Τεχνθτι Νοθμοςφνθ. Ενότθτα 4: Στρατθγικζσ Ελζγχου Επίλυςθσ. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνθτι Νοθμοςφνθ. Ενότθτα 4: Στρατθγικζσ Ελζγχου Επίλυςθσ. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ"

Transcript

1 Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ

2 Στρατθγικζσ Ελζγχου Επίλυςθσ

3 Στρατθγικζσ Ελζγχου Επίλυςθσ (1) Η μθ ελεγχόμενθ χριςθ τθσ αρχισ τθσ επίλυςθσ δθμιουργεί εκκετικά αυξανόμενο χϊρο αναηιτθςθσ. Γι αυτό ζχουν επινοθκεί ςτρατθγικζσ που επιβάλλουν κάποιουσ τρόπουσ είτε επιλογισ/αποκλειςμοφ γονζων για μελλοντικζσ επιλφουςεσ είτε ςτθν παραγωγι των επιλυουςϊν. Αυτζσ ονομάηονται ςτρατθγικζσ ελζγχου τθσ επίλυςθσ. Σαν αποτζλεςμα ζχουμε τθ μείωςθ του χϊρου αναηιτθςθσ και τθν αφξθςθ τθσ αποδοτικότθτασ τθσ διαδικαςίασ απόδειξθσ. Δφο επικυμθτζσ ιδιότθτεσ που κζλουμε να ζχουν οι ςτρατθγικζσ αυτζσ είναι θ ορκότθτα (να παράγονται ςωςτά κεωριματα) και θ πλθρότθτα (να μποροφν να παραχκοφν όλα τα δυνατά κεωριματα) 3

4 Στρατθγικζσ Ελζγχου Επίλυςθσ (2) Κατθγορίεσ: Επιλογισ γονζων (Ιςχυρζσ μζκοδοι) Απαλοιφισ προτάςεων (Αςκενείσ μζκοδοι) Στρατηγικζσ Επιλογήσ Γονζων Μοναδιαία επίλυςθ (Unit resolution) Επίλυςθ ειςόδου (Input resolution) Επίλυςθ ειςόδου (Input resolution) P1 και N1 επίλυςθ (P1 and N1 resolution) Υπερεπίλυςθ (Hyperresoluti on) Επίλυςθ ςυνόλου υποςτιριξθσ (Set of support resolution) 4

5 Στρατθγικζσ Ελζγχου Επίλυςθσ (3) Στρατηγικζσ Απαλοιφήσ Προτάςεων Απαλοιφι Ταυτολογιϊν (Tautology Elimination) Απαλοιφι Κακαρϊν Στοιχείων (Pure Literal Elimination) Απαλοιφι ςυνόψεων (Subsumption Elimination) 5

6 Στρατθγικζσ Επιλογισ Γονζων (1) Μοναδιαία Επίλυςη (Τουλάχιςτον ο ζνασ γονζασ μοναδιαία πρόταςθ). Πλιρθσ μόνο για προτάςεισ τφπου Horn. Π.χ. (p, q), ( p, q), (p, q), ( p, q) Μοναδιαία επιλφουςα Μοναδιαία εξαγωγι Μοναδιαία αντίφαςθ 1. (p, q) 2. ( p, r) 3. ( q, r) 4. ( r) ( p) (2, 4) 6. ( q) (3, 4) (q) (1, 5) 8. (p) (1, 6) (r) (3, 7) 10. () (6, 7) 6

7 Στρατθγικζσ Επιλογισ Γονζων (2) Επίλυςη Ειςόδου (Τουλάχιςτον ο ζνασ γονζασ ανικει ςτο αρχικό ςφνολο προτάςεων). 1. (p, q) 2. ( p, r) 3. ( q, r) 4. ( r) (q, r) (1, 2) 6. (p, r) (1, 3) 7. ( p) (2, 4) 8. ( q) (3, 4) (q) (1, 7) 10. (p) (1, 8) 11. (r) (2, 6) 12. (r) (3, 5) Επιλφουςα ειςόδου 13. (q) (4, 5) Εξαγωγι ειςόδου 14. (p) (4, 6) Αντίφαςθ ειςόδου 15. (r) (2, 10) 16. (r) (2, 14) 17. (r) (3, 9) 18. (r) (3, 13) 19. () (4, 11) Πλιρθσ μόνο για προτάςεισ τφπου Horn. 7

8 Στρατθγικζσ Επιλογισ Γονζων (3) P1-Επίλυςη (Ο ζνασ γονζασ είναι κετικι πρόταςθ). 1. (p, q) 2. ( p, r) 3. ( q, r) 4. ( r) (q, r) (1, 2) 6. (p, r) (1, 3) (r) (2, 6) 8. (p) (4, 6) 9. () (4, 7) P1 επιλφουςα P1 εξαγωγι P1 αντίφαςθ Πλήρησ N1-Επίλυςη (Ο ζνασ γονζασ είναι αρνθτικι πρόταςθ). 8

9 Στρατθγικζσ Επιλογισ Γονζων (4) Επίλυςη Συνόλου Υποςτήριξησ (Set of Support Resolution) Σφνολο υποςτιριξθσ Ss του S: S-Ss ικανοποιιςιμο Τουλάχιςτον ζνασ γονζασ ανικει ςτο ςφνολο υποςτιριξθσ Φυςικι ςθμαςία: να μθν επιτρζπεται θ εφαρμογι τθσ αρχισ τθσ επίλυςθσ ςε ικανοποιιςιμο ςφνολο Συνικθσ περίπτωςθ: S το αρχικό ςφνολο (αξιϊματα), Ss τα κεωριματα Επιλφουςα ςυνόλου υποςτιριξθσ Εξαγωγι ςυνόλου υποςτιριξθσ Αντίφαςθ ςυνόλου υποςτιριξθσ 9

10 Γραμμικι Επίλυςθ (1) Γραμμική Επίλυςη (Ο ζνασ γονζασ (κοντινόσ) είναι θ πιο πρόςφατθ επιλφουςα και ο άλλοσ (μακρινόσ) είτε αξίωμα είτε κεϊρθμα). (p, q) ( p, q) (p, q) ( p, q) (q) (p) (q) Πλιρθσ ( q) () Γραμμικι επιλφουςα Γραμμικι εξαγωγι Γραμμικι αντίφαςθ 10

11 Γραμμικι Επίλυςθ (2) Παραλλαγζσ LI-Επίλυςη (Γραμμική Επίλυςη Ειςόδου) (Linear Input Resolution) Ο μακρινόσ γονζασ περιορίηεται να είναι μόνο αξίωμα (πρόταςθ ειςόδου), ενϊ ο κοντινόσ γονζασ θ πιο πρόςφατθ επιλφουςα ( πρόταςθ ςτόχου). Πλιρθσ μόνο για προτάςεισ τφπου Horn. LD-Επίλυςη (Γραμμική Οριςμζνη Επίλυςη) (Linear Definite Resolution) Γραμμικι επίλυςθ ειςόδου, όπου οι προτάςεισ κεωροφνται διατεταγμζνα ςφνολα (ακολουκίεσ) και θ παραγωγι τθσ επιλφουςασ γίνεται κατά ςυγκεκριμζνο τρόπο. Πλιρθσ μόνο για προτάςεισ τφπου Horn. 11

12 Γραμμικι Επίλυςθ (3) SLD-Επίλυςη (Selection Linear Definite Resolution) Γραμμικι οριςμζνθ επίλυςθ, όπου προςτίκεται ζνασ κανόνας επιλογής που κακορίηει ποιο ςτοιχείο τθσ πρόταςθσ ςτόχου κάκε φορά εξετάηεται προσ επίλυςθ. Πλιρθσ μόνο για προτάςεισ τφπου Horn. Συνικθσ κανόνασ: επιλζγεται το πρϊτο αριςτερά ςτοιχείο. Η βάςθ τθσ ςτρατθγικισ τθσ γλϊςςασ PROLOG 12

13 Γραμμικι Επίλυςθ (4) SLD-Επίλυςη ςτην Prolog Οι προτάςεισ διατάςςονται εςωτερικά ζτςι ϊςτε να είναι πάντα πρϊτο (αριςτερά) το κετικό ςτοιχείο, αν υπάρχει. Επιλζγουμε ςαν αριςτερό γονζα τθν πιο πρόςφατθ επιλφουςα (ςτο ξεκίνθμα τθν προσ απόδειξθ πρόταςθ) Επιλζγουμε ςαν δεξιό γονζα τθν πρϊτθ πρόταςθ (ςτθ ςειρά αναγραφισ) που επιλφεται με τον αριςτερό γονζα Κριτιριο για τθν εφρεςθ του δεξιοφ γονζα είναι θ εφρεςθ επιλφςιμου ςτοιχείου με το πρϊτο ςτοιχείο του αριςτεροφ γονζα Στθν παραγόμενθ επιλφουςα πρϊτα (αριςτερά) μπαίνουν τα ςτοιχεία του δεξιοφ γονζα και μετά του αριςτεροφ 13

14 Γραμμικι Επίλυςθ (5) SLD-Επίλυςη ςτην Prolog Μθ ορκι διότι: + δεν υπάρχει occurs check + δεν γίνονται οι αντικαταςτάςεισ εγκαίρωσ Μθ πλιρθσ διότι: + παίηει ρόλο θ ςειρά αναγραφισ + χρθςιμοποιεί depth-first with backtracking 14

15 Γραμμικι Επίλυςθ (6) Επίλυση-SLD και SLDδέντρο Η διαδικαζία απόδειξηρ μιαρ ππόηαζηρ με Επίλςζη-SLD, δηλαδή εθαπμογή ηηρ ανηίθαζηρ ηηρ επίλςζηρ με ζηπαηηγική SLD, μποπεί να πεπιγπαθεί μέζω ενόρ δένηπος αναζήηηζηρ, πος ονομάζεηαι SLD-δένηπο Παπάδειγμα: Έζηω ηο ζύνολο πποηάζεων ηύπος Horn (1)p(x1, x1) q(x1, y1), r(x1, z1) (2)p(x2, x2) s(x2) (3)q (a, a) (4)q (b, a) (5)q (x3, y2) r (a, y2) (6)r (b, z2) (7)s(x4) q (x4, a) Τίτλοσ Ενότθτασ 15

16 Γραμμικι Επίλυςθ (7) (1) (p(x1, x1), q(x1, y1), r(x1, z1)) (2) (p(x2, x2), s(x2)) (3) (q (a, a)) (4) (q (b, a)) (5) (q (x3, y2), r (a, y2)) (6) (r (b, z2)) (7) (s(x4), q (x4, a)) Προσ απόδειξθ πρόταςθ: p (x, x) (1) ( p (x, x)) (2) ( q (x1, y1), r (x1, z1)) (3) (4) (5) ( r (a, z1)) ( r (b, z1)) (6) (( r (a, y2), r (x1, z1))) () failure failure {b/x} ( s (x2)) (3) () {a/x} (7) ( q (x4, a)) (4) () {b/x} (5) ( r (a, a)) failure 16

17 Γραμμικι Επίλυςθ (8) Αναηιτθςθ Κατά Βάκοσ : Αναηιτθςθ Κατά Πλάτοσ : (1) ( p (x, x)) (2) ( q (x1, y1), r (x1, z1)) (3) (4) (5) ( r (a, z1)) ( r (b, z1)) (6) (( r (a, y2), r (x1, z1))) () failure failure {b/x} ( s (x2)) (3) () {b/x} (7) ( q (x4, a)) (4) () (5) ( r (a, a)) {a/x} failure 17

18 Στρατθγικζσ Απαλοιφισ Προτάςεων (1) Απαλοιφή Ταυτολογιϊν (Tautology Elimination) Διαγράφονται οι ταυτολογίεσ ςτο αρχικό ςφνολο προτάςεων και κάκε παραγόμενθ πρόταςθ (επιλφουςα) που είναι ταυτολογία. Ταυτολογία είναι μια πρόταςθ που περιζχει δφο ακριβϊσ ςυμπλθρωματικά ςτοιχεία. Για παράδειγμα C = {p(x), q(y), q(y), r(z)} είναι ταυτολογία Απαλοιφή Καθαρϊν Στοιχείων (Pure-Literal Elimination) Διαγράφονται από το αρχικό ςφνολο όςεσ προτάςεισ περιζχουν κακαρά ςτοιχεία. Κακαρό ςτοιχείο είναι ζνα ςτοιχείο, ςυμπλιρωμα του οποίου δεν εμφανίηεται ςε καμμία άλλθ πρόταςθ του ςυνόλου. 18

19 Στρατθγικζσ Απαλοιφισ Προτάςεων (2) Απαλοιφή Συνόψεων (Subsumption Elimination) Διαγράφονται προτάςεισ που ςυνοψίηονται από άλλεσ προτάςεισ. Μια πρόταςθ C συνοψίζει μια πρόταςθ D ανν υπάρχει μια αντικατάςταςθ τζτοια ϊςτε C D. Σφνοψθ προσ τα εμπρόσ (Forward subsumption) Απαλοιφι προτάςεων που ςυνοψίηονται από ιδθ υπάρχουςεσ προτάςεισ. Σφνοψθ προσ τα πίςω (Backward subsumption) Απαλοιφι προτάςεων που ςυνοψίηονται από τθ νζα παραγόμενθ πρόταςθ (επιλφουςα). Συνδυαςμόσ Πρϊτα προσ τα εμπρόσ και μετά προσ τα πίςω. 19

20 Στρατθγικζσ Απαλοιφισ Προτάςεων (3) Απαλοιφή Συνόψεων (Subsumption Elimination) Παράδειγμα Η C1 = {P(x), Q(y)- ςυνοψίηει τθν C2 = {P(a), Q(v), R(w)} διότι για ς =,a/x}, C1ς =,P(a), Q(y)} C2 = {P(a), Q(v), R(w)} 20

21 Σθμείωμα Ιςτορικοφ Εκδόςεων Ζργου Το παρόν ζργο αποτελεί τθν ζκδοςθ

22 Σθμείωμα Αναφοράσ Copyright Πανεπιςτιμιο Πατρϊν, Ιωάννθσ Χατηθλυγεροφδθσ «Ευφυισ Προγραμματιςμόσ». Ζκδοςθ: 1.0. Πάτρα Διακζςιμο από τθ δικτυακι διεφκυνςθ: https://eclass.upatras.gr/courses/ceid1095/ 22

23 Σθμείωμα Αδειοδότθςθσ Το παρόν υλικό διατίκεται με τουσ όρουσ τθσ άδειασ χριςθσ Creative Commons Αναφορά, Μθ Εμπορικι Χριςθ Παρόμοια Διανομι 4.0 *1+ ι μεταγενζςτερθ, Διεκνισ Ζκδοςθ. Εξαιροφνται τα αυτοτελι ζργα τρίτων π.χ. φωτογραφίεσ, διαγράμματα κ.λ.π., τα οποία εμπεριζχονται ςε αυτό και τα οποία αναφζρονται μαηί με τουσ όρουσ χριςθσ τουσ ςτο «Σθμείωμα Χριςθσ Ζργων Τρίτων». [1] Ωσ Μη Εμπορική ορίηεται θ χριςθ: που δεν περιλαμβάνει άμεςο ι ζμμεςο οικονομικό όφελοσ από τθν χριςθ του ζργου, για το διανομζα του ζργου και αδειοδόχο που δεν περιλαμβάνει οικονομικι ςυναλλαγι ωσ προχπόκεςθ για τθ χριςθ ι πρόςβαςθ ςτο ζργο που δεν προςπορίηει ςτο διανομζα του ζργου και αδειοδόχο ζμμεςο οικονομικό όφελοσ (π.χ. διαφθμίςεισ) από τθν προβολι του ζργου ςε διαδικτυακό τόπο Ο δικαιοφχοσ μπορεί να παρζχει ςτον αδειοδόχο ξεχωριςτι άδεια να χρθςιμοποιεί το ζργο για εμπορικι χριςθ, εφόςον αυτό του ηθτθκεί. 23

24 Διατιρθςθ Σθμειωμάτων Οποιαδιποτε αναπαραγωγι ι διαςκευι του υλικοφ κα πρζπει να ςυμπεριλαμβάνει: το Σθμείωμα Αναφοράσ το Σθμείωμα Αδειοδότθςθσ τθ διλωςθ Διατιρθςθσ Σθμειωμάτων το Σθμείωμα Χριςθσ Ζργων Τρίτων (εφόςον υπάρχει) μαηί με τουσ ςυνοδευόμενουσ υπερςυνδζςμουσ. 24

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 4 ο XPath

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 4 ο XPath Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 4 ο XPath Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κών Η/Υπολογιςτών & Πλθροφορικισ Περιεχόμενα ενότθτασ

Διαβάστε περισσότερα

Τεχνικό Σχζδιο - CAD

Τεχνικό Σχζδιο - CAD Ανοικτά Ακαδθμαϊκά Μακιματα ςτο ΤΕΙ Ιονίων Νιςων Τεχνικό Σχζδιο - CAD Ενότητα 2: Τεχνικό Σχζδιο με τθ βοικεια Η/Υ Το περιεχόμενο του μακιματοσ διατίκεται με άδεια Creative Commons εκτόσ και αν αναφζρεται

Διαβάστε περισσότερα

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε)

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Σεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνασ Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ενδεικτική επίλυςη άςκηςησ 1 Δρ. Θωμάσ Π. Μαηαράκοσ Τμιμα Ναυπθγϊν Μθχανικϊν ΤΕ Το

Διαβάστε περισσότερα

Αποτυπώςεισ & Τεκμηρίωςη Αντικειμζνων

Αποτυπώςεισ & Τεκμηρίωςη Αντικειμζνων Ανοικτά Ακαδθμαϊκά Μακιματα ςτο ΤΕΙ Ιονίων Νιςων Αποτυπώςεισ & Τεκμηρίωςη Αντικειμζνων Ενότητα 3: Συγγραφι εργαςιών Το περιεχόμενο του μακιματοσ διατίκεται με άδεια Creative Commons εκτόσ και αν αναφζρεται

Διαβάστε περισσότερα

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 5: Κανόνεσ Λογικι και Συμπεραςμόσ

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 5: Κανόνεσ Λογικι και Συμπεραςμόσ Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 5: Κανόνεσ Λογικι και Συμπεραςμόσ Ιωάννησ Χατζηλυγεροφδησ Πολυτεχνικι Σχολι Τμιμα Μθχ/κών Η/Υπολογιςτών & Πλθροφορικισ Περιεχόμενα ενότθτασ 1. Λογικι & Κανόνεσ

Διαβάστε περισσότερα

Τεχνθτι Νοθμοςφνθ. Ενότθτα 2: Αναπαράςταςθ Γνϊςθσ και Συλλογιςμόσ. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ

Τεχνθτι Νοθμοςφνθ. Ενότθτα 2: Αναπαράςταςθ Γνϊςθσ και Συλλογιςμόσ. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Αναπαράςταςθ Γνϊςθσ και Συλλογιςμόσ Αναπαράςταςθ Γνϊςθσ (1) Οριςμόσ Πϊσ μπορεί καλφτερα και αποδοτικότερα

Διαβάστε περισσότερα

Οντοκεντρικόσ Ρρογραμματιςμόσ

Οντοκεντρικόσ Ρρογραμματιςμόσ Οντοκεντρικόσ Ρρογραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΥΡΕΦΟΤΩΣΗ ΤΕΛΕΣΤΩΝ, ΕΞΑΙΕΣΕΙΣ Υπερφόρτωςθ Τελεςτών Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικών Η/Υ & Ρλθροφορικισ Υπερφόρτωςθ Τελεςτών

Διαβάστε περισσότερα

Κλαςικι Ηλεκτροδυναμικι

Κλαςικι Ηλεκτροδυναμικι Κλαςικι Ηλεκτροδυναμικι Ενότθτα 21: Διάδοςθ θλεκτρομαγνθτικών κυμάτων Ανδρζασ Τερηισ Σχολι Θετικών Επιςτθμών Τμιμα Φυςικισ Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ είναι να ςυνεχίςει τθν μελζτθ που αφορά τθν

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 7: Ειςαγωγι ςτο Δυναμικό Προγραμματιςμό Κακθγθτισ Γιάννθσ Γιαννίκοσ Σχολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Τμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ

Διαβάστε περισσότερα

Ερωτήσεις επανάληψης. Ενδοκρινείς αδένες. Τμήμα Ιαηρικής Πανεπιζηήμιο Παηρών

Ερωτήσεις επανάληψης. Ενδοκρινείς αδένες. Τμήμα Ιαηρικής Πανεπιζηήμιο Παηρών Ερωτήσεις επανάληψης Ενδοκρινείς αδένες Τμήμα Ιαηρικής Πανεπιζηήμιο Παηρών Υπόφυςη Ποια είδθ ορμονϊν γνωρίηετε με βάςθ τον τρόπο δράςθσ τουσ; Ποιοι είναι οι διαφορετικοί τρόποι μετάδοςθσ του ςιματοσ εντόσ

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 6

Aντιπτζριςη (ΕΠ027) Ενότητα 6 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 6: Backhand Overhead Clear Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

Aντιπτζριςθ (ΕΠ027) Ενότθτα 12

Aντιπτζριςθ (ΕΠ027) Ενότθτα 12 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςθ (ΕΠ027) Ενότθτα 12: Σακτικι διπλοφ μικτοφ τεπάν-αρκίσ Παρτεμιάν Σμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια

ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 10

Aντιπτζριςη (ΕΠ027) Ενότητα 10 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 10: Σακτικι Απλοφ τεπάν-αρκίσ Παρτεμιάν Σμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 7: Φιλολογικζσ και Λογοτεχνικζσ Εξαρτιςεισ / Το Παράδειγμα των Παραβολών Αικατερίνθ Τςαλαμποφνθ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 8: Διά βίου άκλθςθ για υγεία (ευκαμψία) Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ

Διαβάστε περισσότερα

Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 2 ο - DTD

Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 2 ο - DTD Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 2 ο - DTD Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κϊν Η/Υπολογιςτϊν & Πλθροφορικισ Περιεχόμενα ενότθτασ

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ. Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών

ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ. Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι o οριςμόσ του ιδανικοφ διαλφματοσ με βάςθ

Διαβάστε περισσότερα

Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών

Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Απολφμανςθ Η εκροι που προζρχεται από πρωτοβάκμια, δευτεροβάκμια ι τριτοβάκμια

Διαβάστε περισσότερα

Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Στερεών Αποβλιτων Ενότθτα 4: Μθχανικόσ Διαχωριςμόσ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών

Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Στερεών Αποβλιτων Ενότθτα 4: Μθχανικόσ Διαχωριςμόσ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Στερεών Αποβλιτων Ενότθτα 4: Μθχανικόσ Διαχωριςμόσ Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Mθχανικόσ Διαχωριςμόσ Διαχωριςμόσ των διαφόρων υλικών από

Διαβάστε περισσότερα

Ψθφιακι Επεξεργαςία ιματοσ

Ψθφιακι Επεξεργαςία ιματοσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 3 : Παρακφρωςθ Δεδομζνων Κωνςταντίνοσ Αγγζλθσ Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικών

Διαβάστε περισσότερα

Οντοκεντρικόσ Ρρογραμματιςμόσ

Οντοκεντρικόσ Ρρογραμματιςμόσ Οντοκεντρικόσ Ρρογραμματιςμόσ Ενότθτα 9: C++ ΕΙΣΟΔΟΣ - ΕΞΟΔΟΣ / ΑΛΦΑΙΘΜΗΤΙΚΑ / ΑΧΕΙΑ Διαχείριςθ Αρχείων Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Ρλθροφορικισ Διαχείριςθ Αρχείων Ιεραρχία

Διαβάστε περισσότερα

Διδακτικι τθσ Γλϊςςασ Ι

Διδακτικι τθσ Γλϊςςασ Ι Διδακτικι τθσ Γλϊςςασ Ι Ενότθτα 5: Η παιδαγωγικι του γραμματιςμοφ Μαριάννα Κoνδφλθ Σχολι Ανκρωπιςτικϊν και Κοινωνικϊν Επιςτθμϊν Τ.Ε.Ε.Α.Π.Η. Σκοποί ενότθτασ Να εντοπιςτοφν οι διαφορζσ προφορικοφ και γραπτοφ

Διαβάστε περισσότερα

Ψθφιακι Επεξεργαςία ιματοσ

Ψθφιακι Επεξεργαςία ιματοσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 8 : Διακριτόσ Μεταςχθματιςμόσ Fourier Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα

Διαβάστε περισσότερα

ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ

ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ Ενότητα 9: Διδαςκαλία ακλοπαιδιϊν ςτο ςχολείο Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και

Διαβάστε περισσότερα

Σεχνθτι Νοθμοςφνθ. Ενότθτα 1: Ειςαγωγι. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικϊν Η/Τ & Πλθροφορικισ

Σεχνθτι Νοθμοςφνθ. Ενότθτα 1: Ειςαγωγι. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικϊν Η/Τ & Πλθροφορικισ Σεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικϊν Η/Τ & Πλθροφορικισ Ειςαγωγι Οριςμόσ τθσ Σεχνθτισ Νοθμοςφνθσ Barr and Feigenbaum (ΣΝ) (1) «ΣΝ είναι ο τομζασ τθσ επιςτιμθσ των

Διαβάστε περισσότερα

ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΗΡΙΟ ΠΑΙΔΟΚΑΡΔΙΟΛΟΓΙΑ Ενότητα: Φυςιολογία εμβρυϊκισ και περιγεννθτικισ κυκλοφορίασ

ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΗΡΙΟ ΠΑΙΔΟΚΑΡΔΙΟΛΟΓΙΑ Ενότητα: Φυςιολογία εμβρυϊκισ και περιγεννθτικισ κυκλοφορίασ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΗΡΙΟ ΠΑΙΔΟΚΑΡΔΙΟΛΟΓΙΑ Ενότητα: Φυςιολογία εμβρυϊκισ και περιγεννθτικισ κυκλοφορίασ Ιωάννθσ Γερμανάκθσ Επίκουροσ Κακθγθτισ Παιδιατρικισ, Πανεπιςτιμιο

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 10: Ψυχοκινθτικι Αγωγι Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 9

Aντιπτζριςη (ΕΠ027) Ενότητα 9 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 9: Drive shots Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 9: Διαδικαςία φνκεςθσ Φϊτιοσ

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 2

Aντιπτζριςη (ΕΠ027) Ενότητα 2 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 2: Λαβι ρακζτασ Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ

Διαβάστε περισσότερα

Οντοκεντρικόσ Προγραμματιςμόσ

Οντοκεντρικόσ Προγραμματιςμόσ Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΤΠΕΡΦΟΡΣΩΗ ΣΕΛΕΣΩΝ, ΕΞΑΙΡΕΕΙ Χειριςμόσ Εξαιρζςεων Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικϊν Η/Τ & Πλθροφορικισ Χειριςμόσ Εξαιρζςεων

Διαβάστε περισσότερα

Ειςαγωγή ςτη διδακτική των γλωςςών

Ειςαγωγή ςτη διδακτική των γλωςςών ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 5: Μζκοδοι διδαςκαλίασ IV Άννα Μουτι, Α.Π.Θ & Πανεπιςτιμιο Θεςςαλίασ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 9: Το ιδιαίτερο υλικό του Μτ και Λκ Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 11: Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ

Διαβάστε περισσότερα

Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 1 ο - XML

Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 1 ο - XML Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 1 ο Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κϊν Η/Υπολογιςτϊν & Πλθροφορικισ Περιεχόμενα ενότθτασ Μζροσ

Διαβάστε περισσότερα

Διδακτικζσ Προςεγγίςεισ Διερευνθτικισ Μάκθςθσ

Διδακτικζσ Προςεγγίςεισ Διερευνθτικισ Μάκθςθσ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Διδακτικζσ Προςεγγίςεισ Διερευνθτικισ Μάκθςθσ Ενότθτα: Ειςαγωγι και Επιςκόπθςθ - Inquiry Based Science Education: Online Course Overview Κάλλια Κατςαμποξάκθ-Hodgetts

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Μυκθτολογικζσ αςκζνειεσ δενδρωδϊν και αμπζλου

Μυκθτολογικζσ αςκζνειεσ δενδρωδϊν και αμπζλου ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Μυκθτολογικζσ αςκζνειεσ δενδρωδϊν και αμπζλου 2 θ Επανάλθψθ. Αδρομυκϊςεισ και ςιψεισ ξφλου. Αναςταςία Λαγοπόδθ Επίκ. Κακθγιτρια Φυτοπακολογίασ,

Διαβάστε περισσότερα

Οντοκεντρικόσ Προγραμματιςμόσ

Οντοκεντρικόσ Προγραμματιςμόσ Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 2: Η ΓΛΩΑ JAVA Βαςικά Δομικά Στοιχεία Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικών Η/Τ & Πλθροφορικισ ΔΟΜΙΚΑ ΣΟΙΧΕΙΑ ΓΟΜΙΚΑ ΣΟΙΥΔΙΑ JAVA Βαςικά Πακζτα

Διαβάστε περισσότερα

Οντοκεντρικόσ Προγραμματιςμόσ

Οντοκεντρικόσ Προγραμματιςμόσ Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 6: C++ ΚΛΑΕΙ, ΚΛΗΡΟΝΟΜΙΚΟΣΗΣΑ, ΠΟΛΤΜΟΡΦΙΜΟ Πολυμορφιςμόσ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικϊν Η/Τ & Πλθροφορικισ Πολυμορφιςμόσ Πολυμορφιςμόσ Ειςαγωγι

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 11: Ο Ματκαίοσ κι ο Λουκάσ ωσ αναγνώςτεσ του Μάρκου Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Τεχνθτι Νοθμοςφνθ. Ενότθτα 8:Κανόνεσ Παραγωγισ. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ

Τεχνθτι Νοθμοςφνθ. Ενότθτα 8:Κανόνεσ Παραγωγισ. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Κανόνεσ Παραγωγισ Κανόνεσ-Συςτιματα Ζννοια του ςυςτιματοσ παραγωγισ, ωσ ψυχολογικό μοντζλο περιγραφισ τθσ

Διαβάστε περισσότερα

TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ

TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ www.timproject.eu www.tim.project-platform.eu TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ This project has been founded with support form the European Commission. This presentation reflects the

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 10: Ιδιαίτερα Θεολογικά Θζματα και Μοτίβα Α : Το Μυςτικό του Μεςςία και Χριςτολογικοί Τίτλοι Αικατερίνθ

Διαβάστε περισσότερα

ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ. Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ. Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν

ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ. Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ. Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ αυτισ είναι θ ανάπτυξθ μακθματικϊν ςχζςεων μεταξφ

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 1 ο RDF

Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 1 ο RDF Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 1 ο RDF Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κϊν Θ/Υπολογιςτϊν & Πλθροφορικισ Μζροσ 1 ο RDF 1. Ειςαγωγι

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.

Διαβάστε περισσότερα

Θμγμηεπκία γηα Παηδηά Ζ

Θμγμηεπκία γηα Παηδηά Ζ Θμγμηεπκία γηα Παηδηά Ζ Γκόηεηα 2: Παναμύζη Δεμήηνεξ Πμιίηεξ πμιή Ακζνςπηζηηθώκ θαη Ημηκςκηθώκ Γπηζηεμώκ Σ.Γ.Γ.Α.Π.Ε. 1 θμπμί εκόηεηαξ Ηαηακόεζε ηςκ βαζηθώκ εηδώκ ηςκ Θασθώκ Αθεγήζεςκ-Δηάθνηζε/Αλημπμίεζε

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 15: Εξόρυξη Δεδομζνων (Data Mining) Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Ερμθνεία και ερμθνευτικι τθσ Καινισ Διακικθσ

Ερμθνεία και ερμθνευτικι τθσ Καινισ Διακικθσ Ερμθνεία και ερμθνευτικι τθσ Καινισ Διακικθσ Ενότθτα 2: Tο κατά Λωάννθ ευαγγζλιο 2 ωτιριοσ Δεςπότθσ Κεολογικι χολι ΕΠΙΜΕΣΡΟ: Ο ΤΜΝΟ ΣΟΝ ΛΟΓΟ ΠΡΟΟΧΘ ΣΘΝ ΕΜΦΑΘ ΚΑΣΆ ΣΘΝ ΑΝΑΓΝΩΘ Α ΜΕΡΟ: Ο ΛΟΓΟ ΔΗΜΙΟΤΡΓΟ (ςτ.

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 6: Συνοπτικά και θ ςχζςθ τουσ με το Ευαγγζλιο του Θωμά Αικατερίνθ Τςαλαμποφνθ Άδειεσ Χρήςησ Το

Διαβάστε περισσότερα

Τεχνθτι Νοθμοςφνθ. Ενότθτα 5: Λογικόσ Προγραμματιςμόσ και PROLOG. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ

Τεχνθτι Νοθμοςφνθ. Ενότθτα 5: Λογικόσ Προγραμματιςμόσ και PROLOG. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Λογικόσ Προγραμματιςμόσ και PROLOG Λογικόσ Προγραμματιςμόσ (1) Εξαγωγι αποτελεςμάτων-ςυμπεραςμάτων από ζνα

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

ΘΕΜΟΔΥΝΑΜΙΚΘ Ι. Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ

ΘΕΜΟΔΥΝΑΜΙΚΘ Ι. Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ ΘΕΜΟΔΥΝΑΜΙΚΘ Ι Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν Σκοποί ενότθτασ Σκοπόσ

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

Τεχνθτι Νοθμοςφνθ. Ενότθτα 9: Συλλογιςμόσ με Αβεβαιότθτα. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Θ/Υ & Πλθροφορικισ

Τεχνθτι Νοθμοςφνθ. Ενότθτα 9: Συλλογιςμόσ με Αβεβαιότθτα. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Θ/Υ & Πλθροφορικισ Τεχνθτι Νοθμοςφνθ Ενότθτα 9: Συλλογιςμόσ με Αβεβαιότθτα Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Θ/Υ & Πλθροφορικισ Συλλογιςμόσ με Αβεβαιότθτα Συλλογιςμόσ με Αβεβαιότθτα (Reasoning with

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 4 : Ανάλυςθ ακολουκιακϊν κυκλωμάτων με ρολόι Φϊτιοσ Βαρτηιϊτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 4 : Ανάλυςθ ακολουκιακϊν κυκλωμάτων με ρολόι Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Κδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 4 : Ανάλυςθ ακολουκιακϊν κυκλωμάτων με ρολόι Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...

Διαβάστε περισσότερα

Ειςαγωγι ςτθ Χθμικι Μθχανικι

Ειςαγωγι ςτθ Χθμικι Μθχανικι Ειςαγωγι ςτθ Χθμικι Μθχανικι Ενότθτα 4: Ιςοηφγια ενζργειασ και θ βάςθ τθσ Θερμοδυναμικισ Κωνςταντίνοσ Βαγενάσ Αλζξανδροσ Κατςαοφνθσ Τμιμα Χθμικών Μθχανικών Κλειζηά ζςζηήμαηα 1 ορ Νόμορ Θεπμοδςναμικήρ Θεκειίσζε

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Τεχνθτι Νοθμοςφνθ. Ενότθτα 12: Αναπαράςταςθ με Πλαίςια. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Θ/Υ & Πλθροφορικισ

Τεχνθτι Νοθμοςφνθ. Ενότθτα 12: Αναπαράςταςθ με Πλαίςια. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Θ/Υ & Πλθροφορικισ Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Θ/Υ & Πλθροφορικισ Πλαίςια Πλαίςια Ορίςτθκαν από τον Minsky ςαν "δομζσ δεδομζνων για τθν αναπαράςταςθ ςτερεότυπων καταςτάςεων".

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός 1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Τεχνθτι Νοθμοςφνθ. Ενότθτα 11: Σθμαντικά Δίκτυα. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ

Τεχνθτι Νοθμοςφνθ. Ενότθτα 11: Σθμαντικά Δίκτυα. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Σθμαντικά Δίκτυα Σθμαντικά Δίκτυα Βαςίηονται ςτθν αίςκθςθ ότι ζνα χαρακτθριςτικό τθσ ανκρϊπινθσ μνιμθσ είναι

Διαβάστε περισσότερα

Τεχνθτι Νοθμοςφνθ. Ενότθτα 3: Λογικι και Συλλογιςμόσ. Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Ρλθροφορικισ

Τεχνθτι Νοθμοςφνθ. Ενότθτα 3: Λογικι και Συλλογιςμόσ. Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Ρλθροφορικισ Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Ρλθροφορικισ Λογικι και Συλλογιςμόσ Λογικισ ωσ Αναπαράςταςθ Γνϊςθσ (1) Βαςικά Στοιχειά Λογικισ Γλϊςςασ Σφνταξθ (syntax)

Διαβάστε περισσότερα

Ερμηνεία και Ερμηνεσηική ηης Καινής Διαθήκης

Ερμηνεία και Ερμηνεσηική ηης Καινής Διαθήκης Ερμηνεία και Ερμηνεσηική ηης Καινής Διαθήκης Ενόηηηα 1: Ερμηνεία Καινής Διαθήκης Nestle Σωηήριος Δεζπόηης Θεολογική ζτολή, Τμήμα Κοινωνικής Θεολογίας 1 ΠΕΡΙΕΥΟΜΕΝΑ NESTLE - ALAND, NOVUM TESTAMENTUM GRAECE...3

Διαβάστε περισσότερα

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων»

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Το Πλθροφοριακό Σφςτθμα τθσ δράςθσ «e-κπαιδευτείτε» ζχει ςτόχο να αυτοματοποιιςει τισ ακόλουκεσ

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 2 ο RDF Schema

Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 2 ο RDF Schema Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 2 ο RDF Schema Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κών Η/Υπολογιςτών & Πλθροφορικισ Περιεχόμενα ενότθτασ

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων).

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_ (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). Βαςικοί παράμετροι @EDT@_ @CHK@_ @CXD@_ @CXDC@_ @CMB@_ @CHKLB@_ Παράμετροσ που

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Λ Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 5: Η Πθγι των Λογίων (Q): Σθμαςία και Θζςθ ςτθν Αρχαία Χριςτιανικι Παράδοςθ Αικατερίνθ Τςαλαμποφνθ

Διαβάστε περισσότερα

Σφντομεσ Οδθγίεσ Χριςθσ

Σφντομεσ Οδθγίεσ Χριςθσ Σφντομεσ Οδθγίεσ Χριςθσ Περιεχόμενα 1. Επαφζσ... 3 2. Ημερολόγιο Επιςκζψεων... 4 3. Εκκρεμότθτεσ... 5 4. Οικονομικά... 6 5. Το 4doctors ςτο κινθτό ςου... 8 6. Υποςτιριξθ... 8 2 1. Επαφζσ Στισ «Επαφζσ»

Διαβάστε περισσότερα

Template προζβάζιμοσ MS-Word 2007

Template προζβάζιμοσ MS-Word 2007 Γεώργιος Κοσροσπέηρογλοσ Template προζβάζιμοσ MS-Word 2007 Έκδοζη: 1.1 Αθήνα 2013 Έργο «Κενηρικό Μηηρώο Ελληνικών Ανοικηών Μαθημάηων» http://ocw-project.gunet.gr Στθν υλοποίθςθ του παραδοτζου αυτοφ ςυνζβαλαν

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Αντώνησ Κ Μαώργιώτησ

Εισαγωγικές έννοιες. Αντώνησ Κ Μαώργιώτησ Εισαγωγικές έννοιες Αντώνησ Κ Μαώργιώτησ Έννοιεσ που πρϋπει να επιβεβαιώςουμε ότι τισ ξϋρουμε (1) - αναζότηςη Ιςτοςελίδα Αρχείο που περιζχει πλθροφορίεσ προοριςμζνεσ για δθμοςίευςθ ςτο Παγκόςμιο Ιςτό (www).

Διαβάστε περισσότερα

Διδακτικι τθσ Γλϊςςασ Ι

Διδακτικι τθσ Γλϊςςασ Ι Διδακτικι τθσ Γλϊςςασ Ι Ενότθτα 7: Κειμενικά είδθ ςτο νθπιαγωγείο Μαριάννα Κoνδφλθ χολι Ανκρωπιςτικϊν και Κοινωνικϊν Επιςτθμϊν Σ.Ε.Ε.Α.Π.Η. κοποί ενότθτασ Να κατανοθκεί θ ζννοια των κειμενικϊν ειδϊν (Genres)

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

Εισαγωγή Νέου Παγίου

Εισαγωγή Νέου Παγίου Εισαγωγή Νέου Παγίου 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δημιουργήθηκε για να βοηθήςει την κατανόηςη τησ διαδικαςίασ ειςαγωγήσ νζου παγίου ςτην εφαρμογή τησ ςειράσ Hyper Axion. Παρακάτω προτείνεται μια

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

η τζχνη τησ εκπαίδευςησ ο καθηγητήσ ςτο ςπίτι, 24 ώρεσ το 24ωρο

η τζχνη τησ εκπαίδευςησ ο καθηγητήσ ςτο ςπίτι, 24 ώρεσ το 24ωρο η τζχνη τησ εκπαίδευςησ ο καθηγητήσ ςτο ςπίτι, 24 ώρεσ το 24ωρο 210-9519043, info@odsk.gr Ειςαγωγή ιμερα, με τθν αλματϊδθ πρόοδο τθσ τεχνολογίασ και ειδικότερα ςτον τομζα των τθλεπικοινωνιϊν, ανοίγονται

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1] Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι

Διαβάστε περισσότερα

ΙΝΣΙΣΟΤΣΟ ΕΚΠΑΙΔΕΤΣΙΚΗ ΠΟΛΙΣΙΚΗ

ΙΝΣΙΣΟΤΣΟ ΕΚΠΑΙΔΕΤΣΙΚΗ ΠΟΛΙΣΙΚΗ ΑΝΑΡΣΗΣΕΑ ΣΟ ΔΙΑΔΙΚΣΤΟ Ι Ν Σ Ι Σ Ο Τ Σ Ο Ε Κ Π Α Ι Δ Ε Τ Σ Ι Κ Η Π Ο Λ Ι Σ Ι Κ Η ΣΜΗΜΑ ΔΙΑΓΩΝΙΜΩΝ ΚΑΙ ΤΜΒΑΕΩΝ ΕΤΡΩΠΑΪΚΗ ΕΝΩΗ ΕΤΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ TAMEIO Σαχ. Δ/νςη : Αν. Τςόχα 36 Σ. Κ. Πόλη : 115 21- Αμπελόκθποι,

Διαβάστε περισσότερα