Performance improvement of iterative solver using bit-compression for a sparse matrix
|
|
- Πηρω Δασκαλοπούλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 E6- Performance improvement of iterative sover using -compression for a sparse matrix, 7--6, E-mai keno@riken.jp Kenji Ono, RIKE AICS, 7--6 Minatojima-minami-cho, Chuo-ku, Kobe, Japan A nobe Bit-representation/compression technique is proposed to enhance the performance of iterative methods for a arge-size sparse matrix. This technique is appied to the impementation of iterative kernes with Dirichet and eumann boundary conditions. The first advantage of this approach is that it reduces memory traffic from main memory to and effectivey utiizes SIMD units with cache. Secondy, the proposed impementation can repace if-branch statements with mask operations using the expression. This promotes the optimization of code during compiation and run-time. The Red-Back SOR and BiCGstab agorithms are empoyed to investigate the proposed impementation. Consequenty, the proposed approach achieves. times faster than a naïve impementation on both Inte and Fujitsu Sparc architectures.. Poisson () () () () SIMD Roofine () Roofine Operationa Intensity Operationa Intensity. avierstokes Poisson () ( p) = div ( u t ) ϕ, () p u ϕ Poisson () 7 eumann Dirichet (7) Heaviside () (Boundary Condition) H = () (F uid) p Heaviside p p = p H + ( H) p () () () () ( p H ) n = h ϕ ( ) H p n () h H n eumann Heaviside if () SIMD Dirichet Heaviside H D Fig. e ( ) p H = { e p i+ H e D h + ( H e D ) } () p i+ p i H e Ax = b (6) ( p H D H ) p = h ϕ h H ( ) H p n ( H D ) p H n (6) Copyright c by JSFM
2 E6- p w = n w i- i s e p e = p i+ p i h p i+ i+ + c_t * p(i,j,k+) + c_b * p(i,j,k-) dp = ( (ss + b(i,j,k) ) / dd - pp ) * omg p(i,j,k) = pp + dp res = res + dbe(dp*dp) * dbe( is(bp(i,j,k), Active, ) ) [Bit-reps code] Fig. : eumann and Dirichet boundary conditions for ce i in two dimensions. A eumann is appied at the west ce face, which is soidy shaded. A Dirichet is empoyed at the east ce face, where the boundary vaue is given by the pressure p i+. () Fig. Diag dag x x x D x eumann Dirichet Encoding; inine int onbit (int idx, const int s) { return ( idx (x<<s) ); } Decoding; #define BIT_SHIFT(a,b) ( (a >> b) & x ). Red-Back SOR RB-SOR pn(i,j,k,n) Fortran [aive code] do coor=, do k=,kx do j=,jx do i=+mod(k+j+coor,), ix, c_w = pn(i,j,k,) c_e = pn(i,j,k,) c_s = pn(i,j,k,) c_n = pn(i,j,k,) c_b = pn(i,j,k,) c_t = pn(i,j,k,6) dd = pn(i,j,k,7) pp = p(i,j,k) ss = c_e * p(i+,j,k ) + c_w * p(i-,j,k ) + c_n * p(i,j+,k ) + c_s * p(i,j-,k ) do coor=, do k=,kx do j=,jx do i=+mod(k+j+coor,), ix, idx = bp(i,j,k) c_e = rea( is(idx, _dag_e, ) ) c_w = rea( is(idx, _dag_w, ) ) c_n = rea( is(idx, _dag_, ) ) c_s = rea( is(idx, _dag_s, ) ) c_t = rea( is(idx, _dag_t, ) ) c_b = rea( is(idx, _dag_b, ) ) d = rea( is(idx, _Diag+, ) ) d = rea( is(idx, _Diag+, ) ) d = rea( is(idx, _Diag+, ) ) dd = d*. + d*. + d pp = p(i,j,k) ss = c_e * p(i+,j,k ) + c_w * p(i-,j,k ) + c_n * p(i,j+,k ) + c_s * p(i,j-,k ) + c_t * p(i,j,k+) + c_b * p(i,j,k-) dp = ( (ss + b(i,j,k) ) / dd - pp ) * omg p(i,j,k) = pp + dp res = res + dbe(dp*dp) * dbe( is(idx, Active, ) ) p, b, bp, pn (6) Fig. is(bp(i,j,k), Active, ) pn b bp p p, b, bp / Operationa Intensity Fop/Byte, pn, b, bp 9 p i-, i, i+, j-, j+ k-, k+ b, bp p i-, i, i+, j-, j+ 6 Fop/Byte Tabe fop 8fops Sparc Copyright c by JSFM
3 E _Diag (~6) _dag_e _dag_w _dag_s _dag dag_t _dag_b W E S B _D_W T _D_S _D_E _D_T _D_B _D_ State Active Fig. : Bit representation. Severa s required for the -representation are encoded into this array. This exampe incudes diagona( Diag), non-diagona ( dag x), eumann boundary( x), Dirichet boundary ( D x), ce state (State), and activeness (Active) of a ce. Other s are used for more compicated processes. Tab. : Specification of evauation machines. TRIAD scores are measured by the STREAM benchmark (). Architecture Cock CPU Peak Cache Memory Theoretica TRIAD (GHz) () (MB) (GB) BW (GB/s) (GB/s) Xeon X Xeon E Xeon E Sparc VIIIfx Sparc IXfx Tab. : Comparison of characteristic for two types of impementation. aïve Bit-Reps. Memory Requirement unit unit Load & Store + + Arithmetic 6 F/B... Tabe () φ = Dirichet/eumann () Performance Monitor ibrary (PMib) (8), () PMib PAPI Fig. Fujitsu Venus IXfx 6 L Fujitsu Venus VIIIfx Fujitsu Venus IXfx FX textitfujitsu Venus VIIIfx is(a, b, ) SIMD Fujitsu Venus IXfx Fig. 6 6 Inte Fujitsu Venus VIIIfx IXfx VIIIfx Inte 6 8. IXfx 6 Tabe Fig. F/B=. SIMD Westmere(X6) Sparc VIIIfx F/B=. Sparc IXfx SIMD Inte is(a, b, x) x= Copyright c by JSFM
4 E6- Fig. FFV-C (9) PFops FFV-C % Attainabe Performance () Westmere Sparc VIIIfx Sparc IXfx Westmere -reps Westmere Sparc VIIIfx -reps Sparc VIIIfx Sparc IXfx -reps Sparc IXfx!"!# $!!!"!#! Operationa Intensity (Fops/Byte) Fig. : Performance anaysis of Roofine mode for naïve and -reps impementation. GFLOPS x 6 x x x x x Idea FFV-C x x x x x umber of Processes () S. Wiiams, S., Waterman, A. and Patterson, D.: Roofine; An Insightfu Visua Performance Mode for Muticore Arch. Commun. ACM, Vo. o. (9) 6 76 () Yokokawa, M. : Vector-Parae Processing of the Successive Overreaxation Method. Japan Atomic Energy Research Institute JAERI-M Report o (988) in Japanese () Wicock, J. and Lumsdaine, A.: Acceerating sparse matrix computations via data compression. Proc. th Annua ICS 6 (6) 7 6 () Tang, W. T., et a.: Acceerating Sparse Matrix-vector Mutipication on GPUs Using Bitrepresentation-optimized Schemes. Proc. of SC 6 () () Van der Vorst, H. A. : Bi-CGSTAB: A Fast and Smoothy Converging Variant of Bi-CG for the Soution of onsymmetric Linear Systems. SIAM J. Sci. and Stat. Comput. Vo.bf o. (99) 6-6 (6) Ono, K. and Kawashima, Y. : Muticoor SOR Method with Consecutive Memory Access Impementation in a Shared and Distributed Memory Parae Environment. Lecture otes in Computationa Science and Engineering, Vo.7 () 8 9 (7) Ono, K., Chiba, S., Inoue, S., and Minami, K. : Performance Improvement of Iterative Methods using a Bit-Representation Technique for Coefficient Matrices. Vecpar, () (8) Ono, K., Kawashima, Y. and Kawanabe, T.: Data Centric Framework for Large-scae Highperformance Parae Computation. Procedia Computer Science, Vo.9 () 6 (9) _package/ () () Fig. : Measured performance of FFV-C code on the K computer with 8,9 nodes. Each node has 8 cores.. Poisson Inte Sparc. SIMD Copyright c by JSFM
