Iterative Monte Carlo analysis of spin-dependent parton distributions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Iterative Monte Carlo analysis of spin-dependent parton distributions"

Transcript

1 Iterative Monte Carlo analysis of spin-dependent parton distributions (arxiv:6.7782) Nobuo Sato In Collaboration with: W. Melnitchouk, S. E. Kuhn, J. J. Ethier, A. Accardi Next Generation Nuclear Physics with JLab2 and EIC, Feb 26 / 6

2 Motivations Spin structure of nucleons - Spin sum rule 2 = 2 Σ() + g () + L - The spin contribution from quarks: Σ () = u () + + d () + + s () + - From existing global analysis Σ () [ 3,] Higher twists - d 2 matrix element d 2 = 2g (3) (Q2 ) + 3g (3) 2 (Q2 ) - Color forces experienced by struck quarks F E = 2d 2 + f 2, FB = 4d 2 f 2 - Dedicated global QCD anlysis is required High x - SU(6) spin-flavor symmetry: u/u 2/3, d/d /3 - pqcd q/q , g() [.5,.2]. u + /u + d + /d x Q 2 = GeV 2 2 / 6

3 Global Analysis Data Polarized DIS u, d - Polarized SIDIS: d, ū, s - Inclusive Jets/π : g - W production d, ū Theory Target mass corrections Twist-3 and twist-4 contributions in polarized structure functions Nuclear corrections for 3 He and deuteron targets - Threshold resummation (α m S log( x)n ) Tools Numerical codes developed within python framework Development of DGLAP evolution equations in Mellin space Fast calculation of observables Mellin space techniques Q 2 EMC (npts = ) SMC (npts = 4) SLAC (npts = 835) HERMES (npts = 98) COMPASS (npts = 8) JLab (npts = 45) W 2 cut = 4GeV 2 W 2 cut = GeV x 3 / 6

4 Polarized DIS Asymmetries Theory A = σ σ σ + σ = D(A + ηa 2 ) A = σ σ σ + σ = d(a 2 ξa ) A = (g γ 2 g 2 ) A 2 = γ (g + g 2 ) γ 2 = 4M 2 x 2 F F Q 2 g (x, Q 2 ) = g LT+TMC ( u +, d +, g,...) + g T3+TMC (D u, D d ) + g T4 (H p,n ) g 2 (x, Q 2 ) = g LT+TMC 2 ( u +, d +, g,...) + g T3+TMC 2 (D u, D d ) 4 / 6

5 Polarized DIS ξ = 2x +(+4µ 2 x 2 ) /2 µ 2 = M 2 /Q 2 Leading twist structure functions: g LT+TMC (x, Q 2 ) = x g LT (ξ) ξ ( + 4µ 2 x 2 ) 3/2 + 4µ2 x 2 x + ξ ξ( + 4µ 2 x 2 ) 2 g LT+TMC 2 (x, Q 2 ) = x ξ 4µ 2 x 2 2 4µ 2 x 2 2( + 4µ 2 x 2 ) 5/2 In the Bjorken limit (Q 2 ): ξ dz dz ξ z z z glt (z ) g LT (ξ) ( + 4µ 2 x 2 ) 3/2 + x ( 4µ 2 xξ) ξ ( + 4µ 2 x 2 ) 2 ξ + 3 4µ 2 x 2 dz dz 2 ( + 4µ 2 x 2 ) 5/2 ξ z z z glt (z ) g LT+TMC (x, Q 2 ) g LT (x), glt+tmc 2 (x, Q 2 ) g LT (x) + ξ dz z glt (z) dz z glt (z) dz z glt (z) Leading twist quark distributions: g LT (x) = e 2 q [ C qq q(x) + C qg g(x)] 2 q 5 / 6

6 Polarized DIS Twist-3 structure functions: g T3+TMC (x, Q 2 ) =4µ 2 x 2 D(ξ) ( + 4µ 2 x 2 ) 3/2 4µ2 x 2 3 ( + 4µ 2 x 2 ) 2 + 4µ 2 x 2 2 4µ 2 x 2 ( + 4µ 2 x 2 ) 5/2 g T3+TMC 2 (x, Q 2 D(ξ) ) = ( + 4µ 2 x 2 ) 3/2 8µ2 x 2 ( + 4µ 2 x 2 ) 2 2µ 2 x 2 dz ( + 4µ 2 x 2 ) 5/2 ξ z Bjorken limit(q 2 ): ξ dz z dz z ξ z dz z D(z ) z D(z ) dz z D(z) g T3+TMC (x, Q 2 ) g T3+TMC 2 (x, Q 2 dz ) D(x) ξ z D(z) Twist-3 quark distributions: D(x, Q 2 ) = 4 9 D u(x, Q 2 ) + 9 D d(x, Q 2 ) ξ dz z D(z) 6 / 6

7 Polarized DIS Twist-4 structure function: g T4(p,n) (x, Q 2 ) = H (p,n) (x)/q 2 Nuclear corrections: nuclear smearing functions gi A (x, Q 2 ) = dy y f ij N (y, γ)gj N (x/y, Q 2 ) N Curse of dimensionality Mellin trick (Stratmann, Vogelsang) dy ( ) I(x) = x y f(y) dz x y z g g(ξ) = dnξ N g N yz 2πi = [ dy ( ) ] dng N 2πi x y f(y) dz x N y z yz = dng N M N 2πi = ) wi k jk Im (e iφ g N M kj N Gaussian quadrature kj i,k time consuming part can be precalculated prior to the fit 7 / 6

8 Fitting strategy Parametrization - xf(x) = Nx a ( x) b ( + c x + dx) - LT quark distributions u +, d +, s +, g - T3 quark distributions D u, D d - T4 structure functions H p, H n Chi-squared minimization with correlated systematic uncertainties χ 2 = i ( Di T i ( k rk βi k/d i) ) 2 + (r k ) 2 α i k Issues - Stability in the moments (e.g. Σ () ) - Is the solution given by a single fit unique? False minima - Is over-fitting present in our fits? - Which parameters should be fixed and at which value? - Determination of uncertainty bands. Solution MC approach 8 / 6

9 Iterative Monte Carlo Analysis (IMC) Toy example fitting 2 model parameters α, β I. Flat sampling Initial priors {(α, β)} β α 9 / 6

10 Iterative Monte Carlo Analysis (IMC) Toy example fitting 2 model parameters α, β 2. β I. Flat sampling Initial priors {(α, β)} II. First iteration priors {(α, β)} posteriors {(α, β)} α 9 / 6

11 Iterative Monte Carlo Analysis (IMC) Toy example fitting 2 model parameters α, β 2. β α I. Flat sampling Initial priors {(α, β)} II. First iteration priors {(α, β)} posteriors {(α, β)} III. Second iteration priors {(α, β)} posteriors {(α, β)}... until convergence 9 / 6

12 Iterative Monte Carlo Analysis (IMC) Each iteration - Generate pseudo data sets via data resampling - Radom data partition Training & Validation - Fit the training set - Validation data pseudo data T data V data fit { p (j) } validation a () training validation noncentral χ 2 dof pseudo data2 T data2 V data2 fit2 { p (j) } validation a (2) ensemble χ 2 dof T datak fitk { p (j) } pseudo 2. datak V datak validation a (K) iterations priors new priors / 6

13 W 2 cut and Q 2 cut Σ.2 G Σ 2 G.2.8 d p 2.4. d n d p 2.4 d n 2.4 h p h n.8.4. h p.4..4 h n W 2 cut (GeV 2 ) W 2 cut (GeV 2 ) Q 2 cut (GeV 2 ) Q 2 cut (GeV 2 ) Wcut 2 (GeV 2 ) # points χ 2 dof Q 2 cut (GeV 2 ) # points χ 2 dof / 6

14 Data vs. Theory.2 A p à p A p JAM5 no HT E55 Q 2 [3.7,.6] syst(+) syst( )..3 x E55x Q 2 [5.4, 7.].2.5 x HERMES Q 2 [.4, 6.8] x.5 A p E43 Q2 [.2, 4.5] x.6 A p E55 Q2 [7.6, 24.8] à p...6 A p x E55x Q 2 [., 2.3].3. x HERMES Q 2 [.8,.3] x.2 A p E43 Q2 [2.9, 9.5]...3 x.3 à p E55x Q2 [.,.8] x.6 à p E55x Q 2 [6., 2.4] x.2 A p E55 Q2 [., 3.3]..8 à p A p x E55x Q 2 [2.3, 6.]..3 x HERMES Q 2 [., 2.8]..3 x E54 Q 2 [.2, 5.8] JAM5 no HT syst(+) syst( ).3..3 x E6-4 Q 2 [2., 3.4] x E99-7 Q 2 [2.7, 4.8].4.5 x E42 Q 2 [., 5.5].3..3 x E54 Q 2 [4., 5.]..3 x E6-4 Q 2 [2.6, 5.2] x E99-7 Q 2 [2.7, 4.8].4.5 x E42 Q 2 [., 5.5].3..3 x E54 Q 2 [.2, 5.8].3. x E6-4 Q 2 [2., 3.4] x Q 2 [4., 5.] E54..3 x E6-4 Q 2 [2.6, 5.2] x A p.35 JAM5 E = 4.8 Q 2 [.,.] E = 4.8 Q 2 [.,.2].25.3 no HT.2.25 syst(+).5.2 syst( ) eg-dvcs x.2.25 x.45.5 E = 4.8 Q 2 [.6,.7] E = 4.8 E = x E = 6. Q 2 [.,.].2.4 x E = 6. Q 2 [.9, 2.] x E = 6. Q 2 [3.9, 4.] x Q 2 [.98, 2.4].3.35 x E = 6. Q 2 [.2,.3].5.2 x E = 6. Q 2 [2.3, 2.4] x E = 6. Q 2 [4.6, 4.7] x Q 2 [2.3, 2.4].35.4 x E = 6. Q 2 [.3,.6] x.5 E = 6. Q 2 [2.7, 2.9] x.35 E = 4.8 Q 2 [.3,.4] x.55 E = Q 2 [2.7, 2.8] x.35 E = 6. Q 2 [.6,.7] x.55 E = 6. Q 2 [3.2, 3.5] x Signal of HT? - A p marginally visible at large x - Not visible in 3 He data - Significant contribution in eg-dvcs A p 2 / 6

15 Results (a).4 (c). - Significant constraints to large x s+ and g x u x d+ x s+ x g (b) xdu xdd xhp xhn (d) - T4 contribution to g consistent with zero... - Non zero T3 quark distributions x x JAM5 JAM3 DSSV9 NNPDF4 BB AAC9 LSS x u+..2 x s Negative s+ (see Talk by J. Ethier) - JAM5 g compatible with resent DSSV fits x d+ 3 2 x g x x 3 / 6

16 Impact of JLab data JAM5 no JLab x u x d Large uncertainties in s+, g removed by JLab data - Non vanishing T3 quark distributions T4 distributions consistent with zero..2 x s x g.4 xhp xhn xd d Constraints on small x from large x weak baryon decay constraints JLab data. < x <.7 xdu x x 4 / 6

17 d 2 matrix element - d 2 (Q 2 ) dxx2 [ 2g T3 (x, Q2 ) + 3g T3 2 (x, Q2 ) ] - d 2 is related to color polarizability or the transverse color force acting on quarks. - Existing measurements of d 2 are in the resonance region (contains TMC T4 and beyond.) - Agreement with data indicates quark-hadron duality d (a) JAM5 p JAM5 n lattice (b) E55x RSS E 2 E6 4 JAM Q 2 (GeV 2 ) Q 2 (GeV 2 ) 5 / 6

18 JAM: Outlook JAM New JAM5 analysis to study impact of all JLab 6 GeV inclusive DIS data at low W and high x New extraction of LT & HT distributions - Upcoming JAM6 analysis to study polarization of sea quarks & gluons. - SIDIS for flavor separation. - polarized pp cross sections (inclusive jet & π production) for g - W boson asymmetries - Threshold resummation impacts on large x - Combined analysis of all inclusive (un)polarized DIS data - Fits to helicity distributions Q 2 EMC (npts = ) SMC (npts = 4) SLAC (npts = 835) JLab 2 HERMES (npts = 98) COMPASS (npts = 8) JLab (npts = 45) - Measurements at high-x q/q - Wider coverage in Q 2 Wcut 2 = 4GeV 2 Wcut g 2 = GeV 2 JLab 2GeV - Determination of pure twist-3 d 2 in DIS x 6 / 6

19 Backup 7 / 6

20 Data vs. Theory: proton.4 A p.2. JAM5 no HT syst(+) syst( ) E8/E3 Q 2 [3.3, 5.4] x.2 A p E43..5 Q 2 [.2, 4.5].3..3 x A p E55 Q 2 [., 34.7] x A p COMPASS.6 Q 2 [., 62.] x.8 A p.4.2 EMC Q 2 [3.5, 29.5].3.5. x A p.3.2 E8/E3. Q 2 [5.3, 9.9] x A p E43 Q 2 [2.9, 9.5].2. A p x HERMES Q 2 [., 3.].3..3 x A p COMPASS.6 Q 2 [., 29.8] x.8 A p A p SMC 98 Q 2 [.3, 58.].. x E43 Q 2 [.,.4]..2 x.2 A p E55 Q 2 [., 5.9].4.3. x A p HERMES Q 2 [.2, 9.6] x A p COMPASS.6 Q 2 [., 53.] x.6 A p.2.2 A p SMC 99 Q 2 [., 23.]..3 x E43 Q 2 [., 3.]..3 x.4 A p E55 Q 2 [4., 6.]..3 x.8 A p HERMES Q 2 [2.6, 4.3] x A p COMPASS.6 Q 2 [.2, 96.] x 8 / 6

21 Data vs. Theory: proton.2 A p JAM5 no HT syst(+) syst( ).2 E55 Q 2 [3.7,.6].4..3 x.6 à p E55x Q 2 [5.4, 7.] x.6 A p HERMES 2 Q 2 [.4, 6.8] x.5 A p E43 Q2 [.2, 4.5] x.6 A p HERMES 2 Q 2 [.8,.3].2.2 A p E43 Q2 [2.9, 9.5] x x A p E55 Q2 [7.6, 24.8] à p E55x Q2 [.,.8] x x à p E55x à p E55x Q 2 [., 2.3] Q 2 [6., 2.4] x x.2 A p E55 Q2 [., 3.3]..3. x.8 à p E55x Q 2 [2.3, 6.] x.6 A p HERMES 2 Q 2 [., 2.8] x 9 / 6

22 Data vs. Theory: proton DVCS A p.35 JAM5 E = 4.8 Q 2 [.,.].25.3 no HT E = 4.8 Q 2 [.,.2] syst(+) syst( ) eg-dvcs x x E = 4.8 Q 2 [.6,.7].4 E = E = x E = 6. Q 2 [.,.].2.4 x E = 6. Q 2 [.9, 2.] x E = 6. Q 2 [3.9, 4.] x Q 2 [.98, 2.4] x E = 6..2 Q 2 [.2,.3] x.4 E = 6. Q 2 [2.3, 2.4] x.8 E = 6. Q 2 [4.6, 4.7] x Q 2 [2.3, 2.4] x E = Q 2 [.3,.6] x.5 E = 6. Q 2 [2.7, 2.9] x E = 4.8 Q 2 [.3,.4] x E = 4.8 Q 2 [2.7, 2.8] x.35 E = 6. Q 2 [.6,.7] x.55 E = 6. Q 2 [3.2, 3.5] x Signal of HT contribution. 2 / 6

23 Data vs. Theory: proton EGb JAM5 no HT syst(+).5 E = Q 2 [.6,.7] x.4 E = 5.7 Q 2 [.,.] x.8 E = 5.7 Q 2 [.9, 2.] x.5 E = 5.7 Q 2 [3.8, 4.].5 A p.4 E = 4.2 Q 2 [.,.] syst( ). E = 4.2 Q 2 [.,.2] egb x.2.25 x.8 E = 4.2 Q 2 [.9, 2.].8 E = 4.2 Q 2 [2.3, 2.4] x x.4 E = 5.7 Q 2 [.,.2] x.8 E = 5.7 Q 2 [2.2, 2.4] x E = 5.7 Q 2 [4.56, 4.63] x x.3.2. E = 5.7 Q 2 [.3,.4] x Q 2 [2.7, 2.9] x E = 4.2 Q 2 [.3,.4].25.3x E = 4.2 Q 2 [2.69, 2.73] x E = 5.7 Q 2 [.6,.7] x E = 5.7 Q 2 [3.2, 3.4] x 2 / 6

24 Data vs. Theory: deuteron.4 A d A d.2. E43 Q 2 [., 3] JAM5 no HT syst(+) syst( )..3 x..6.3 x A d HERMES Q 2 [2.6, 4.3].2 E55 Q 2 [4, 6]..3 x.6 A d.2 SMC 98 Q 2 [.3, 54.8]..2. x A d E43 Q. [.2, 4.5] x.6 A d E55 Q 2 [, 34.8] x A d COMPASS Q 2 [., 55.3] x.3 A d SMC 99 Q. 2 [., 22.9]..2 A d..5.. x E43 Q 2 [2.9, 9.5]..5.3 x A d HERMES Q 2 [.2, 3.].5..3 x.2 A d E43 Q. 2 [,.4] x A d E55 Q. [, 6] x.3 A d HERMES Q 2 [., 9.6] x 22 / 6

25 Data vs. Theory: deuteron.. JAM5 no HT syst(+) syst( ).3 A d E55 Q2 [3.7,.6]..3 x.4 à d E55x.2.4 Q 2 [5.4, 6.5].2.5 x.2 A d..2 E43 Q 2 [.2, 4.5].3 A d.. E43 Q 2 [2.9, 9.5].3..3 x x A d E55 à d E55x.2 Q 2 Q2 [.,.8] [7.6, 24.9] x x à d E55x Q2 [., 2.3] à d E55x Q 2 [2.5, 7.5] x.8..3 x.2 A d E55 Q2 [., 3.3]..8 à d à d x E55x Q 2 [2.3, 6.]..3 x E55x Q 2 [6., 2.4].2.5 x 23 / 6

26 Data vs. Theory: deuteron DVCS A d.5 JAM5 Q 2 [.,.].. no HT Q 2 [.2,.3] syst(+) syst( ).5.5 eg-dvcs x x Q 2 [.98, 2.5] Q 2 [2.3, 2.4] Q 2 [.4,.5] x Q 2 [2.8, 2.9] Q 2 [.6,.7] x Q 2 [3.3, 3.4] x x x x.2 Q 2 [3.9, 4.] x 24 / 6

27 Data vs. Theory: deuteron EGb A d..4 JAM5 E = 4.2 Q 2 [.,.].3 E = 4.2 Q 2 [.,.2] no HT syst(+) syst( ).5.2. egb x x E = 4.2 Q 2 [.6,.7] E = 4.2 Q 2 [2., 2.3] E = 4.2 Q 2 [2.3, 2.4] x.3 E = 5.7 Q 2 [.,.2] x.4 E = 5.7 Q.3 2 [2.3, 2.4] x x.3 E = 5.7 Q 2 [.36,.44] x.6 E = 5.7 Q 2 [2.7, 2.9] x x.3 E = 5.7 Q 2 [.6,.7] x E = 5.7 Q 2 [3.2, 3.4] x E = 4.2 Q 2 [.36,.43] x.3 E = 5.7 Q 2 [.,.] x.4 E = 5.7 Q.3 2 [.9, 2.] x E = 5.7 Q 2 [3.8, 4.] x 25 / 6

28 Data vs. Theory: 3 He E54 Q 2 [.2, 5.8] JAM5 no HT syst(+) syst( ).3..3 x E6-4 Q 2 [2., 3.4] x E99-7 Q 2 [2.7, 4.8]. E42 Q 2 [., 5.5].2 2 E Q 2 [., 5.5] x x E54 E54 Q 2 [.2, 5.8] Q 2 [4., 5.] x x E6-4 Q 2 [2.6, 5.2] E6-4 Q 2 [2., 3.4] x x E E54 Q 2 [4., 5.]..3.3 x E6-4 Q 2 [2.6, 5.2] x x.2.4 Q 2 [2.7, 4.8].4.5 x 26 / 6

29 JAM: moments # fits # fits # fits u +() s +() Σ () # fits # fits d +() g () # fits # fits # fits D u (3) H p (3) d p 2..5 # fits # fits # fits D (3) d H n (3) d n 2 - New extraction of Σ () =.3 ±.3 (Only truncated moments are shown x [ 3,.8]) - First extraction of d 2 matrix element in global QCD analysis - JAM6: reduction of gluon uncertainties (jet data) 27 / 6

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο2004-2005 Διακριτική ικανότητα ανιχνευτή-υπόβαθρο- Υπολογισμός του σήματος Διδάσκοντες : Χαρά Πετρίδου Δημήτριος Σαμψωνίδης 18/4/2005 Υπολογ.Φυσική

Διαβάστε περισσότερα

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration Λ b Baryon Studies Dongliang Zhang (University of Michigan) on behalf of Collaboration Hadron215, Jefferson Lab September 13-18, 215 Introduction Λ b reconstruction Lifetime measurement Helicity study

Διαβάστε περισσότερα

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28 L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample

Διαβάστε περισσότερα

Topics on QCD and Spin Physics

Topics on QCD and Spin Physics Topics on QCD and Spin Physics (fourth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS, JLAB June QCD in a nuclear medium no much interest before 98: low energy scales freeze QCD dof European

Διαβάστε περισσότερα

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ Ó³ Ÿ. 2014.. 11, º 4(188).. 817Ä827 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ Ÿ.. ² ± Ì,. Œ. ŠÊ Íμ,.. μ ± Ö 1, Œ. ƒ. μ ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ò Ê²ÓÉ ÉÒ ³ ÒÌμ μ ÉÖ ²ÒÌ μ μ É μ μ ²Ê μ±μ - Ê Ê μ³ Ö

Διαβάστε περισσότερα

Large β 0 corrections to the energy levels and wave function at N 3 LO

Large β 0 corrections to the energy levels and wave function at N 3 LO Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Ανελαστική Σκέδαση. Σπύρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική

Ανελαστική Σκέδαση. Σπύρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική Ανελαστική Σκέδαση p Σπύρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 2016 1 p Ελαστική σκέδαση σε πολύ υψηλά q 2 Σε µεγάλα q 2 η έκφραση Rosenbluth για την ελαστική σκέδαση γίνεται Για ελαστική σκέδαση p ο παράγων

Διαβάστε περισσότερα

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data B. Renard, M. Lang, P. Bois To cite this version: B. Renard, M. Lang,

Διαβάστε περισσότερα

Andreas Peters Regensburg Universtity

Andreas Peters Regensburg Universtity Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD

Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD Kaon Weak Matrix Element in 2 Flavor DWF QCD Renormalization an Phyical Vale Sh Li (for the RBC an UKQCD Collaboration) The XXV International Sympoim on Lattice Fiel Theory Regenbrg 7/27 Sh Li (for RBC

Διαβάστε περισσότερα

CORDIC Background (4A)

CORDIC Background (4A) CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC Σ(85) Ξ(5) Production of and measured by ALICE in pp, ppb and PbPb collisions at the LHC for the ALICE Collaboration Pusan National University, OREA Quark Matter 7 in Chicago 7.. QM7 * suppressed, no suppression

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Moments of Structure Functions in Full QCD

Moments of Structure Functions in Full QCD Moments of Structure Functions in Full QCD John W. Negele Lattice 2000 Collaborators MIT Dmitri Dolgov Stefano Capitani Richard Brower Andrew Pochinsky Jefferson Lab Robert Edwards Wuppertal SESAM Klaus

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö Ó³ Ÿ. 2008.. 5, º 6(148).. 865Ä873 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. Š ˆŒ Œ ˆ ˆ Š - ˆ - LHC.. ³μ,.. μ μö,.. Ö±μ,.. Ê ±μ Î Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö ³μÉ μ ³μ μ ÉÓ μ Ê Ö Éμ - É Éμ - μ μ ³ ³ 700, 1000, 1500, 2000 3000

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

GREECE BULGARIA 6 th JOINT MONITORING

GREECE BULGARIA 6 th JOINT MONITORING GREECE BULGARIA 6 th JOINT MONITORING COMMITTEE BANSKO 26-5-2015 «GREECE BULGARIA» Timeline 02 Future actions of the new GR-BG 20 Programme June 2015: Re - submission of the modified d Programme according

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν. ΑΡΗΣΟΣΔΛΔΗΟ ΠΑΝΔΠΗΣΖΜΗΟ ΘΔΑΛΟΝΗΚΖ ΣΜΖΜΑ ΜΑΘΖΜΑΣΗΚΧΝ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΧΝ ΠΟΤΓΧΝ Δπηζηήκε ηνπ Γηαδηθηύνπ «Web Science» ΜΔΣΑΠΣΤΥΗΑΚΖ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES RICHARD J. MATHAR Abstract. The manuscript provides tables of abscissae and weights for Gauss- Laguerre integration on 64, 96 and 128

Διαβάστε περισσότερα

Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων

Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων ιονύσης Τριανταφυλλόπουλος ECT*, Τρέντο, Ιταλία.Ν. Τριανταφυλλόπουλος (ECT*) Κορεσμός παρτονίων στην QCD ΕΜΠ, Αθήνα, Οκτ. 2007 1 / 22 Σχεδιάγραμμα Βαθειά ανελαστική

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

CORDIC Background (2A)

CORDIC Background (2A) CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan 1 τ-decays at Belle On Behalf of Belle Collaboration Takayoshi Ohshima Nagoya University, Japan KEKB/ Belle PEP-II/ BaBar 1. τ K s π ν τ study Branching ratio Mass spectrum (vector & scalar FF; mass &

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002 A NLO Calculation of pqcd: Total Cross Section of P P W X C. P. Yuan Michigan State University CTEQ Summer School, June Outline. Parton Model Born Cross Section. Factorization Theorem How to organize a

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University

High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University High Energy Break-U of Few-Nucleon Systems Misak Sargsian Florida International University Exclusive Worksho, JLab May 2-24, 2007 Nuclear QCD Nuclear QCD - identyfy hard subrocess Nuclear QCD - identyfy

Διαβάστε περισσότερα

Prey-Taxis Holling-Tanner

Prey-Taxis Holling-Tanner Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Discretization of Generalized Convection-Diffusion

Discretization of Generalized Convection-Diffusion Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα