Το χρονικό του χρόνου (Stephen Hawking)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το χρονικό του χρόνου (Stephen Hawking)"

Transcript

1 1 Λίγη ιστορία Στην αρχαιότητα ο Αριστοτέλης (340 π.χ.) υποστήριξε ότι η Γη ήταν στρογγυλή και όχι επίπεδη, ότι ήταν ακίνητη στο κέντρο του διαστήματος και ότι όλοι οι υπόλοιποι πλανήτες και τα άστρα γύριζαν γύρω από αυτήν. Τον 2 ο αιώνα μ.χ. ο Πτολεμαίος δημιούργησε ένα αστρονομικό μοντέλο με την Γη να στέκει ακίνητη στο κέντρο, περιβαλλόμενη από τον Ερμή, την Αφροδίτη, τον Άρη, τον Δία και τον Κρόνο να κινούνται γύρω της σε κυκλικές τροχιές. Το 1514 μ.χ. ο Κοπέρνικος πρότεινε το αστρονομικό μοντέλο με τον ήλιο ακίνητο στο κέντρο και την Γη με τους υπόλοιπους πλανήτες να γυρίζουν γύρω του σε κυκλικές τροχιές. Το 1609 μ.χ. ο Γαλιλαίος παρατήρησε με την βοήθεια του τηλεσκόπιού του ότι ο Δίας έχει πολλούς δορυφόρους και έτσι συμπέρανε ότι η Γη δεν ήταν αναγκαστικά το κέντρο περιστροφής όλων των ουράνιων σωμάτων. Αργότερα ο Κέπλερ υποστήριξε ότι οι κίνησή τους δεν είναι κυκλική, αλλά ελλειπτική. Το 1687 μ.χ. ο Νεύτων δημοσίευσε το βιβλίο του «Μαθηματικές αρχές της φυσικής φιλοσοφίας» στο οποίο παρουσίαζε μια θεωρία φυσικής για το πώς κινούνται τα σώματα στο χώρο και τον χρόνο. Επιπλέον υπέθεσε τον νόμο της παγκόσμιας βαρυτικής έλξης, σύμφωνα με τον οποίο κάθε σώμα στο σύμπαν έλκει όλα τα υπόλοιπα με μια δύναμη που είναι τόσο πιο μεγάλη όσο πιο μεγάλη μάζα έχουν τα σώματα και όσο πιο κοντά βρίσκονται μεταξύ τους. Βασιζόμενος σε αυτό το νόμο απέδειξε ότι η βαρύτητα αναγκάζει τη Σελήνη να κινείται σε ελλειπτική τροχιά γύρω από τη Γη, και τη Γη με τους άλλους πλανήτες να κινούνται σε ελλειπτική τροχιά γύρω από τον ήλιο. Το 1929 μ.χ. ο αστρονόμος Hubble έκανε την μνημειώδη παρατήρηση ότι προς όποια κατεύθυνση και αν κοιτάξουμε, οι μακρινοί γαλαξίες κινούνται απομακρυνόμενοι από εμάς. Με άλλα λόγια το σύμπαν διαστέλλεται! Αυτό σημαίνει ότι στο παρελθόν τα αντικείμενα βρίσκονταν πιο κοντά μεταξύ τους από όσο σήμερα. Έτσι οδηγηθήκαμε στην σκέψη της «Μεγάλης Έκρηξης» ως αρχική στιγμή δημιουργίας του σύμπαντος. Πριν από αυτή το σύμπαν θεωρούμε ότι ήταν απείρως μικρό και πυκνό, ενώ δεν υπήρχε και η έννοια του χρόνου! Σήμερα οι επιστήμονες περιγράφουν το σύμπαν με χρήση δύο βασικών θεωριών: α) με τη θεωρία της σχετικότητας του Αϊνστάιν που περιγράφει τη δύναμη της βαρύτητας και τη μακροσκοπική δομή του σύμπαντος (από μερικά χιλιόμετρα μέχρι και ένα επτάκις εκατομμύρια χιλιόμετρα) και β) με τη κβαντομηχανική που περιγράφει φαινόμενα σε εξαιρετικά μικρές κλίμακες (π.χ. ένα τρισεκατομμυριοστό του εκατοστού). Όμως ο τελικός αντικειμενικός σκοπός της φυσικής είναι η σύσταση μιας μοναδικής θεωρίας που να περιγράφει όλο το σύμπαν. Χώρος και χρόνος Η θεμελιώδης υπόθεση της θεωρίας της σχετικότητας ήταν ότι «οι νόμοι της φυσικής παραμένουν οι ίδιοι για όλους τους ελεύθερα κινούμενους παρατηρητές, ανεξάρτητα από την ταχύτητά τους». Συγκεκριμένα όλοι οι παρατηρητές πρέπει να μετρούν ότι το φως κινείται με την ίδια ταχύτητα, ανεξάρτητα με ποια ταχύτητα κινούνται οι ίδιοι. Αυτή η υπόθεση έχει ως αποτέλεσμα τις εξής γνωστές θεωρίες: 1. Την ισοδυναμία ενέργειας και μάζας Από την ισοδυναμία μάζας και ενέργειας (που εκφράζεται από την εξίσωση E=mc 2 ) προκύπτει ότι η ενέργεια που αποκτά ένα αντικείμενο λόγω της κίνησής του, προστίθεται στην μάζα του, με αποτέλεσμα να γίνεται δυσκολότερη η περαιτέρω αύξηση της ταχύτητάς του. Ένα αντικείμενο που κινείται με ταχύτητα ίση με το 10% της ταχύτητας του φωτός θα αποκτήσει μάζα μεγαλύτερη κατά 0,5% σε σχέση με την αρχική του, ενώ αν κινηθεί με ταχύτητα ίση με το 90% της ταχύτητας του φωτός, τότε θα αποκτήσει μάζα διπλάσια από την αρχική του!

2 2 Όσο λοιπόν η ταχύτητα ενός αντικειμένου προσεγγίζει την ταχύτητα του φωτός, τόσο πιο γρήγορα μεγαλώνει η μάζα του, με αποτέλεσμα να χρειάζεται όλο και περισσότερη ενέργεια για να αυξηθεί και άλλο η ταχύτητά του. Επομένως πρακτικά κανένα αντικείμενο δεν μπορεί να φτάσει την ταχύτητα του φωτός, αφού η μάζα του θα γινόταν άπειρη και για την κίνησή του θα χρειαζόταν άπειρη ενέργεια! Μόνο τα φωτεινά κύματα ή τα κύματα που δεν έχουν εγγενή μάζα μπορούν να κινούνται με την ταχύτητα του φωτός. 2. Την απόρριψη του απόλυτου χρόνου Στην θεωρία της σχετικότητας δεν υπάρχει κανένας μοναδικός απόλυτος χρόνος. Ο καθένας έχει το δικό του προσωπικό μέτρο χρόνου, το οποίο εξαρτάται από το που βρίσκεται και το πώς κινείται. Αυτό πρέπει να γίνει για να δικαιολογήσουμε τις διαφορετικές μετρήσεις χρόνου από διάφορους παρατηρητές για την κάλυψη μιας απόστασης από το φως. Έτσι αποδεχόμαστε ότι ο χρόνος δεν είναι εντελώς διαχωρισμένος και ανεξάρτητος από το χώρο, αλλά ενωμένος με αυτόν σε μια ουσία που ονομάζεται χωρόχρονος. 3. Ο χωρόχρονος δεν είναι επίπεδος Ο Αϊνστάιν έκανε την εξής επαναστατική υπόθεση: η βαρύτητα δεν είναι μια δύναμη σαν τις άλλες, αλλά είναι συνέπεια του γεγονότος ότι ο χωρόχρονος είναι καμπυλωμένος από την παρουσία μέσα του μάζας και ενέργειας! Έτσι η Γη και οι άλλοι πλανήτες δεν κινούνται σε καμπύλες τροχιές εξαιτίας των βαρυτικών δυνάμεων, αλλά ακολουθούν τις πιο «ευθείες» διαδρομές του καμπυλωμένου χωροχρόνου (γεωδαισιακές καμπύλες). Η μάζα του Ήλιου καμπυλώνει το χωρόχρονο με τέτοιο τρόπο που αν η Γη ακολουθεί μια ευθεία διαδρομή στον τετραδιάστατο χωρόχρονο, σ εμάς φαίνεται να κινείται κατά μήκος μιας καμπύλης τροχιάς στον τρισδιάστατο χώρο! 4. Ο χρόνος περνά πιο αργά κοντά σε ένα σώμα που έχει μεγάλη μάζα Αυτό εξηγείται ως εξής: Η ενέργεια του φωτός είναι υψηλότερη κοντά στην γη, με αποτέλεσμα να έχει και υψηλότερη συχνότητα. Αντιθέτως το φως χάνει ενέργεια κατά την απομάκρυνσή του από το βαρυτικό πεδίο της Γης με αποτέλεσμα να έχει χαμηλότερη συχνότητα. Έτσι ο χρόνος κυλά πιο αργά κοντά στην Γη. Αυτό επαληθεύτηκε πειραματικά το 1962 με χρησιμοποίηση δυο ίδιων χρονομέτρων πολύ μεγάλης ακρίβειας, όπου το ένα τοποθετήθηκε στην βάση ενός υδατόπυργου και το άλλο στην κορυφή του, με αποτέλεσμα μετά από καιρό στο χρονόμετρο της βάσης να εμφανιστεί καθυστέρηση σε σχέση με το χρονόμετρο της κορυφής, ακριβώς όση προέβλεπε η γενική θεωρία της σχετικότητας! Το Σύμπαν διαστέλλεται Το 1924 ο Αμερικανός αστρονόμος Hubble έδειξε ότι ο δικός μας Γαλαξίας δεν είναι ο μοναδικός, παρά μόνο ένας από τους εκατοντάδες δισεκατομμύρια γαλαξίες που μπορούμε να διακρίνουμε (με την χρήση τηλεσκοπίων). Επίσης χρησιμοποιώντας το φαινόμενο Doppler ανακάλυψε ότι το Σύμπαν δεν είναι στατικό, αλλά διαστέλλεται, καθώς οι αποστάσεις μεταξύ των πλανητών μεγαλώνουν συνεχώς! Όμως πόσο γρήγορα διαστέλλεται; Διότι αν διαστέλλεται αρκετά αργά, τότε η βαρυτική έλξη μεταξύ των γαλαξιών θα επιβραδύνει την διαστολή με αποτέλεσμα κάποτε να την σταματήσει και έπειτα θα αρχίσει η συστολή του Σύμπαντος! Όμως αν διαστέλλεται αρκετά γρήγορα, τότε είτε οι γαλαξίες θα συνεχίσουν να απομακρύνονται με σταθερή ταχύτητα, είτε η ταχύτητα με την οποία θα απομακρύνονται θα μειώνεται συνεχώς, χωρίς όμως να μηδενίζεται ποτέ. Για να δοθεί απάντηση στο ερώτημα για το αν το Σύμπαν θα σταματήσει κάποτε να διαστέλλεται και θα αρχίσει να συστέλλεται ή αν θα συνεχίσει να διαστέλλεται επ άπειρο, χρειάζεται να γνωρίζουμε τον σημερινό ρυθμό διαστολής του Σύμπαντος και τη σημερινή του μέση πυκνότητα. Έχοντας ως ένδειξη ότι το Σύμπαν διαστέλλεται κατά 5-10% κάθε ένα δισεκατομμύριο χρόνια και ότι η συνολική μάζα όλων των γνωστών γαλαξιών είναι λιγότερη από το ένα εκατοστό της μάζας που χρειάζεται για να σταματήσει η διαστολή του Σύμπαντος, οδηγούμαστε στο συμπέρασμα ότι πιθανόν το Σύμπαν θα συνεχίσει να διαστέλλεται επ άπειρο!

3 3 Αν τώρα υπολογίσουμε χρονικά προς τα πίσω την κίνηση των γαλαξιών, οδηγούμαστε στο συμπέρασμα ότι κάποτε η απόσταση μεταξύ των γαλαξιών πρέπει να ήταν μηδενική! Εκείνη την στιγμή - που ονομάζουμε «στιγμή της Μεγάλης Έκρηξης» - η πυκνότητα του Σύμπαντος και η καμπυλότητα του χωρόχρονου πρέπει να ήταν άπειρες. Όμως λόγω του «απείρου» δεν μπορούμε να προβλέψουμε τι συνέβη πριν την Μεγάλη Έκρηξη και γι αυτό θεωρούμε ότι ο χρόνος είχε μια αρχή την στιγμή της Μεγάλης Έκρηξης. Με ένα μαθηματικό θεώρημα ο Penrose και ο Hawking το 1970 απέδειξαν ότι η «ανωμαλία» της Μεγάλης Έκρηξης έπρεπε να υπάρχει, υπό την προϋπόθεση ότι ισχύει η γενική θεωρία της σχετικότητας και ότι το Σύμπαν περιέχει όση ποσότητα ύλης παρατηρούμε. Αργότερα ο Hawking αναίρεσε, υποστηρίζοντας ότι οι ανωμαλίες μπορούν να εξαφανιστούν αν στα μοντέλα μας για το Σύμπαν συμπεριλάβουμε και τα κβαντικά φαινόμενα. Θεωρεί λοιπόν την γενική θεωρία της σχετικότητας ως μια επιμέρους θεωρία που χρειάζεται την βοήθεια της θεωρίας της κβαντικής μηχανικής για την εξήγηση των φαινομένων που συνέβησαν όταν το Σύμπαν ήταν μικροσκοπικό. Αρχές κβαντικής μηχανικής Το 1900 ο Γερμανός φυσικός Max Planck υπέθεσε ότι η ηλεκτρομαγνητική ενέργεια εκπέμπεται κατά ορισμένα ποσά που ονόμασε κβάντα, τα οποία μεταφέρουν ποσότητα ενέργειας ανάλογη της συχνότητας των κυμάτων που εκπέμπονται. Το 1926 ο Γερμανός επιστήμονας Werner Heisenberg διατύπωσε την αρχή της απροσδιοριστίας, κατά την οποία όσο πιο μεγάλη είναι η ακρίβεια με την οποία προσπαθούμε να μετρήσουμε τη θέση ενός σωματιδίου, τόσο πιο μικρή είναι η ακρίβεια με την οποία μπορούμε να μετρήσουμε την ταχύτητά του και αντίστροφα. Η κβαντική μηχανική δεν προβλέπει για ένα πείραμα ένα μοναδικά καθορισμένο αποτέλεσμα, αλλά ένα πλήθος διαφορετικών πιθανών αποτελεσμάτων και μας πληροφορεί για το πόσο πιθανό είναι το καθένα τους. Στην κβαντική μηχανική υπάρχει ένας δυϊσμός μεταξύ των κυμάτων και των σωματιδίων, όπου κάποιες φορές είναι χρήσιμο να σκεφτόμαστε τα σωματίδια σαν κύματα, ενώ κάποιες άλλες είναι καλύτερο να σκεφτόμαστε τα κύματα σαν σωματίδια. Στοιχειώδη σωματίδια και δυνάμεις της φύσης Ο Αριστοτέλης πίστευε ότι η ύλη ήταν συνεχής και διαιρούνταν χωρίς κανένα όριο. Αργότερα ο Δημόκριτος υποστήριξε ότι η ύλη αποτελούνταν από μικρά αδιαίρετα σωματίδια, τα οποία ονόμασε «άτομα». Στις αρχές του 20 ου αιώνα ο Rutherford έδειξε ότι τα άτομα της ύλης αποτελούνται από ένα εξαιρετικά μικροσκοπικό πυρήνα με θετικά ηλεκτρικά φορτία (πρωτόνια) γύρω από τον οποίο περιστρέφονται αρνητικά ηλεκτρικά φορτία (ηλεκτρόνια). Αργότερα ο Chadwick ανακάλυψε ότι ο πυρήνας περιέχει και τα νετρόνια που έχουν την ίδια μάζα με τα πρωτόνια, αλλά δεν έχουν ηλεκτρικό φορτίο. Το 1969 ο φυσικός Murray Gell-Mann τιμήθηκε με βραβείο Νόμπελ για την ανακάλυψη των κουάρκ. Πρόκειται για σωματίδια τα οποία ανά τριάδες δημιουργούν ένα πρωτόνιο ή ένα νετρόνιο. Χρησιμοποιώντας τον δυϊσμό κύματος-σωματιδίου μπορούμε να περιγράψουμε με όρους σωματιδίων οτιδήποτε υπάρχει στο Σύμπαν, ακόμη και το φως και τη βαρύτητα. Αυτό που συμβαίνει όταν ασκείται μια αλληλεπίδραση είναι ότι ένα σωματίδιο ύλης (ένα ηλεκτρόνιο ή ένα κουάρκ) εκπέμπει ένα σωματίδιο-φορέα αλληλεπίδρασης, με αποτέλεσμα η εκπομπή να αλλάζει την ταχύτητα του σωματιδίου ύλης. Στη συνέχεια το σωματίδιο-φορέας αλληλεπίδρασης συγκρούεται με ένα άλλο σωματίδιο ύλης και απορροφάται από αυτό. Η σύγκρουση αυτή αλλάζει την ταχύτητα του δεύτερου σωματιδίου ύλης, ακριβώς σαν να υπήρξε μια αλληλεπίδραση μεταξύ των δύο σωματιδίων της ύλης.

4 4 Τα σωματίδια φορείς αλληλεπίδρασης ταξινομούνται στις εξής 4 κατηγορίες αλληλεπίδρασης: την βαρυτική, την ηλεκτρομαγνητική, την ασθενή πυρηνική και την ισχυρή πυρηνική αλληλεπίδραση. Η βαρυτική αλληλεπίδραση είναι καθολική (δηλαδή κάθε σωματίδιο υφίσταται την επίδραση της βαρύτητας ανάλογα με τη μάζα ή την ενέργειά του), έχει μεγάλη εμβέλεια και είναι πάντα ελκτική. Οι βαρυτικές δυνάμεις μεταξύ δύο σωματιδίων ύλης οφείλονται στην ανταλλαγή ενός σωματιδίου-φορέα αλληλεπίδρασης που δεν έχει μάζα και ονομάζεται βαρυτόνιο. Επομένως η βαρυτική αλληλεπίδραση μεταξύ του Ήλιου και της Γης οφείλεται στην ανταλλαγή βαρυτονίων μεταξύ των σωματιδίων ύλης που αποτελούν αυτά τα δύο σώματα. Την ηλεκτρομαγνητική αλληλεπίδραση υφίστανται μόνο όσα σωματίδια έχουν ηλεκτρικό φορτίο (ηλεκτρόνια και κουάρκ). Η ηλεκτρομαγνητική έλξη μεταξύ των ηλεκτρονίων και των πρωτονίων του πυρήνα αναγκάζει τα ηλεκτρόνια να κινούνται γύρω από τον πυρήνα και οφείλεται στην ανταλλαγή μεγάλου πλήθους σωματιδίωνφορέων αλληλεπίδρασης χωρίς μάζα που ονομάζονται φωτόνια. Κατά την μετάβαση ενός ηλεκτρονίου από μια μακρινή τροχιά από τον πυρήνα του ατόμου σε μια κοντινότερη, εκλύεται ενέργεια και εκπέμπεται ένα φωτόνιο, το οποίο μπορεί να συγκρουστεί με ένα άλλο άτομο και να του μετακινήσει ένα ηλεκτρόνιο από μια τροχιά κοντινή στον πυρήνα σε μια μακρύτερη! Η ασθενής πυρηνική αλληλεπίδραση είναι υπεύθυνη για τη ραδιενέργεια και την υφίστανται όλα τα σωματίδια ύλης, εκτός από τα φωτόνια και τα βαρυτόνια. Τα σωματίδια-φορείς της ασθενούς πυρηνικής αλληλεπίδρασης είναι τα βαριά διανυσματικά μποζόνια (W +, W -, Ζ 0 ) που έχουν μάζα περίπου 100 δισεκατομμύρια ηλεκτρονιοβόλτ (100 GeV) το καθένα. Η ισχυρή πυρηνική αλληλεπίδραση συγκρατεί μεταξύ τους τα κουάρκ μέσα στα πρωτόνια και τα νετρόνια, όπως επίσης και τα πρωτόνια με τα νετρόνια μέσα στους πυρήνες των ατόμων. Το σωματίδιο-φορέας αυτής της αλληλεπίδρασης ονομάζεται γλοιόνιο και αλληλεπιδρά μόνο με τον εαυτό του και με τα κουάρκ. Αντιύλη Εκτός από την ύλη, υπάρχει και η αντιύλη, δηλαδή υπάρχουν τα αντιηλεκτρόνια ή αλλιώς ποζιτρόνια και τα αντικουάρκ. Όταν το σωματίδιο και το αντισωματίδιό του συναντιούνται, τότε εξαϋλώνονται. Οι συνδυασμοί των κουάρκ με τα αντικουάρκ αποτελούν τα σωματίδια που ονομάζονται μεσόνια, τα οποία είναι ασταθή, καθώς τα κουάρκ και τα αντικουάρκ μπορεί να εξαϋλωθούν μεταξύ τους, παράγοντας ηλεκτρόνια και άλλα σωματίδια. Η ύλη στη Γη αποτελείται βασικά από πρωτόνια και νετρόνια, που με τη σειρά τους αποτελούνται από κουάρκ. Δεν υπάρχουν αντιπρωτόνια και αντινετρόνια (που αποτελούνται από αντικουάρκ), εκτός από εκείνα τα λίγα που παράγουν οι φυσικοί στους μεγάλους επιταχυντές σωματιδίων. Αλλά και γενικότερα στο Γαλαξία μας δεν υπάρχουν αντιπρωτόνια και αντινετρόνια, εκτός από όσα παράγονται κατά ζεύγη σωματιδίωναντισωματιδίων σε υψηλές ενέργειες. Άλλωστε αν υπήρχαν μεγάλες περιοχές με αντιύλη, τότε θα παρατηρούσαμε μεγάλες ποσότητες ακτινοβολίας από τα κοινά όρια των περιοχών της ύλης και της αντιύλης, όπου θα συγκρούονταν πολλά σωματίδια με τα αντισωματίδιά τους με τελικό αποτέλεσμα την εξαΰλωσή τους και την παραγωγή μεγάλων ποσοτήτων ακτινοβολίας. Πιστεύουμε λοιπόν ότι και στους γαλαξίες η ύλη αποτελείται τελικά από κουάρκ και όχι από αντικουάρκ, αφού φαίνεται απίθανο να υπάρχουν μερικοί γαλαξίες από ύλη και μερικοί από αντιύλη. Όμως γιατί στο Σύμπαν υπάρχουν περισσότερα κουάρκ από αντικουάρκ; Ο λόγος είναι ότι οι φυσικοί νόμοι δεν είναι ακριβώς ίδιοι για τα σωματίδια και τα αντισωματίδια. Ωστόσο είμαστε πολύ τυχεροί που είναι έτσι τα πράγματα, γιατί αλλιώς όλα σχεδόν τα κουάρκ και τα αντικουάρκ θα είχαν εξαϋλωθεί στις αρχικές φάσεις του Σύμπαντος και θα είχαν αφήσει πίσω τους ένα ωκεανό ακτινοβολίας χωρίς σχεδόν καθόλου ύλη!

5 5 Μαύρες τρύπες Για να κατανοήσουμε πως θα μπορούσε να σχηματιστεί μια μαύρη τρύπα, πρέπει πρώτα να καταλάβουμε τον κύκλο ζωής ενός άστρου. Ένα άστρο σχηματίζεται όταν μια μεγάλη ποσότητα αερίου (κυρίως υδρογόνου) αρχίζει να καταρρέει εξαιτίας της ίδιας της βαρυτικής έλξης. Καθώς ο όγκος του αερίου συστέλλεται, τα άτομά του συγκρούονται μεταξύ τους όλο και συχνότερα με όλο και μεγαλύτερες ταχύτητες. Επειδή το αέριο θερμαίνεται όλο και περισσότερο και λόγω της μεγάλης ορμής της σύγκρουσης μεταξύ των ατόμων του υδρογόνου, αυτά συγχωνεύονται μεταξύ τους και σχηματίζουν άτομα ηλίου. Η θερμότητα που εκλύεται από αυτή την πυρηνική αντίδραση (που εμφανίζεται ως φωτοβολία του άστρου) αυξάνει την πίεση του αερίου μέχρι να εξισορροπηθεί η βαρυτική έλξη, οπότε και το άστρο παύει να συστέλλεται. Τα άστρα παραμένουν σ αυτή την σταθερή κατάσταση για πολύ καιρό, με την πίεση από την θερμότητα των πυρηνικών αντιδράσεων να εξισορροπεί την πίεση της βαρυτικής έλξης. Όμως το υδρογόνο και τα άλλα πυρηνικά καύσιμα κάποτε εξαντλούνται, οπότε το άστρο θα αρχίσει να ψύχεται και άρα να συστέλλεται. Το τι μπορεί να του συμβεί εξαρτάται από την μάζα του άστρου σε σχέση με το όριο Chandrasehkar, ο οποίος υπολόγισε ότι ένα ψυχρό άστρο με μάζα μεγαλύτερη από μιάμιση φορά περίπου της μάζας του Ήλιου δεν μπορεί να διατηρεί την ισορροπία του και καταρρέει από τη βαρυτική έλξη του. Έτσι αν η μάζα του άστρου είναι μικρότερη από αυτό το όριο, τότε το άστρο μπορεί κάποτε να σταματήσει να συστέλλεται και να παραμείνει σ ένα τελικό στάδιο, έχοντας ακτίνα λίγων χιλιάδων χιλιομέτρων και πυκνότητα δεκάδων τόνων ανά κυβικό εκατοστόμετρο! Αυτά τα άστρα λέγονται λευκοί νάνοι. Ένα από τα πρώτα τέτοια άστρα που ανακαλύφθηκαν κινείται σε τροχιά γύρω από τον Σείριο, το φωτεινότερο άστρο του νυχτερινού ουρανού μας. Αν το άστρο έχει οριακή μάζα περίπου μία ή δύο φορές μεγαλύτερη από τη μάζα του Ήλιου, αλλά ακτίνα μικρότερη και από αυτήν των λευκών νάνων, τότε η βαρυτική έλξη εξισορροπείται από την άπωση μεταξύ των νετρονίων και των πρωτονίων και γι αυτό ονομάζονται αστέρες νετρονίων. Έχουν ακτίνα περίπου χιλιομέτρων και πυκνότητα δεκάδων εκατομμυρίων τόνων ανά κυβικό εκατοστόμετρο! Αν η μάζα του άστρου είναι μεγαλύτερη από το όριο Chandrasehkar, τότε όταν το άστρο συρρικνωθεί σε κάποια κρίσιμη ακτίνα, το βαρυτικό πεδίο στην επιφάνειά του γίνεται τόσο ισχυρό, ώστε το φως δεν μπορεί πια να διαφύγει από την επιφάνεια του άστρου! Τα πάντα παγιδεύονται στο βαρυτικό του πεδίο, αφού σύμφωνα με τη θεωρία της σχετικότητας τίποτα δεν κινείται ταχύτερα από το φως. Έτσι έχουμε μια περιοχή του χωρόχρονου από την οποία τίποτα δεν μπορεί να διαφύγει και να φτάσει σε κάποιον παρατηρητή μακριά από το άστρο. Αυτή την περιοχή την ονομάζουμε μαύρη τρύπα. Ο ορίζοντας γεγονότων, δηλαδή το όριο της περιοχής του χωρόχρονου απ όπου τίποτα δεν μπορεί να διαφύγει, λειτουργεί σαν μεμβράνη μονής κατεύθυνσης γύρω από την μαύρη τρύπα. Αν κάποιο αντικείμενο περάσει αυτό τον ορίζοντα και μπει στην μαύρη τρύπα, τότε δεν πρόκειται να ξαναβγεί ποτέ περνώντας τον κατά την αντίστροφη κατεύθυνση. Υπάρχουν οι μη περιστρεφόμενες και οι περιστρεφόμενες μαύρες τρύπες. Οι μη περιστρεφόμενες μαύρες τρύπες είναι απόλυτα σφαιρικές και το μέγεθός τους εξαρτάται μόνο από την μάζα τους. Επομένως όλες οι μαύρες τρύπες που έχουν την ίδια μάζα, πρέπει να είναι ίδιες. Αν ο ρυθμός περιστροφής της δεν είναι μηδέν (δηλαδή περιστρέφεται), τότε η μαύρη τρύπα εξογκώνεται στις περιοχές γύρω από τον ισημερινό της (ακριβώς όπως η Γη) και μάλιστα όσο ταχύτερα περιστρέφεται, τόσο περισσότερο εξογκώνεται. Το μέγεθος και το σχήμα μιας περιστρεφόμενης μαύρης τρύπας εξαρτώνται μόνο από τη μάζα της και το ρυθμό περιστροφής της γύρω από άξονα συμμετρίας της.

6 6 Το πλήθος άστρων που πρέπει να έχουν μετατραπεί σε μαύρες τρύπες στη μακραίωνη ιστορία του Σύμπαντος πρέπει να είναι πολύ μεγάλο, αφού στη διάρκεια αυτή πολλά άστρα πρέπει να εξάντλησαν τα πυρηνικά τους καύσιμα και να κατέρρευσαν. Οι μαύρες τρύπες ενδέχεται να είναι περισσότερες και από τα ορατά άστρα, τα οποία μόνο στο Γαλαξία μας είναι περίπου εκατό δισεκατομμύρια! Η πρόσθετη βαρυτική έλξη από τόσο πολλές μαύρες τρύπες μπορεί να εξηγήσει το ρυθμό περιστροφής του Γαλαξία μας, καθώς η μάζα των ορατών άστρων δεν είναι από μόνη της αρκετά μεγάλη για να προκαλέσει έναν τέτοιο ρυθμό περιστροφής. Ωστόσο μια μαύρη τρύπα πρέπει να εκπέμπει ακτινοβολία και σωματίδια σαν να είναι ένα θερμό σώμα με θερμοκρασία που εξαρτάται μόνο από την μάζα της μαύρης τρύπας, που σημαίνει ότι όσο περισσότερη είναι η μάζα της, τόσο μικρότερη είναι η θερμοκρασία της. Όμως πως είναι δυνατόν να φαίνεται ότι μια μαύρη τρύπα εκπέμπει σωματίδια, όταν γνωρίζουμε ότι τίποτε δεν μπορεί να διαφύγει από τον ορίζοντα των γεγονότων της; Η απάντηση που δίνει η κβαντική θεωρία λέει ότι τα σωματίδια δεν προέρχονται από το εσωτερικό της μαύρης τρύπας, αλλά από τον «κενό» χώρο έξω ακριβώς από τον ορίζοντα γεγονότων της! Εκεί υπάρχουν ζεύγη σωματιδίων-αντισωματιδίων με θετική και αρνητική ενέργεια αντίστοιχα, από τα οποία όταν το ένα από τα δύο (συνήθως αυτό με την αρνητική ενέργεια) το «ρουφήξει» η μαύρη τρύπα, τότε το άλλο (αυτό με τη θετική ενέργεια) εμφανίζεται ως προϊόν εκπομπής από την μαύρη τρύπα. Η θετική ενέργεια της ακτινοβολίας που θα εκπέμπεται προς τα έξω από τη μαύρη τρύπα θα εξισορροπείται από μια ροή σωματιδίων αρνητικής ενέργειας που θα πέφτουν μέσα της. Από την εξίσωση του Αϊνστάιν E=mc 2 βλέπουμε ότι η ενέργεια είναι ανάλογη με την μάζα. Επομένως ροή αρνητικής ενέργειας μέσα στην μαύρη τρύπα έχει ως αποτέλεσμα μείωση της μάζας της. Όμως όσο μειώνεται η μάζα της μαύρης τρύπας, τόσο αυξάνεται η θερμοκρασία της και ο ρυθμός εκπομπής ακτινοβολίας, με αποτέλεσμα η μάζα της να μειώνεται ακόμα πιο γρήγορα. Δεν είναι σαφές τι ακριβώς θα συμβεί όταν κάποτε η μάζα της μαύρης τρύπας γίνει πάρα πολύ μικρή. Η πιο εύλογη διαδικασία είναι ότι ολόκληρη η μαύρη τρύπα θα εξαφανιστεί εντελώς μέσα σε μια τρομερή τελική έκρηξη, ισοδύναμη με μια έκρηξη εκατομμυρίων εκατοντάδων πυρηνικών βομβών! Ίσως υπάρχουν αρχέγονες μαύρες τρύπες με μάζα πολύ μικρότερη από εκείνη του Ήλιου, οι οποίες σχηματίστηκαν από τη βαρυτική κατάρρευση ανομοιογενειών κατά τα πολύ πρώιμα στάδια του Σύμπαντος. Αυτές οι μαύρες τρύπες θα έχουν και πολύ μεγαλύτερη θερμοκρασία και πολύ μεγαλύτερους ρυθμούς εκπομπής ακτινοβολίας. Μια αρχέγονη μαύρη τρύπα που έχει αρχική μάζα ενός δισεκατομμυρίου τόνων θα έχει διάρκεια ζωής ίση περίπου με την ηλικία του Σύμπαντος. Αρχέγονες μαύρες τρύπες με αρχικά μικρότερες μάζες θα έχουν ήδη εξαφανιστεί εντελώς στη σημερινή εποχή. Όσες όμως είχαν λίγο μεγαλύτερες μάζες θα εκπέμπουν ακόμη ακτινοβολία με τη μορφή ακτίνων γ και Χ. Τέτοιες μαύρες τρύπες δεν αξίζουν να φέρουν το επίθετο «μαύρες», αφού στην πραγματικότητα είναι «άσπρες» εξαιτίας της μεγάλης τους θερμοκρασίας, ενώ εκπέμπουν ενέργεια με ρυθμό περίπου δέκα χιλιάδων μεγαβάτ! Η θεωρία της Θερμής Μεγάλης Έκρηξης Τη στιγμή της Μεγάλης Έκρηξης φανταζόμαστε ότι το Σύμπαν πρέπει να είχε μηδενικό μέγεθος και για το λόγο αυτό πρέπει να ήταν άπειρα θερμό. Αλλά καθώς το Σύμπαν διαστελλόταν και το μέγεθός του αυξανόταν, η θερμοκρασία του μειωνόταν. Ένα δευτερόλεπτο μετά την Μεγάλη Έκρηξη η θερμοκρασία του είχε πέσει στους δέκα περίπου δισεκατομμύρια βαθμούς (δηλαδή χίλιες φορές μεγαλύτερη από τη θερμοκρασία στο κέντρο του Ήλιου!). Στο στάδιο αυτό υπήρχαν κυρίως φωτόνια, ηλεκτρόνια, νετρίνα, αντισωματίδια, πρωτόνια και νετρόνια.

7 7 Εκατό δευτερόλεπτα μετά τη Μεγάλη Έκρηξη η θερμοκρασία θα είχε πέσει στο ένα δισεκατομμύριο βαθμούς (δηλαδή όση είναι και στο κέντρο των πιο θερμών άστρων). Στη θερμοκρασία αυτή τα πρωτόνια και τα νετρόνια δεν διέθεταν αρκετή ενέργεια για να διαφύγουν από την έλξη της ισχυρής πυρηνικής αλληλεπίδρασης, με αποτέλεσμα να αρχίσουν να συνενώνονται μεταξύ τους και να παράγουν πυρήνες δευτερίου (ένα πρωτόνιο και ένα νετρόνιο). Αυτοί συνενωθήκαν με άλλα πρωτόνια και νετρόνια για να παράγουν πυρήνες ηλίου, λιθίου και βηρυλλίου. Στις πρώτες λίγες ώρες του Σύμπαντος η παραγωγή του ηλίου και των άλλων στοιχείων είχε ήδη συμπληρωθεί. Στο επόμενο ένα εκατομμύριο χρόνια το Σύμπαν συνέχισε να διαστέλλεται χωρίς να συμβαίνει τίποτε το σημαντικό. Όμως όταν η θερμοκρασία του έπεσε σε μερικές χιλιάδες βαθμούς, τότε τα ηλεκτρόνια και οι πυρήνες δεν είχαν πια αρκετή ενέργεια για να συνεχίσουν να διαφεύγουν από την αμοιβαία ηλεκτρομαγνητική έλξη και έτσι άρχισαν να συνενώνονται και να σχηματίζουν άτομα. Στις περιοχές που τύχαινε να είναι λίγο πυκνότερες από το μέσο όρο, η διαστολή επιβραδυνόταν λόγω της πρόσθετης βαρυτικής έλξης, με αποτέλεσμα να σταματήσει η διαστολή τους και να αρχίσει η συρρίκνωσή τους. Η βαρυτική έλξη που ασκούσε η ύλη γύρω από αυτές τις περιοχές, τις ανάγκασε να περιστρέφονται με ένα ρυθμό, ο οποίος συνεχώς αυξανόταν λόγω της διαρκούς συρρίκνωσης της περιοχής. Με αυτό τον τρόπο γεννήθηκαν οι δισκοειδείς περιστρεφόμενοι γαλαξίες. Κάποιες άλλες περιοχές του Σύμπαντος που δεν έτυχε να αρχίσουν να περιστρέφονται, εξελίχθηκαν σε αντικείμενα ωοειδούς σχήματος, που ονομάζονται ελλειπτικοί γαλαξίες. Με την πάροδο του χρόνου τα αέρια υδρογόνου και ηλίου μέσα στους γαλαξίες διαχωρίστηκαν σε μικρότερα νέφη αερίων που κατέρρευσαν κάτω από την ίδια τους την βαρύτητα και συρρικνώθηκαν. Από τη σύγκρουση των ατόμων στο εσωτερικό τους αυξήθηκε η θερμοκρασία τους, με αποτέλεσμα να αρχίσουν στο εσωτερικό τους πυρηνικές αντιδράσεις σύντηξης που μετέτρεπαν το υδρογόνο σε ήλιο. Η θερμότητα που απελευθερωνόταν μεγάλωνε την εσωτερική πίεση των αερίων και έτσι τα εμπόδισε να συρρικνωθούν κι άλλο. Έτσι παραμένουν για μεγάλο χρονικό διάστημα σ αυτή την σταθερή κατάσταση καίγοντας υδρογόνο σε ήλιο και ακτινοβολώντας την ενέργεια που απελευθερώνεται (χαρακτηριστικό παράδειγμα τέτοιων άστρων είναι ο Ήλιος μας). Όταν εξαντληθεί το υδρογόνο ενός τέτοιου άστρου, τότε η κεντρική περιοχή του καταρρέει σε μια πολύ πυκνή κατάσταση: ένα αστέρα νετρονίων ή μια μαύρη τρύπα. Μερικές φορές οι εξωτερικές περιοχές του άστρου μπορεί να εκτιναχθούν μακριά με μια τρομερή έκρηξη που ονομάζεται σουπερνόβα. Μια τέτοια έκρηξη είναι λαμπρότερη απ όλα μαζί τα άστρα του γαλαξία στον οποίο συμβαίνει! Ο Ήλιος μας είναι άστρο 2 ης ή 3 ης γενιάς, καθώς πρέπει να σχηματίστηκε πριν από πέντε δισεκατομμύρια χρόνια από την ύλη ενός περιστρεφόμενου νέφους που περιείχε υπολείμματα προηγούμενων εκρήξεων σουπερνόβα. Επίσης μια μικρή ποσότητα των βαρύτερων στοιχείων συγκεντρώθηκε σε μερικές περιοχές και σχημάτισε τα σώματα που κινούνται γύρω από τον Ήλιο, δηλαδή τη Γη και τους άλλους πλανήτες.

8 8 Θεωρία δημιουργίας ζωής στη Γη Στην αρχή η Γη ήταν πολύ θερμή και δεν είχε ατμόσφαιρα. Με την πάροδο του χρόνου άρχισε να ψύχεται και απέκτησε ατμόσφαιρα αερίων (δηλητηριώδη για τον άνθρωπο, κυρίως υδρόθειο και καθόλου οξυγόνο) που αποδεσμεύτηκαν από τα πετρώματα. Κάτω από αυτές τις συνθήκες και μάλλον στους ωκεανούς δημιουργήθηκαν τα μακρομόρια, ως αποτέλεσμα τυχαίου συνδυασμού ατόμων σε πιο σύνθετα σώματα. Αυτά δημιούργησαν άλλα μακρομόρια πιο σύνθετα και πιο εξελιγμένα, τα οποία σταδιακά αντικατέστησαν τα προηγούμενα. Οι πρώτες αρχέγονες μορφές ζωής κατανάλωναν διάφορα υλικά, όπως υδρόθειο και απελευθέρωναν διάφορα άλλα, όπως οξυγόνο. Έτσι σιγά σιγά η ατμόσφαιρα άλλαξε και η σύνθεσή της έγινε αυτή που είναι σήμερα. Αυτή η σύνθεση επέτρεψε να δημιουργηθούν ανώτερες μορφές ζωής, όπως ψάρια, αμφίβια, θηλαστικά και τελικά το ανθρώπινο είδος! Ταξίδι στο χρόνο Υπάρχουν διάφορες θεωρίες που μιλούν για ταξίδια στο χρόνο. Μια από αυτές βασίζεται στο σπάσιμο του φράγματος της ταχύτητας του φωτός, καθώς αναφέρει ότι αν κάτι καταφέρει να ταξιδέψει πιο γρήγορα από το φως, τότε από τη θεωρία της σχετικότητας υποδηλώνεται ότι μπορεί να ταξιδέψει και πίσω στο χρόνο! Ωστόσο στους επιταχυντές του Fermilab και του CERN δεν έχουμε καταφέρει να επιταχύνουμε στοιχειώδη σωματίδια με ταχύτητα μεγαλύτερη από το 99,99% της ταχύτητας του φωτός. Μάλιστα παρατηρήθηκε ότι δεν μπορούμε να τα κάνουμε να ξεπεράσουν το φράγμα της ταχύτητας του φωτός, ακόμα και αν τροφοδοτήσουμε τον επιταχυντή με αρκετή επιπλέον ενέργεια. Μια άλλη θεωρία βασίζεται στην στρέβλωση του χωρόχρονου έτσι ώστε να δημιουργηθεί μια κοσμική σήραγγα, δηλαδή ένας λεπτός σωλήνας χωρόχρονου που μπορεί να συνδέσει δύο σχεδόν επίπεδες και απομακρυσμένες μεταξύ τους περιοχές του Σύμπαντος. Ο Αϊνστάιν και ο Rosen έδειξαν ότι για δημιουργηθεί μια κοσμική σήραγγα χρειαζόμαστε μια περιοχή του χωρόχρονου με αρνητική καμπυλότητα, που σημαίνει ότι η ύλη του πρέπει να έχει αρνητική πυκνότητα. Αυτό μπορεί να ακούγεται παράδοξο, όμως η κβαντική θεωρία επιτρέπει στην ενεργειακή πυκνότητα κάποιων περιοχών να είναι αρνητική, αρκεί να εξισορροπείται από τη θετική ενεργειακή πυκνότητα κάποιων άλλων περιοχών, έτσι ώστε η συνολική ενέργεια να παραμένει πάντοτε θετική. Υπάρχουν πειραματικές ενδείξεις ότι ο χωρόχρονος μπορεί να είναι καμπυλωμένος και στρεβλωμένος, με τρόπο που να επιτρέπει ταξίδια στο χρόνο! Όμως γιατί δεν είχαμε επισκέπτες από το παρελθόν ή από το μέλλον; Βέβαια οι μαρτυρίες ανθρώπων περί UFO ίσως είναι μια ένδειξη ότι μας επισκέφθηκαν εξωγήινοι ή άνθρωποι από το μέλλον. Ωστόσο το παρελθόν είναι δεδομένο και αναλλοίωτο και ο χωρόχρονός του δεν παρουσιάζει το είδος της στρέβλωσης που απαιτείται για την πραγματοποίηση ενός ταξιδιού πίσω στο χρόνο. Αυτό συνεπάγεται ότι τα ταξίδια στο χρόνο περιορίζονται αποκλειστικά στο μέλλον! Πάντως στην περίπτωση που θα πραγματοποιηθεί ταξίδι στο παρελθόν, ο ταξιδιώτης του χρόνου δεν θα έχει ελεύθερη βούληση, αφού δεν θα μπορεί να αλλάξει το ήδη καταγεγραμμένο παρελθόν

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ

ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ Ελένη Πετράκου - National Taiwan University ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ Πρόγραμμα επιμόρφωσης ελλήνων εκπαιδευτικών CERN, 7 Νοεμβρίου 2014 You are here! 1929: απομάκρυνση γαλαξιών θεωρία της μεγάλης έκρηξης

Διαβάστε περισσότερα

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης.

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. 1 Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. Μέχρι τις αρχές του 20ου αιώνα υπήρχε μια αντίληψη για τη φύση των πραγμάτων βασισμένη στις αρχές που τέθηκαν από τον Νεύτωνα

Διαβάστε περισσότερα

ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ

ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Το ηλιακό μας σύστημα απαρτίζεται από τον ήλιο (κεντρικός αστέρας) τους 8 πλανήτες, (4 εσωτερικούς ή πετρώδεις: Ερμής, Αφροδίτη, Γη και Άρης, και 4 εξωτερικούς: Δίας,

Διαβάστε περισσότερα

Εναλλακτικές ιδέες των µαθητών

Εναλλακτικές ιδέες των µαθητών Εναλλακτικές ιδέες των µαθητών Αντωνίου Αντώνης, Φυσικός antoniou@sch.gr, http://users.att.sch.gr/antoniou Απόδοση στα ελληνικά της µελέτης του Richard P. Olenick, καθηγητή Φυσικής του University of Dallas.

Διαβάστε περισσότερα

Ο Ήλιος, το Ηλιακό Σύστηµα και η δηµιουργία του Ηλιακού Συστήµατος! Παρουσίαση Βαονάκη Μαρία Βασιλόγιαννου Βασιλική

Ο Ήλιος, το Ηλιακό Σύστηµα και η δηµιουργία του Ηλιακού Συστήµατος! Παρουσίαση Βαονάκη Μαρία Βασιλόγιαννου Βασιλική Ο Ήλιος, το Ηλιακό Σύστηµα και η δηµιουργία του Ηλιακού Συστήµατος! Παρουσίαση Βαονάκη Μαρία Βασιλόγιαννου Βασιλική Εισαγωγή Η πιο κάτω παρουσίαση είναι η αρχή του δρόµου στη µακριά λεωφόρο της γνώσης

Διαβάστε περισσότερα

Η μελλοντική εξέλιξη του Σύμπαντος. Γεώργιος Κοντόπουλος

Η μελλοντική εξέλιξη του Σύμπαντος. Γεώργιος Κοντόπουλος Η μελλοντική εξέλιξη του Σύμπαντος Γεώργιος Κοντόπουλος (Δείτε τη σχετική παρουσίαση αρχείο.powerpoint) Το θέμα του μέλλοντος του Σύμπαντος ενδιαφέρει ιδιαίτερα τόσο τη Θεολογία όσο και την Αστρονομία.

Διαβάστε περισσότερα

1 http://didefth.gr/mathimata

1 http://didefth.gr/mathimata Πυρηνική Ενέργεια Οι ακτινοβολίες που προέρχονται από τα ραδιενεργά στοιχεία, όπως είναι το ουράνιο, έχουν µεγάλο ενεργειακό περιεχόµενο, µ' άλλα λόγια είναι ακτινοβολίες υψηλής ενέργειας. Για παράδειγµα,

Διαβάστε περισσότερα

Η ασφάλεια στον LHC Ο Μεγάλος Επιταχυντής Συγκρουόµενων εσµών Αδρονίων (Large Hadron Collider, LHC) είναι ικανός να επιτύχει ενέργειες που κανένας άλλος επιταχυντής έως σήµερα δεν έχει προσεγγίσει. Ωστόσο,

Διαβάστε περισσότερα

Ατομικές θεωρίες (πρότυπα)

Ατομικές θεωρίες (πρότυπα) Ατομικές θεωρίες (πρότυπα) 1. Αρχαίοι Έλληνες ατομικοί : η πρώτη θεωρία που διατυπώθηκε παγκοσμίως (καθαρά φιλοσοφική, αφού δεν στηριζόταν σε καμιά πειραματική παρατήρηση). Δημόκριτος (Λεύκιπος, Επίκουρος)

Διαβάστε περισσότερα

ΠΕΡΙ ΤΗΣ ΔΟΜΗΣ ΤΟΥ ΠΥΡΗΝΑ ΤΙ ΤΟ ΦΑΣΜΑΤΟΣΚΟΠΙΟ ΜΑΖΑΣ ΔΕΙΧΝΕΙ. Δείχνουμε σχεδιάγραμμα φασματοσκοπίου μάζας για να κάνουμε την ανάλυση.

ΠΕΡΙ ΤΗΣ ΔΟΜΗΣ ΤΟΥ ΠΥΡΗΝΑ ΤΙ ΤΟ ΦΑΣΜΑΤΟΣΚΟΠΙΟ ΜΑΖΑΣ ΔΕΙΧΝΕΙ. Δείχνουμε σχεδιάγραμμα φασματοσκοπίου μάζας για να κάνουμε την ανάλυση. ΠΕΡΙ ΤΗΣ ΔΟΜΗΣ ΤΟΥ ΠΥΡΗΝΑ του Αλέκου Χαραλαμπόπουλου ΤΙ ΤΟ ΦΑΣΜΑΤΟΣΚΟΠΙΟ ΜΑΖΑΣ ΔΕΙΧΝΕΙ Δείχνουμε σχεδιάγραμμα φασματοσκοπίου μάζας για να κάνουμε την ανάλυση. Φασματοσκόπιο μάζας Εξατμισμένη ύλη ή αέριο

Διαβάστε περισσότερα

ΤΑ ΑΚΡΟΤΑΤΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ

ΤΑ ΑΚΡΟΤΑΤΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ ΤΑ ΑΚΡΟΤΑΤΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ Το λαμπρότερο αστέρι στον νυχτερινό ουρανό είναι ο Σείριος Α του αστερισμού του Μεγάλου Κυνός (a Canis Majoris) και αποτελεί μέρος διπλού συστήματος αστέρων. Απέχει από το ηλιακό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή φράση η οποία συμπληρώνει σωστά την ημιτελή

Διαβάστε περισσότερα

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΥΛΗ Οτιδήποτε έχει μάζα και καταλαμβάνει χώρο Μάζα είναι η ποσότητα αδράνειας ενός σώματος, μονάδα kilogram (kg) (σύνδεση( δύναμης & επιτάχυνσης) F=m*γ Καταστάσεις της ύλης Στερεά,

Διαβάστε περισσότερα

Το παράδοξο του Albert Eistein

Το παράδοξο του Albert Eistein Το παράδοξο του Albert Eistein O Einstein Σαν παιδί ήταν αρκετά ήσυχο και μοναχικό. Σαν μαθητής ήταν καλός, ειδικά στα μαθηματικά, χωρίς όμως να ξεχωρίζει ιδιαίτερα. Η κακή του μνήμη και ο αργός τρόπος

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΩΣ ΠΗΓΗ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΑΣΤΕΡΙΑ. 4 Η Ηe

ΠΥΡΗΝΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΩΣ ΠΗΓΗ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΑΣΤΕΡΙΑ. 4 Η Ηe ΠΥΡΗΝΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΩΣ ΠΗΓΗ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΑΣΤΕΡΙΑ Η ενέργεια στον Ήλιο (και στα άλλα αστέρια της Κύριας Ακολουθίας ) παράγεταi μέσω αντιδράσεων σύντηξης. Σύντηξη: πυρηνική αντίδραση μέσω της οποίας βαρείς

Διαβάστε περισσότερα

R s ~ M Για αστρικές μάζες ΜΟ είναι μερικές φορές μικρότερη των αστέρων νετρονίων

R s ~ M Για αστρικές μάζες ΜΟ είναι μερικές φορές μικρότερη των αστέρων νετρονίων Μελανές οπές Πόση θα πρέπει να είναι η R μάζας Μ ώστε υ διαφ =c; 2GM Μάζα (M ) Rs (km) R s = c 2 Αστέρας 10 30 Αστέρας 3 9 Αστέρας 2 6 Ήλιος 1 3 Γη 0.00003 9mm R s ~ M Για αστρικές μάζες ΜΟ είναι μερικές

Διαβάστε περισσότερα

Εκροή ύλης από μαύρες τρύπες

Εκροή ύλης από μαύρες τρύπες Εκροή ύλης από μαύρες τρύπες Νίκος Κυλάφης Πανεπιστήµιο Κρήτης Η µελέτη του θέµατος ξεκίνησε ως διδακτορική διατριβή του Δηµήτρη Γιαννίου (Princeton) και συνεχίζεται. Ιωάννινα, 8-9-11 Κατ αρχάς, πώς ξέρομε

Διαβάστε περισσότερα

Εισαγωγή στη φυσική στοιχειωδών σωματιδίων

Εισαγωγή στη φυσική στοιχειωδών σωματιδίων Εργαστήριο Εισαγωγή στη φυσική στοιχειωδών σωματιδίων Hypatia : http://hypatia.phys.uoa.gr/ To Hypatia αποτελεί μέρος του ATLAS ASEC, ένα καινοτόμο εκπαιδευτικό πρόγραμμα στη Φυσική των Στοιχειωδών Σωματιδίων.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 13 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ 1. ύο µονοχρωµατικές ακτινοβολίες Α και Β µε µήκη κύµατος στο κενό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΟΙ ΑΣΤΕΡΕΣ

ΚΕΦΑΛΑΙΟ 5 ΟΙ ΑΣΤΕΡΕΣ ΚΕΦΑΛΑΙΟ 5 ΟΙ ΑΣΤΕΡΕΣ Α. Ερωτήσεις πολλαπλής επιλογής Για να απαντήσεις στις ερωτήσεις που ακολουθούν αρκεί να επιλέξεις την ή τις σωστές από τις προτεινόµενες απαντήσεις. 1. Το φαινόµενο µέγεθος ενός

Διαβάστε περισσότερα

ΚΟΣΜΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΧΕΙΜΩΝΑΣ 2004 Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ

ΚΟΣΜΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΧΕΙΜΩΝΑΣ 2004 Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ ΚΟΣΜΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΧΕΙΜΩΝΑΣ 2004 Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ Η Μεγάλη Έκρηξη Πριν από 10-15 δις χρόνια γεννήθηκε το Σύμπαν με μια εξαιρετικά θερμή και βίαια διαδικασία Το σύμπαν

Διαβάστε περισσότερα

AΣΤΡΟΝΟΜΙΚΕΣ ΠΑΡΑΝΟΗΣΕΙΣ ΙΙ: Ο ΗΛΙΟΣ

AΣΤΡΟΝΟΜΙΚΕΣ ΠΑΡΑΝΟΗΣΕΙΣ ΙΙ: Ο ΗΛΙΟΣ AΣΤΡΟΝΟΜΙΚΕΣ ΠΑΡΑΝΟΗΣΕΙΣ ΙΙ: Ο ΗΛΙΟΣ 1. Ο Ήλιος μας είναι ένας από τους μεγαλύτερους αστέρες της περιοχής μας, του Γαλαξία μας αλλά και του σύμπαντος (NASA Science, εικόνα 1), όντας ο μοναδικός στο ηλιακό

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

Αστέρες Νετρονίων και Μελανές Οπές:

Αστέρες Νετρονίων και Μελανές Οπές: Αστέρες Νετρονίων και Μελανές Οπές: Η Γένεσή τους και η Ανίχνευση Βαρυτικών Κυμάτων Βίκυ Καλογερά Τμημα Φυσικής & Αστρονομίας Γενικό Σεµινάριο Τµήµατος Φυσικής Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης 5

Διαβάστε περισσότερα

: Γ ΛΥΚΕΙΟΥ. : Φυσική γενικής παιδείας. Εξεταστέα Ύλη : : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ. Ημερομηνία : 07-12-2014 ΘΕΜΑ 1 Ο

: Γ ΛΥΚΕΙΟΥ. : Φυσική γενικής παιδείας. Εξεταστέα Ύλη : : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ. Ημερομηνία : 07-12-2014 ΘΕΜΑ 1 Ο Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική γενικής παιδείας Εξεταστέα Ύλη : Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 07-12-2014 ΘΕΜΑ 1 Ο Στις παρακάτω ερωτήσεις να βρείτε τη σωστή απάντηση: Α. Σύμφωνα με το

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009 Q 40 th Intrnational Physis Olympiad, Mrida, Mxio, 1-19 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 3 ΓΙΑΤΙ ΤΑ ΑΣΤΕΡΙΑ ΕΧΟΥΝ ΜΕΓΑΛΕΣ ΔΙΑΣΤΑΣΕΙΣ? Τα αστέρια είναι σφαίρες από ζεστό αέριο. Τα περισσότερα από αυτά λάμπουν

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Θέμα Α Στις ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ;

ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ; ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ; Α) Ακτίνα αστέρων (Όγκος). Στον Ήλιο, και τον Betelgeuse, μπορούμε να μετρήσουμε απευθείας τη γωνιακή διαμέτρο, α, των αστεριών. Αν γνωρίζουμε αυτή τη γωνία, τότε: R ( ακτίνα

Διαβάστε περισσότερα

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή:

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή: 54 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ 2014 ΘΕΜΑ Α Α1. Πράσινο και κίτρινο φως

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 3 Μαΐου 015 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Φυσικοί Νόμοι διέπουν Το Περιβάλλον

Φυσικοί Νόμοι διέπουν Το Περιβάλλον Φυσικοί Νόμοι διέπουν Το Περιβάλλον Απαρχές Σύμπαντος Ύλη - Ενέργεια E = mc 2 Θεμελιώδεις καταστάσεις ύλης Στερεά Υγρή Αέριος Χημικές μορφές ύλης Χημικά στοιχεία Χημικές ενώσεις Χημικά στοιχεία 92 στη

Διαβάστε περισσότερα

Η ΜΕΓΑΛΗ ΑΡΚΤΟΣ. Τα κυριότερα αντικείμενα της Μ. Άρκτου ALIOTH. Μπλε γίγαντας ορατός με γυμνό μάτι. Απόσταση : 82 ε.φ. Διάμετρος : 6 εκ. χιλιόμετρα.

Η ΜΕΓΑΛΗ ΑΡΚΤΟΣ. Τα κυριότερα αντικείμενα της Μ. Άρκτου ALIOTH. Μπλε γίγαντας ορατός με γυμνό μάτι. Απόσταση : 82 ε.φ. Διάμετρος : 6 εκ. χιλιόμετρα. Αστρονομία Μπιρσιάνης Γιώργος Η ΜΕΓΑΛΗ ΑΡΚΤΟΣ Τα κυριότερα αντικείμενα της Μ. Άρκτου ALIOTH Μπλε γίγαντας ορατός με γυμνό μάτι. Απόσταση : 82 ε.φ. Διάμετρος : 6 εκ. χιλιόμετρα. Λαμπρότητα : 100 φορές τη

Διαβάστε περισσότερα

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Hideki Yukawa and the Nuclear Force Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής πυρηνική δύναμη Η πυρηνική δύναμη (ή αλληλεπίδραση νουκλεονίουνουκλεονίου, ή NN forces,

Διαβάστε περισσότερα

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Αστρικό σμήνος είναι 1 ομάδα από άστρα που Καταλαμβάνουν σχετικά μικρό χώρο στο

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός ρ. Ε. Λυκούδη Αθήνα 2005 Γεωγραφικά στοιχεία της Γης Η Φυσική Γεωγραφία εξετάζει: τον γήινο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Σωτήρης Τσαντίλας (PhD, MSc), Μαθηματικός Αστροφυσικός Σύντομη περιγραφή: Χρησιμοποιώντας δεδομένα από το διαστημικό τηλεσκόπιο

Διαβάστε περισσότερα

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 Ο : ΚΡΟΥΣΕΙΣ ΦΑΙΝΟΜΕΝΟ DOPPLER ENOTHT 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Κρούση: Κρούση ονομάζουμε το φαινόμενο κατά το οποίο δύο ή περισσότερα σώματα έρχονται σε επαφή για πολύ μικρό χρονικό διάστημα κατά

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Φυσικών της Ώθησης ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Ομάδα Φυσικών της Ώθησης 1 Τετάρτη, 20 Μα ου 2015 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα

Διαβάστε περισσότερα

Λίγα για το Πριν, το Τώρα και το Μετά.

Λίγα για το Πριν, το Τώρα και το Μετά. 1 Λίγα για το Πριν, το Τώρα και το Μετά. Ψάχνοντας από το εσωτερικό κάποιων εφημερίδων μέχρι σε πιο εξειδικευμένα περιοδικά και βιβλία σίγουρα θα έχουμε διαβάσει ή θα έχουμε τέλος πάντων πληροφορηθεί,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Γιατί θα μιλήσουμε: Δημιουργία Σύμπαντος Θεωρία Μεγάλης έκρηξης. Τι είναι η Κοσμική Μικροκυματική Ακτινοβολία Υποβάθρου (CMB) Που την παρατηρούμε?

Γιατί θα μιλήσουμε: Δημιουργία Σύμπαντος Θεωρία Μεγάλης έκρηξης. Τι είναι η Κοσμική Μικροκυματική Ακτινοβολία Υποβάθρου (CMB) Που την παρατηρούμε? Γιατί θα μιλήσουμε: Δημιουργία Σύμπαντος Θεωρία Μεγάλης έκρηξης Τι είναι η Κοσμική Μικροκυματική Ακτινοβολία Υποβάθρου (CMB) Που την παρατηρούμε? Ιστορία της ανακάλυψης Γιατί είναι Σημαντική για τον άνθρωπο

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

Ο κόσμος των Γαλαξιών

Ο κόσμος των Γαλαξιών Ο κόσμος των Γαλαξιών Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής ΕΚΠΑ Aν κάποια έναστρη νύχτα παρατηρήσουμε τον ουρανό μ ένα ισχυρό τηλεσκόπιο, θα εντοπίσουμε πολλά φωτεινά αντικείμενα τα οποία

Διαβάστε περισσότερα

Νίκος Σταματόπουλος «Αρχές Διατήρησης» vs «Νόμοι του Νεύτωνα»

Νίκος Σταματόπουλος «Αρχές Διατήρησης» vs «Νόμοι του Νεύτωνα» «Αρχές Διατήρησης» vs «Νόμοι του Νεύτωνα» Ερώτημα 1 ο : Ποιες από αυτές τις «αρχές» είναι όντως αρχές και ποιες δεν είναι; Ερώτημα 2 ο : Ποιο έχει μεγαλύτερη ισχύ; η «αρχή» ή ο «νόμος»; Ερώτημα 3 ο : Ποιο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ LASER ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ ΑΤΕΙ ΠΑΤΡΑΣ

ΤΕΧΝΟΛΟΓΙΑ LASER ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ ΑΤΕΙ ΠΑΤΡΑΣ ΤΕΧΝΟΛΟΓΙΑ LASER ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ ΑΤΕΙ ΠΑΤΡΑΣ «Ίσως το φως θα ναι μια νέα τυραννία. Ποιος ξέρει τι καινούρια πράγματα θα δείξει.» Κ.Π.Καβάφης ΑΡΧΕΣ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ LASER Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Με τον όρο ακτινοβολία

Διαβάστε περισσότερα

Δρ. Ελένη Χατζηχρήστου, Μάιος 2008 ΙΝΣΤΙΤΟΥΤΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ, ΕΑΑ

Δρ. Ελένη Χατζηχρήστου, Μάιος 2008 ΙΝΣΤΙΤΟΥΤΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ, ΕΑΑ Γαλαξιακές συγκρούσεις και αστρικά πυροτεχνήματα Δρ. Ελένη Χατζηχρήστου, Μάιος 2008 ΙΝΣΤΙΤΟΥΤΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ, ΕΑΑ Download PDF Πρόσφατα, δόθηκε στη δημοσιότητα η μεγαλύτερη συλλογή εικόνων

Διαβάστε περισσότερα

ΕΝΤΟΝΑ ΗΛΙΑΚΑ ΦΑΙΝΟΜΕΝΑ

ΕΝΤΟΝΑ ΗΛΙΑΚΑ ΦΑΙΝΟΜΕΝΑ ΕΝΤΟΝΑ ΗΛΙΑΚΑ ΦΑΙΝΟΜΕΝΑ Διαστημικός καιρός. Αποτελεί το σύνολο της ηλιακής δραστηριότητας (ηλιακός άνεμος, κηλίδες, καταιγίδες, εκλάμψεις, προεξοχές, στεμματικές εκτινάξεις ηλιακής μάζας) που επηρεάζει

Διαβάστε περισσότερα

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ 3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Το Σύμπαν. (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Το Σύμπαν. (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Το Σύμπαν (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Μια σημαντική παρατήρηση Η επιστήμη αναζητά την αλήθεια μέσα από το πείραμα και την παρατήρηση.

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

ΤΟ ΑΧΑΝΕΣ ΣΥΜΠΑΝ. Απόσταση 0 1 1.52 5.2 9.54 30 55 50,000 267,000 Κλιμακούμενη 10 cm 1 mm 16.3 m 56 m 102 m 321 m 600 m 540 km 3,000 km

ΤΟ ΑΧΑΝΕΣ ΣΥΜΠΑΝ. Απόσταση 0 1 1.52 5.2 9.54 30 55 50,000 267,000 Κλιμακούμενη 10 cm 1 mm 16.3 m 56 m 102 m 321 m 600 m 540 km 3,000 km ΤΟ ΑΧΑΝΕΣ ΣΥΜΠΑΝ Αν υποθέσουμε ότι ο Ήλιος αναπαριστάται με σφαίρα (μεγέθους) διαμέτρου 10 cm, τότε η Γη τοποθετείται περίπου 11 μέτρα μακριά και έχει μέγεθος μόλις 1 mm (χιλιοστό). Ο Ερμής και η Αφροδίτη

Διαβάστε περισσότερα

Γουλιέλμος Μαρκόνι (1874-1937) (Ιταλός Φυσικός)

Γουλιέλμος Μαρκόνι (1874-1937) (Ιταλός Φυσικός) Γουλιέλμος Μαρκόνι (1874-1937) (Ιταλός Φυσικός) Υπήρξε εφευρέτης του πρώτου σήματος ασυρμάτου τηλεφώνου και εκμεταλλεύτηκε εμπορικά την εφεύρεση. Ίδρυσε το 1897 την Ανώνυμη Εταιρεία Ασυρμάτου Τηλεγράφου

Διαβάστε περισσότερα

ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΑΚΤΙΝΩΝ Χ ΚΑΙ ΥΛΗΣ

ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΑΚΤΙΝΩΝ Χ ΚΑΙ ΥΛΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΑΚΤΙΝΩΝ Χ ΚΑΙ ΥΛΗΣ Όταν οι ακτίνες Χ περνούν μέσα από την ύλη (πχ το σώμα του ασθενή) μπορεί να συμβεί οποιοδήποτε από τα 4 φαινόμενα που αναλύονται στις επόμενες σελίδες. Πρέπει να γίνει

Διαβάστε περισσότερα

ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë

ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë ΚΕΦΑΛΑΙΟ 1 ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë Tα βασικά σημεία του μαθήματος Η Γη είναι ένα ουράνιο σώμα, που κινείται συνεχώς στο διάστημα. Το σχήμα της είναι γεωειδές, δηλαδή είναι ελαφρά συμπιεσμένο στις κορυφές

Διαβάστε περισσότερα

Εύρεση της πυκνότητας στερεών και υγρών.

Εύρεση της πυκνότητας στερεών και υγρών. Μ4 Εύρεση της πυκνότητας στερεών και υγρών. 1 Σκοπός Στην άσκηση αυτή προσδιορίζεται πειραματικά η πυκνότητα του υλικού ενός στερεού σώματος. Το στερεό αυτό σώμα βυθίζεται ή επιπλέει σε υγρό γνωστής πυκνότητας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ 1. Μετρήσεις μήκους Η μέση τιμή. 1. Ποια μεγέθη λέγονται φυσικά μεγέθη; Πως γίνεται η μέτρησή τους; Οι ποσότητες που μπορούν να μετρηθούν ονομάζονται φυσικά μεγέθη. Η μέτρησή

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΔΥΝΑΜΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 5) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ 1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1.1 Newton s law A. Newton s law: Περιγράφει τη κίνηση υλικού σημείου μάζας m σε χωρο-χρονικά μεταβαλλόμενο πεδίο δυνάμεων F. Σε Αδρανειακό Σύστημα

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Η μουσική των (Υπερ)Χορδών. Αναστάσιος Χρ. Πέτκου Παν. Κρήτης

Η μουσική των (Υπερ)Χορδών. Αναστάσιος Χρ. Πέτκου Παν. Κρήτης Η μουσική των (Υπερ)Χορδών Αναστάσιος Χρ. Πέτκου Παν. Κρήτης H σύγχρονη (αγοραία) αντίληψη για την δηµιουργία του Σύµπαντος (πιθανά εσφαλµένη..) E t Ενέργεια Χρόνος String Theory/M-Theory H Ιστορία της

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Γ Γυμνασίου >> Αρχική σελίδα ΗΛΕΚΤΡΙΙΚΗ ΔΥΝΑΜΗ ΚΑΙΙ ΦΟΡΤΙΙΟ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει

Διαβάστε περισσότερα

The Large Hadron Collider @ CERN Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων

The Large Hadron Collider @ CERN Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων The Large Hadron Collider @ CERN Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Αντώνης Παπανέστης Rutherford Appleton Laboratory Μεγάλη Βρετανία Rutherford Appleton Laboratory Σύντομο βιογραφικό 44 ο Γυμνάσιο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Α. Στις ερωτήσεις 1-4 να επιλέξετε την σωστή απάντηση 1. Μία μονοχρωματική ακτινοβολία, που ανήκει στο ορατό τμήμα του ηλεκτρομαγνητικού φάσματος, μεταβαίνει από

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

Δρ. Παναγιώτης Χάντζιος, Μάρτιος 2003

Δρ. Παναγιώτης Χάντζιος, Μάρτιος 2003 Τα Άστρα και η Εξέλιξή τους Δρ. Παναγιώτης Χάντζιος, Μάρτιος 2003 ΙΝΣΤΙΤΟΥΤΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ, ΕΑΑ ΠΕΡΙΕΧΟΜΕΝA 1. ΕΙΣΑΓΩΓΗ 2. Η ΔΟΜΗ ΤΩΝ ΑΣΤΕΡΙΩΝ 3. Η ΓΕΝΝΗΣΗ ΤΩΝ ΑΣΤΕΡΙΩΝ 4. ΑΣΤΡΙΚΗ ΕΞΕΛΙΞΗ

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Πρόλογος της ελληνικής έκδοσης... v Πρόλογος...vii Λίγα λόγια για τον συγγραφέα...ix Ευχαριστίες...ix

Πρόλογος της ελληνικής έκδοσης... v Πρόλογος...vii Λίγα λόγια για τον συγγραφέα...ix Ευχαριστίες...ix Περιεχόμενα Πρόλογος της ελληνικής έκδοσης... v Πρόλογος...vii Λίγα λόγια για τον συγγραφέα...ix Ευχαριστίες...ix Κεφαλαιο 1: Eισαγωγή... 1 1. ΕΠΙΣΤΗΜΗ, ΦΥΣΙΚΗ ΚΑΙ ΒΙΟΛΟΓΙΑ... 1 2. ΜΙΑ ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΓΡΑΦΗ

Διαβάστε περισσότερα

Συνοπτικό Εγχειρίδιο Αστρονομίας

Συνοπτικό Εγχειρίδιο Αστρονομίας Ελληνική Αστρονομική Ένωση (Ε.Α.Ε.) Συνοπτικό Εγχειρίδιο Αστρονομίας του Άρη Μυλωνά Εισαγωγή Έχετε βρεθεί ποτέ στην εξοχή; Έχετε βρεθεί σε σκοτεινό νυκτερινό ουρανό, μακριά από τα φώτα των πόλεων; Έχετε

Διαβάστε περισσότερα

Μεταφορά Ενέργειας με Ακτινοβολία

Μεταφορά Ενέργειας με Ακτινοβολία ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΠΙΣΤΗΜΗ - ΕΡΓΑΣΤΗΡΙΟ Εργαστηριακή Άσκηση: Μεταφορά Ενέργειας με Ακτινοβολία Σκοπός της Εργαστηριακής Άσκησης: Να προσδιοριστεί ο τρόπος με τον οποίο μεταλλικά κουτιά με επιφάνειες διαφορετικού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Φαινόµενα µη τοπικότητας πλησίον του ορίζοντα γεγονότων µιάς µελανής οπής

Φαινόµενα µη τοπικότητας πλησίον του ορίζοντα γεγονότων µιάς µελανής οπής Φαινόµενα µη τοπικότητας πλησίον του ορίζοντα γεγονότων µιάς µελανής οπής Νίκος Ράµµος Η επίσηµη θέση της επιστηµονικής κοινότητας µέχρι σήµερα περί της πιθανότητας διαφυγής προσπίπτουσας ύλης, συνεπώς

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΚΑΙ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΗ ΙΟΝΙΖΟΥΣΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ

ΜΕΤΡΗΣΗ ΚΑΙ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΗ ΙΟΝΙΖΟΥΣΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕΤΡΗΣΗ ΚΑΙ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΗ ΙΟΝΙΖΟΥΣΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ Οποτε ακούτε ραδιόφωνο, βλέπετε τηλεόραση, στέλνετε SMS χρησιµοποιείτε ηλεκτροµαγνητική ακτινοβολία (ΗΜΑ). Η ΗΜΑ ταξιδεύει µε

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΗ 5ου εξαμήνου. 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος 2013-14

ΠΥΡΗΝΙΚΗ 5ου εξαμήνου. 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος 2013-14 ΠΥΡΗΝΙΚΗ 5ου εξαμήνου 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος 2013-14 1. Ο αριθμός των πυρήνων που έχω σ' ένα δείγμα μειώνεται εκθετικά με το πέρασμα του χρόνου,

Διαβάστε περισσότερα

Ενεργοί Γαλαξίες. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής

Ενεργοί Γαλαξίες. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Ενεργοί Γαλαξίες Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Οι «ενεργοί γαλαξίες» είναι μια πολύ ενδιαφέρουσα κατηγορία γαλαξιών που ως χαρακτηριστικό τους γνώρισμα έχουν μια εξαιρετικά έντονη ενεργειακή

Διαβάστε περισσότερα

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ Θέµατα από το βιβλίο µου: Οι ασκήσεις των εξετάσεων φυσικής γενικής παιδείας γ λυκείου (υπό έκδοση ) (Περιέχει 111 ασκήσεις πιθανά θέµατα εξετάσεων µε απαντήσεις) ΚΕΦΑΛΑΙΟ 1 ο ΘΕΜΑ 1 ο Πόση είναι η ενέργεια

Διαβάστε περισσότερα

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες...

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες... Οι μεγάλες εξισώσεις. {...όχι μόνο σωστές αλλά και ωραίες... Ερευνητική εργασία μαθητών της Β λυκείου. E = mc 2 Στοιχεία ταυτότητας: Ε: ενέργεια (joule) m: μάζα (kg) c: ταχύτητα του φωτός στο κενό (m/s)

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 MAΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Υλικό Φυσικής-Χημείας 1 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Υλικό Φυσικής-Χημείας 2 Το Φως 1) Δέσμη λευκού φωτός προσπίπτει στην επιφάνεια ενός πρίσματος όπως δείχνει το σχήμα και κατά την έξοδο από

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΚΕΦΑΛΑΙΟ 2ο ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Σκοπός Στο δεύτερο κεφάλαιο θα εισαχθεί η έννοια του ηλεκτρικού ρεύματος και της ηλεκτρικής τάσης,θα μελετηθεί ένα ηλεκτρικό κύκλωμα και θα εισαχθεί η έννοια της αντίστασης.

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ. και. Β ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ(6-ωρο)

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ. και. Β ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ(6-ωρο) ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ και Β ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ(6-ωρο) Ενότητα Θέμα Σελ. Περ. 1 ΜΗΧΑΝΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1.1 Δυνάμεις και κίνηση 4

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 15 Μαΐου, 2011 Ώρα: 11:00-13:30 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ 1. Α/Α Μετατροπή 1 2h= 2.60= 120 min Χρόνος 2 4500m= 4,5 km Μήκος 3 2m 3

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1

ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1 ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1 Στο σημείο αυτό του οδοιπορικού γνωριμίας με τις διάφορες μεθόδους αυτογνωσίας θα συναντήσουμε την Αστρολογία και θα μιλήσουμε για αυτή. Θα ερευνήσουμε δηλαδή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ 2012 - \ ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις - Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια» ΒΡΕΝΤΖΟΥ ΤΙΝΑ ΚΕΦΑΛΑΙΟ 1ο ΗΛΕΚΤΡΙΚΕΣ

Διαβάστε περισσότερα

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου Οργανική Χημεία Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου 1. Γενικά Δυνατότητα προσδιορισμού δομών με σαφήνεια χρησιμοποιώντας τεχνικές φασματοσκοπίας Φασματοσκοπία μαζών Μέγεθος, μοριακός τύπος

Διαβάστε περισσότερα

Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:...

Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:... Ε Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:.... Παρατήρησε τα διάφορα φαινόμενα αλλαγής της φυσικής κατάστασης του νερού που σημειώνονται

Διαβάστε περισσότερα

Το μεγαλύτερο μέρος της γης αποτελείται από νερό. Το 97,2% του νερού αυτού

Το μεγαλύτερο μέρος της γης αποτελείται από νερό. Το 97,2% του νερού αυτού 1. Το νερό στη φύση και τη ζωή των ανθρώπων Το μεγαλύτερο μέρος της γης αποτελείται από νερό. Το 97,2% του νερού αυτού βρίσκεται στους ωκεανούς, είναι δηλαδή αλμυρό. Μόλις το 2% βρίσκεται στους πόλους

Διαβάστε περισσότερα