5 E (a) Inte Xeon X6. (b) Inte Xeon E (c) Fujitsu Sparc Venus VIIIfx. (d) Fujitsu Sparc Venus IXfx. Fig. : Comparison of seria performance of each machine. The probem size varies ranging from 6 to 6. Copyright c by JSFM
6 E (a) Inte Xeon X6. (b) Inte Xeon E (c) Fujitsu Sparc Venus VIIIfx. (d) Fujitsu Sparc Venus IXfx. Fig. 6: Comparison of thread parae performance of each machine. The probem size is chosen to 6 so that the data resides in main memory. 6 Copyright c by JSFM
Implementation and performance evaluation of iterative solver for multiple linear systems that have a common coefficient matrix
Implementation and performance evaluation of iterative solver for multiple linear systems that have a common coefficient matrix, 1-1, E-mail almisofte@gmail.com, 7-1-26, E-mail keno@riken.jp, 1-1, E-mail
FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD
FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp
Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές
Αριθµητικές Μέθοδοι Collocation Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές Hermite Collocation Method BVP L B uxy (, ) = f(, xy), (, xy) Ω uxy (, ) = gxy (, ), (, xy) Ω Red Black Collocation
BiCG CGS BiCGStab BiCG CGS 5),6) BiCGStab M Minimum esidual part CGS BiCGStab BiCGStab 2 PBiCG PCGS α β 3 BiCGStab PBiCGStab PBiCG 4 PBiCGStab 5 2. Bi
BiCGStab 1 1 2 3 1 4 2 BiCGStab PBiCGStab BiCG CGS CGS PBiCGStab BiCGStab M PBiCGStab An improvement in preconditioned algorithm of BiCGStab method Shoji Itoh, 1 aahiro Katagiri, 1 aao Saurai, 2 Mitsuyoshi
ΤΕΧΝΙΚΕΣ ΑΥΞΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ I
ΤΕΧΝΙΚΕΣ ΑΥΞΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ I MIPS Η MIPS (Microprocessor without Interlocked Pipeline Stages) είναι μία αρχιτεκτονική συνόλου εντολών (ISA) γλώσσας μηχανής που αναπτύχθηκε από την εταιρεία
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2
GPU 4 1,a) 2,b) 1 GPU Tesla M2050 Double-Double DD 4 BiCGStab GPU 4 BiCGStab 1 1.0 2.2 4 GPU 4 1. IEEE754-2008[1] 128bit binary128 CG Conjugate Gradient [2] 1 1 2 a) mukunoki@hpcs.cs.tsukuba.ac.jp b) daisuke@cs.tsukuba.ac.jp
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Binary32 (a hi ) 8 bits 23 bits Binary32 (a lo ) 8 bits 23 bits Double-Float (a=a hi +a lo, a lo 0.5ulp(a hi ) ) 8 bits 46 bits Binary64 11 bits sign
Maxwell GPU DGEMM 1,a) 1,b) NVIDIA 2014 Maxwell GM107 GM204 GPU : =1:32 GM204 GeForce GTX 980 2 double-float DF BLAS DGEMM DGEMM DF DGEMM 2 1. IEEE 754-2008[1] binary32 binary64 NVIDIA GPU 2010 Fermi :
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W
Features 1. Reliable low cost construction utilizing molded plastic technique 2. Both bi-directional and uni-directional devices are available 3. Fast response time 4. Excellent clamping capacity 5. 1500
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov.
211 9 12, GMRES,.,., Look-Back.,, Ax = b, A C n n, x, b C n (1),., Krylov., GMRES [5],.,., Look-Back [3]., 2 Krylov,. 3, Look-Back, 4. 5. 1 Algorith 1 The GMRES ethod 1: Choose the initial guess x and
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
CMOS Technology for Computer Architects
CMOS Technology for Computer Architects Iakovos Mavroidis Giorgos Passas Manolis Katevenis Lecture 13: On chip SRAM Technology FORTH ICS / EURECCA & UoC GREECE ABC A A E F A BCDAECF A AB C DE ABCDAECF
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
SMD Transient Voltage Suppressors
SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time
Efficient Implementation of Sparse Linear Algebra Operations on InfiniBand Cluster. Akira Nishida,
InfiniBand,,.,, PCI Express InfiniBand,,.,,. Efficient Implementation of Sparse Linear Algebra Operations on InfiniBand Cluster Akira Nishida, Construction of scalable and low cost parallel computing environment
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
Computing Gradient. Hung-yi Lee 李宏毅
Computing Gradient Hung-yi Lee 李宏毅 Introduction Backpropagation: an efficient way to compute the gradient Prerequisite Backpropagation for feedforward net: http://speech.ee.ntu.edu.tw/~tkagk/courses/mlds_05_/lecture/
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)
EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class
Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Anomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Orthogonalization Library with a Numerical Computation Policy Interface
Vol. 46 No. SIG 7(ACS 10) May 2005 DGKS PC 10 8 10 14 4.8 Orthogonalization Library with a Numerical Computation Policy Interface Ken Naono, Mitsuyoshi Igai and Hiroyuki Kidachi We propose an orthogonalization
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ ΦΟΙΤΗΤΡΙΑ: Γ.ΦΕΒΡΑΝΟΓΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Χ.ΓΑΝΤΕΣ ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2000
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ΕΙΣΑΓΩΓΗ στους Η/Υ. Δρ. Β Σγαρδώνη. Τμήμα Τεχνολογίας Αεροσκαφών ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ. Χειμερινό Εξάμηνο 2013-14
ΕΙΣΑΓΩΓΗ στους Η/Υ Τμήμα Τεχνολογίας Αεροσκαφών ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ Δρ. Β Σγαρδώνη Χειμερινό Εξάμηνο 2013-14 Εισαγωγικές Έννοιες Τι είναι ένας ηλεκτρονικός υπολογιστής ; Ιστορία των Η/Υ Αρχιτεκτονική των
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Π.Μ.Σ. «ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» «Εφαρμογή
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
CUDA FFT. High Performance 3-D FFT in CUDA Environment. Akira Nukada, 1, 2 Yasuhiko Ogata, 1, 2 Toshio Endo 1, 2 and Satoshi Matsuoka 1, 2, 3
Vol. 1 No. 2 231 239 (Aug. 2008) CUDA 3 FFT 1, 2 1, 2 1, 2 1, 2, 3 NVIDIA GPU CUDA CUDA 3 FFT GeForce 8 GPU 3 FFT CUFFT 1.1 3.1 3.3 79.5 GFLOPS High Performance 3-D FFT in CUDA Environment Akira Nukada,
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks
98 Scientific Note X : Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks Kimiko Seno and Yoichi Motoyoshi,**- +, +, ;,**. -,/ Abstract:
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Προστασία ηλεκτροδίων
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle
SPC-9-39 Comparison of characteristic by Transformer Winding Method of Contactess Power Transfer Systems for Eectric ehice Tauya wata, Natsui Ehara, Yasuyoshi Kaneo, Shigeru Abe (Saitama University) Tomio
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
DESKTOP - Intel processor reference chart
DESKTOP - Intel processor reference chart Family Intel Turbo Boost 7 - Max Turbo 4th Generation Intel Core i7 and i5 Family (22nm) Cores / Intel HD Graphics Intel vpro 1, i7-4960x 3.6 4.0 1866 15 MB L3
Modbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1
No. +- 0 +3,**1 Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. * Construction of the General Observation System for Strong Motion in Earthquake
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction