοκιμαστικό φορτίο είναι: W W Fl q y q l q y Ορίζοντας

Διαβάστε περισσότερα

(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J.

(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J. 4 η Ομάδα Ασκήσεων Δύο πυκνωτές C=5 μf και C=40 μf συνδέονται παράλληλα στους ακροδέκτες πηγών τάσης VS=50 V και VS=75 V αντίστοιχα και φορτίζονται Στην συνέχεια αποσυνδέονται και συνδέονται μεταξύ τους,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ Μοντέλο ατόμου m p m n =1,7x10-27 Kg m e =9,1x10-31 Kg Πυρήνας: πρωτόνια (p + ) και νετρόνια (n) Γύρω από τον πυρήνα νέφος ηλεκτρονίων (e -

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

Andre-Marie Ampère Γάλλος φυσικός Ανακάλυψε τον ηλεκτροµαγνητισµό. Ασχολήθηκε και µε τα µαθηµατικά.

Andre-Marie Ampère Γάλλος φυσικός Ανακάλυψε τον ηλεκτροµαγνητισµό. Ασχολήθηκε και µε τα µαθηµατικά. Μαγνητικά πεδία Τα µαγνητικά πεδία δηµιουργούνται από κινούµενα ηλεκτρικά φορτία. Μπορούµε να υπολογίσουµε το µαγνητικό πεδίο που δηµιουργούν διάφορες κατανοµές ρευµάτων. Ο νόµος του Ampère χρησιµεύει

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό Κεφάλαιο Η3 Ηλεκτρικό δυναµικό Ηλεκτρικό δυναµικό Σε προηγούµενα κεφάλαια συνδέσαµε τη µελέτη του ηλεκτροµαγνητισµού µε τις προγενέστερες γνώσεις µας σχετικά µε τις δυνάµεις. Σε αυτό το κεφάλαιο, θα συνδέσουµε

Διαβάστε περισσότερα

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά πεδία

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά πεδία 1η ΠΑΡΟΥΣΙΑΣΗ Ηλεκτρικά πεδία Ηλεκτρισμός και μαγνητισμός Κλάδος της Φυσικής που μελετάει τα ηλεκτρικά και τα μαγνητικά φαινόμενα. (Σχεδόν) όλα τα φαινομενα που αντιλαμβανόμαστε με τις αισθήσεις μας οφείλονται

Διαβάστε περισσότερα

Κεφάλαιο Η1. Ηλεκτρικά πεδία

Κεφάλαιο Η1. Ηλεκτρικά πεδία Κεφάλαιο Η1 Ηλεκτρικά πεδία Ηλεκτρισµός και µαγνητισµός Οι νόµοι του ηλεκτρισµού και του µαγνητισµού έχουν πρωταρχικό ρόλο στη λειτουργία πολλών σύγχρονων συσκευών. Οι ενδοατοµικές και ενδοµοριακές δυνάµεις,

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 7: Ηλεκτρική Ροή-Νόμος Gauss-Κλωβός Faraday

ΦΥΣΙΚΗ. Ενότητα 7: Ηλεκτρική Ροή-Νόμος Gauss-Κλωβός Faraday ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗ Ενότητα 7: Ηλεκτρική Ροή-Νόμος Gauss-Κλωβός Faraday Τσόκας Γρηγόρης Καθηγητής Εφαρμοσμένης Γεωφυσικής, Τομέας Γεωφυσικής Παπαζάχος

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 23 Ηλεκτρικό Δυναµικό Διαφορά Δυναµικού-Δυναµική Ενέργεια Σχέση Ηλεκτρικού Πεδίου και Ηλεκτρικού Δυναµικού Ηλεκτρικό Δυναµικό Σηµειακών Φορτίων Δυναµικό Κατανοµής Φορτίων Ισοδυναµικές Επιφάνειες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ Όπως θα παρατηρήσετε, τα θέματα αφορούν σε θεωρία που έχει διδαχθεί στις παραδόσεις και σε ασκήσεις που είτε προέρχονται από τα λυμένα παραδείγματα του βιβλίου, είτε έχουν

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ Γ.Ο.Ι. ΧΩΡΟΥΣ

Διαβάστε περισσότερα

1. Νόμος του Faraday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας:

1. Νόμος του Faraday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας: 1. Νόμος του Faaday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας: dφ d A Φ d A Αν το μαγνητικό πεδίο είναι ομογενές και η επιφάνεια επίπεδη: Φ A Ο νόμος του

Διαβάστε περισσότερα

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Hλεκτρικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SRWY, Physics fo scientists and enginees YOUNG H.D., Univesity

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 3: Ηλεκτρικό δυναμικό. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 3: Ηλεκτρικό δυναμικό. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 3: Ηλεκτρικό δυναμικό Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 3: Ο Νόμος του Gauss. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 3: Ο Νόμος του Gauss. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 3: Ο Νόμος του Gauss Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία των δυναμικών γραμμών Παραδείγματα δυναμικών γραμμών σημειακού φορτίου,

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ ΤΕΛΕΙΟΥΣ ΑΓΩΓΟΥΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ Ημερομηνία:. ΤΜΗΜΑ:.. ΟΜΑΔΑ:. Ονομ/νυμο: Α.Μ. Συνεργάτες Ονομ/νυμο: Α.Μ. Ονομ/νυμο: Α.Μ. ΠΕΡΙΛΗΨΗ ΤΗΣ ΑΣΚΗΣΗΣ (καθένας με δικά του λόγια, σε όλες τις γραμμές) ΒΑΘΜΟΣ#1: ΥΠΟΓΡΑΦΗ:

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 13 Ηλεκτρικό (Βαθμωτό) δυναμικό ΦΥΣ102 1 Διαφορά δυναμικού Η Ηλεκτροστατική Δύναμη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός

Διαβάστε περισσότερα

2. Δυναμικό και χωρητικότητα αγωγού.

2. Δυναμικό και χωρητικότητα αγωγού. . Δυναμικό και χωρητικότητα αγωγού. Σε όλα τα σηµεία ενός αγωγού, σε ηλεκτροστατική ισορροπία, το δυναµικό είναι σταθερό. Για παράδειγµα, στην φορτισµένη σφαίρα του διπλανού σχήµατος τα σηµεία Α και Β

Διαβάστε περισσότερα

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ 1 ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ.. Αν δοκιµαστικό φορτίο q βρεθεί κοντά σε αγωγό που διαρρέεται από ρεύµα, υφίσταται δύναµη κάθετη προς την διεύθυνση της ταχύτητάς του και µε µέτρο ανάλογο της ταχύτητάς του, F qυ Β (νόµος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 11 Εισαγωγή στην Ηλεκτροδυναμική Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο ΦΥΣ102 1 Στατικός

Διαβάστε περισσότερα

ΘΕΜΑ 1. Ονοματεπώνυμο. Τμήμα

ΘΕΜΑ 1. Ονοματεπώνυμο. Τμήμα Εισαγωγή στις Φυσικές Επιστήμες (9-7-007) Ηλεκτρομαγνητισμός Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1 Α. Μια μονωτική ράβδος μήκους l φέρει ομογενώς κατανεμημένο θετικό φορτίο Q και είναι διατεταγμένη κατά μήκος του

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρισμός και μαγνητισμός Ηλεκτρικά Πεδία Οι

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

Ηλεκτρικό δυναμικό. Κεφάλαιο Η3

Ηλεκτρικό δυναμικό. Κεφάλαιο Η3 Ηλεκτρικό δυναμικό Κεφάλαιο Η3 Ηλεκτρικό δυναμικό Σε προηγούμενα κεφάλαια συνδέσαμε τη μελέτη του ηλεκτρομαγνητισμού με τις προγενέστερες γνώσεις μας σχετικά με τις δυνάμεις. Σε αυτό το κεφάλαιο, θα συνδέσουμε

Διαβάστε περισσότερα

ΦΥΕ14, 2009-2010-Εργασιά 6 η Ημερομηνία παράδοσης 28/6/2010

ΦΥΕ14, 2009-2010-Εργασιά 6 η Ημερομηνία παράδοσης 28/6/2010 ΦΥΕ4, 9--Εργασιά 6 η Ημερομηνία παράδοσης 8/6/ Άσκηση A) Μια ράβδος μήκους είναι ομοιόμορφα φορτισμένη θετικά με συνολικό ηλεκτρικό φορτίο Q και βρίσκεται κατά μήκος του θετικού άξονα x από το σημείο x

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός

Διαβάστε περισσότερα

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία Στατικός Ηλεκτρισµός, Ηλεκτρικό Φορτίο και η διατήρηση αυτού Ηλεκτρικό φορτίο στο άτοµο Αγωγοί και Μονωτές Επαγόµενα Φορτία Ο Νόµος του Coulomb Το Ηλεκτρικό

Διαβάστε περισσότερα

Μαγνητικά φαινόµενα: Σύντοµη ιστορική αναδροµή

Μαγνητικά φαινόµενα: Σύντοµη ιστορική αναδροµή Μαγνητικά φαινόµενα: Σύντοµη ιστορική αναδροµή 13ος αιώνας π.χ.: Οι Κινέζοι χρησιµοποιούσαν την πυξίδα. Η πυξίδα διαθέτει µαγνητική βελόνα (πιθανότατα επινόηση των Αράβων ή των Ινδών). 800 π.χ.: Έλληνες

Διαβάστε περισσότερα

Εργασία 4, ΦΥΕ 24, N. Κυλάφης

Εργασία 4, ΦΥΕ 24, N. Κυλάφης Εργασία ΦΥΕ - N Κυλάφης Λύσεις Άσκηση : Θεωρήστε ότι στα σηµεία υπάρχουν τέσσερα φορτία το καθένα Α Να βρεθεί το ηλεκτρικό δυναµικό που δηµιουργείται σε τυχόν σηµείο του άξονα Β Να βρεθεί η ένταση του

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

Κεφάλαιο Η8. Πηγές µαγνητικού πεδίου

Κεφάλαιο Η8. Πηγές µαγνητικού πεδίου Κεφάλαιο Η8 Πηγές µαγνητικού πεδίου Μαγνητικά πεδία Τα µαγνητικά πεδία δηµιουργούνται από κινούµενα ηλεκτρικά φορτία. Μπορούµε να υπολογίσουµε το µαγνητικό πεδίο που δηµιουργούν διάφορες κατανοµές ρευµάτων.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r . (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r Φ Ε da Ε A Το επιφανειακό ολοκλήρωµα υπολογίζεται πάνω στην επιφάνεια Α, ενώ Ε είναι η τιµή

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

4πε Όπου ε ο µια φυσική σταθερά που ονοµάζεται απόλυτη διηλεκτρική σταθερά του κενού. ΚΕΦΑΛΑΙΟ 3.1 ΠΑΡΑΓΡΑΦΟΣ Ο νόµος του Coulomb

4πε Όπου ε ο µια φυσική σταθερά που ονοµάζεται απόλυτη διηλεκτρική σταθερά του κενού. ΚΕΦΑΛΑΙΟ 3.1 ΠΑΡΑΓΡΑΦΟΣ Ο νόµος του Coulomb ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΕΦΑΛΑΙΟ 3.1 ΠΑΡΑΓΡΑΦΟΣ 3.1.1 Ο νόµος του Coulomb Συµπλήρωµα θεωρίας Τα υλικά σώµατα αποτελούνται από άτοµα Ένα άτοµο έχει έναν θετικά φορτισµένο πυρήνα γύρω από τον οποίο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΦΥΣΙΚΗ ΙΙ-ΙΟΥΝΙΟΣ 2011

ΠΕΙΡΑΜΑΤΙΚΗ ΦΥΣΙΚΗ ΙΙ-ΙΟΥΝΙΟΣ 2011 ΠΕΙΡΑΜΑΤΙΚΗ ΦΥΣΙΚΗ ΙΙ-ΙΟΥΝΙΟΣ 2011 Κυκλώνουμε τις σωστές απαντήσεις στο παρών φυλλάδιο το άλλο φυλλάδιο είναι πρόχειρο. Κάθε σωστή απάντηση μετρά 0.5 μονάδες ενώ κάθε λάθος -0.1 μονάδες. Δίδεται k=1/(4πε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘEMA A: ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Αντιστάτης με αντίσταση R συνδέεται με ηλεκτρική πηγή, συνεχούς τάσης V

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3.3 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Οι μαγνητικοί πόλοι υπάρχουν πάντοτε σε ζευγάρια. ΔΕΝ ΥΠΑΡΧΟΥΝ ΜΑΓΝΗΤΙΚΑ ΜΟΝΟΠΟΛΑ. Οι ομώνυμοι πόλοι απωθούνται, ενώ οι

Διαβάστε περισσότερα

Κεφάλαιο 27 Μαγνητισµός. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 27 Μαγνητισµός. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 27 Μαγνητισµός Περιεχόµενα Κεφαλαίου 27 Μαγνήτες και Μαγνητικά πεδία Τα ηλεκτρικά ρεύµατα παράγουν µαγνητικά πεδία Μαγνητικές Δυνάµεις πάνω σε φορτισµένα σωµατίδια. Η ροπή ενός βρόχου ρεύµατος.

Διαβάστε περισσότερα

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( ) Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ-ΟΠΤΙΚΗ, ΑΠΑΝΤΗΣΕΙΣ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗΝ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ-ΟΠΤΙΚΗ, ΑΠΑΝΤΗΣΕΙΣ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗΝ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ-ΟΠΤΙΚΗ, ΑΠΑΝΤΗΣΕΙΣ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗΝ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ Ανδρέας Ζούπας 2 Αυγούστου 212 Οι λύσεις απλώς προτείνονται και σαφώς οποιαδήποτε σωστή λύση είναι αποδεκτή! Θέµα-1

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Ενότητα: ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΔΙΗΛΕΚΤΡΙΚΑ Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τμήμα: Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Αυτά τα πειράµατα έγιναν από τους Michael Faraday και Joseph Henry.

Αυτά τα πειράµατα έγιναν από τους Michael Faraday και Joseph Henry. Επαγόµενα πεδία Ένα µαγνητικό πεδίο µπορεί να µην είναι σταθερό, αλλά χρονικά µεταβαλλόµενο. Πειράµατα που πραγµατοποιήθηκαν το 1831 έδειξαν ότι ένα µεταβαλλόµενο µαγνητικό πεδίο µπορεί να επάγει ΗΕΔ σε

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρικό δυναμικό Ηλεκτρικό δυναμικό Σε προηγούμενα

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 17 Εισαγωγή στον Μαγνητισμό Μαγνητικό πεδίο ΦΥΣ102 1 Μαγνήτες και μαγνητικά πεδία

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ Από τη Φυσική της Α' Λυκείου Δεύτερος νόμος Νεύτωνα, και Αποδεικνύεται πειραματικά ότι: Η επιτάχυνση ενός σώματος (όταν αυτό θεωρείται

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB Η δύναμη που ασκείται μεταξύ σημειακών ηλεκτρικών φορτιών 1, είναι ανάλογη του γινομένου των φορτίων, και αντιστρόφως

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔ. Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/11/2016 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔ. Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/11/2016 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ ΠΑΙΔ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/11/2016 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09 ΕΡΓΑΣΙΑ 6 Ημερομηνία Παράδοσης: 9/6/9 1. Ένας ομογενώς φορτισμένος μονωτικός κυκλικός δίσκος ακτίνας με συνολικό φορτίο τοποθετείται στο επίπεδο xy. Να βρείτε το ηλεκτρικό πεδίο σε σημείο P που βρίσκεται

Διαβάστε περισσότερα

Ηλεκτροµαγνητισµός 2

Ηλεκτροµαγνητισµός 2 Ηλεκτροµαγνητισµός. 1) Για το µεγάλου µήκους αγωγό του σχήµατος να σχεδιάστε, µια µαγνητική γραµµή που να διέρχεται από το σηµείο Α καθώς και την ένταση του µαγνητικού πεδίου στο σηµείο Γ. Τα σηµεία Α

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

Όσο χρονικό διάστηµα είχε τον µαγνήτη ακίνητο απέναντι από το πηνίο δεν παρατήρησε τίποτα.

Όσο χρονικό διάστηµα είχε τον µαγνήτη ακίνητο απέναντι από το πηνίο δεν παρατήρησε τίποτα. 1 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΓΩΓΗ (Ε επ ). 5-2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΓΩΓΗ Γνωρίζουµε ότι το ηλεκτρικό ρεύµα συνεπάγεται τη δηµιουργία µαγνητικού πεδίου. Όταν ένας αγωγός διαρρέεται από ρεύµα, τότε δηµιουργεί γύρω του

Διαβάστε περισσότερα

A F B A F B. α. Τα σώµατα Α και Β έλκονται β. Τα σώµατα Α και Β απωθούνται. Σχήµα 1. Η δύναµη ασκείται πάντα µεταξύ δύο σωµάτων

A F B A F B. α. Τα σώµατα Α και Β έλκονται β. Τα σώµατα Α και Β απωθούνται. Σχήµα 1. Η δύναµη ασκείται πάντα µεταξύ δύο σωµάτων 1. ύναµη 1.1. Ορισµοί ύναµη είναι το αίτιο που προκαλεί µεταβολή στην κινητική κατάσταση ενός σώµατος ή την παραµόρφωσή του. Σύµφωνα µε τη θεωρία του Νεύτωνα (αξίωµα δράσης αντίδρασης) για να εµφανιστεί

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι 10. Η μέθοδος των ειδώλων

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι 10. Η μέθοδος των ειδώλων ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι. Η μέθοδος των ειδώλων Περιγραφή της μεθόδου Σημειακό φορτίο και αγώγιμο επίπεδο Φορτίο μεταξύ δύο αγωγίμων ημιεπιπέδων Σημειακό φορτίο έξω από γειωμένη σφαίρα Σημειακό φορτίο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΣΤΗ ΜΗΧΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ ΘΕΜ Για να απαντήσετε στις παρακάτω ερωτήσεις 1-4 πολλαπλής επιλογής, αρκεί να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δεξιά απ αυτόν, μέσα σε

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

b proj a b είναι κάθετο στο

b proj a b είναι κάθετο στο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

Λύση: Χωρίζουμε τον δακτύλιο σε μικρούς απειροστούς δακτυλίους ακτίνας ρ και πάχους dρ και φορτίο dq ο καθένας.

Λύση: Χωρίζουμε τον δακτύλιο σε μικρούς απειροστούς δακτυλίους ακτίνας ρ και πάχους dρ και φορτίο dq ο καθένας. - Να υπολογισθεί το ηλεκτρικό πεδίο ενός ομοιόμορφα φορτισμένου δακτυλίου εσωτερικής ακτίνας R 1 και εξωτερικής R 2, με φορτίο Q και αμελητέο ύψους κατά z, σε σημείο Α που βρίσκεται επάνω στη μεσοκάθετό

Διαβάστε περισσότερα

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως Καµπύλες στον R 9. Ορισµός Μια καµπύλη στον R είναι µια συνεχής συνάρτηση σ : Ι R R όπου Ι διάστηµα ( συνήθως κλειστό και φραγµένο ) στον R. Συνήθως φανταζόµαστε την µεταβλητή t Ι ως τον χρόνο και την

Διαβάστε περισσότερα