Iterative Monte Carlo analysis of spin-dependent parton distributions
|
|
- Ζακχαῖος Γεωργιάδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Iterative Monte Carlo analysis of spin-dependent parton distributions (arxiv:6.7782) Nobuo Sato In Collaboration with: W. Melnitchouk, S. E. Kuhn, J. J. Ethier, A. Accardi Next Generation Nuclear Physics with JLab2 and EIC, Feb 26 / 6
2 Motivations Spin structure of nucleons - Spin sum rule 2 = 2 Σ() + g () + L - The spin contribution from quarks: Σ () = u () + + d () + + s () + - From existing global analysis Σ () [ 3,] Higher twists - d 2 matrix element d 2 = 2g (3) (Q2 ) + 3g (3) 2 (Q2 ) - Color forces experienced by struck quarks F E = 2d 2 + f 2, FB = 4d 2 f 2 - Dedicated global QCD anlysis is required High x - SU(6) spin-flavor symmetry: u/u 2/3, d/d /3 - pqcd q/q , g() [.5,.2]. u + /u + d + /d x Q 2 = GeV 2 2 / 6
3 Global Analysis Data Polarized DIS u, d - Polarized SIDIS: d, ū, s - Inclusive Jets/π : g - W production d, ū Theory Target mass corrections Twist-3 and twist-4 contributions in polarized structure functions Nuclear corrections for 3 He and deuteron targets - Threshold resummation (α m S log( x)n ) Tools Numerical codes developed within python framework Development of DGLAP evolution equations in Mellin space Fast calculation of observables Mellin space techniques Q 2 EMC (npts = ) SMC (npts = 4) SLAC (npts = 835) HERMES (npts = 98) COMPASS (npts = 8) JLab (npts = 45) W 2 cut = 4GeV 2 W 2 cut = GeV x 3 / 6
4 Polarized DIS Asymmetries Theory A = σ σ σ + σ = D(A + ηa 2 ) A = σ σ σ + σ = d(a 2 ξa ) A = (g γ 2 g 2 ) A 2 = γ (g + g 2 ) γ 2 = 4M 2 x 2 F F Q 2 g (x, Q 2 ) = g LT+TMC ( u +, d +, g,...) + g T3+TMC (D u, D d ) + g T4 (H p,n ) g 2 (x, Q 2 ) = g LT+TMC 2 ( u +, d +, g,...) + g T3+TMC 2 (D u, D d ) 4 / 6
5 Polarized DIS ξ = 2x +(+4µ 2 x 2 ) /2 µ 2 = M 2 /Q 2 Leading twist structure functions: g LT+TMC (x, Q 2 ) = x g LT (ξ) ξ ( + 4µ 2 x 2 ) 3/2 + 4µ2 x 2 x + ξ ξ( + 4µ 2 x 2 ) 2 g LT+TMC 2 (x, Q 2 ) = x ξ 4µ 2 x 2 2 4µ 2 x 2 2( + 4µ 2 x 2 ) 5/2 In the Bjorken limit (Q 2 ): ξ dz dz ξ z z z glt (z ) g LT (ξ) ( + 4µ 2 x 2 ) 3/2 + x ( 4µ 2 xξ) ξ ( + 4µ 2 x 2 ) 2 ξ + 3 4µ 2 x 2 dz dz 2 ( + 4µ 2 x 2 ) 5/2 ξ z z z glt (z ) g LT+TMC (x, Q 2 ) g LT (x), glt+tmc 2 (x, Q 2 ) g LT (x) + ξ dz z glt (z) dz z glt (z) dz z glt (z) Leading twist quark distributions: g LT (x) = e 2 q [ C qq q(x) + C qg g(x)] 2 q 5 / 6
6 Polarized DIS Twist-3 structure functions: g T3+TMC (x, Q 2 ) =4µ 2 x 2 D(ξ) ( + 4µ 2 x 2 ) 3/2 4µ2 x 2 3 ( + 4µ 2 x 2 ) 2 + 4µ 2 x 2 2 4µ 2 x 2 ( + 4µ 2 x 2 ) 5/2 g T3+TMC 2 (x, Q 2 D(ξ) ) = ( + 4µ 2 x 2 ) 3/2 8µ2 x 2 ( + 4µ 2 x 2 ) 2 2µ 2 x 2 dz ( + 4µ 2 x 2 ) 5/2 ξ z Bjorken limit(q 2 ): ξ dz z dz z ξ z dz z D(z ) z D(z ) dz z D(z) g T3+TMC (x, Q 2 ) g T3+TMC 2 (x, Q 2 dz ) D(x) ξ z D(z) Twist-3 quark distributions: D(x, Q 2 ) = 4 9 D u(x, Q 2 ) + 9 D d(x, Q 2 ) ξ dz z D(z) 6 / 6
7 Polarized DIS Twist-4 structure function: g T4(p,n) (x, Q 2 ) = H (p,n) (x)/q 2 Nuclear corrections: nuclear smearing functions gi A (x, Q 2 ) = dy y f ij N (y, γ)gj N (x/y, Q 2 ) N Curse of dimensionality Mellin trick (Stratmann, Vogelsang) dy ( ) I(x) = x y f(y) dz x y z g g(ξ) = dnξ N g N yz 2πi = [ dy ( ) ] dng N 2πi x y f(y) dz x N y z yz = dng N M N 2πi = ) wi k jk Im (e iφ g N M kj N Gaussian quadrature kj i,k time consuming part can be precalculated prior to the fit 7 / 6
8 Fitting strategy Parametrization - xf(x) = Nx a ( x) b ( + c x + dx) - LT quark distributions u +, d +, s +, g - T3 quark distributions D u, D d - T4 structure functions H p, H n Chi-squared minimization with correlated systematic uncertainties χ 2 = i ( Di T i ( k rk βi k/d i) ) 2 + (r k ) 2 α i k Issues - Stability in the moments (e.g. Σ () ) - Is the solution given by a single fit unique? False minima - Is over-fitting present in our fits? - Which parameters should be fixed and at which value? - Determination of uncertainty bands. Solution MC approach 8 / 6
9 Iterative Monte Carlo Analysis (IMC) Toy example fitting 2 model parameters α, β I. Flat sampling Initial priors {(α, β)} β α 9 / 6
10 Iterative Monte Carlo Analysis (IMC) Toy example fitting 2 model parameters α, β 2. β I. Flat sampling Initial priors {(α, β)} II. First iteration priors {(α, β)} posteriors {(α, β)} α 9 / 6
11 Iterative Monte Carlo Analysis (IMC) Toy example fitting 2 model parameters α, β 2. β α I. Flat sampling Initial priors {(α, β)} II. First iteration priors {(α, β)} posteriors {(α, β)} III. Second iteration priors {(α, β)} posteriors {(α, β)}... until convergence 9 / 6
12 Iterative Monte Carlo Analysis (IMC) Each iteration - Generate pseudo data sets via data resampling - Radom data partition Training & Validation - Fit the training set - Validation data pseudo data T data V data fit { p (j) } validation a () training validation noncentral χ 2 dof pseudo data2 T data2 V data2 fit2 { p (j) } validation a (2) ensemble χ 2 dof T datak fitk { p (j) } pseudo 2. datak V datak validation a (K) iterations priors new priors / 6
13 W 2 cut and Q 2 cut Σ.2 G Σ 2 G.2.8 d p 2.4. d n d p 2.4 d n 2.4 h p h n.8.4. h p.4..4 h n W 2 cut (GeV 2 ) W 2 cut (GeV 2 ) Q 2 cut (GeV 2 ) Q 2 cut (GeV 2 ) Wcut 2 (GeV 2 ) # points χ 2 dof Q 2 cut (GeV 2 ) # points χ 2 dof / 6
14 Data vs. Theory.2 A p à p A p JAM5 no HT E55 Q 2 [3.7,.6] syst(+) syst( )..3 x E55x Q 2 [5.4, 7.].2.5 x HERMES Q 2 [.4, 6.8] x.5 A p E43 Q2 [.2, 4.5] x.6 A p E55 Q2 [7.6, 24.8] à p...6 A p x E55x Q 2 [., 2.3].3. x HERMES Q 2 [.8,.3] x.2 A p E43 Q2 [2.9, 9.5]...3 x.3 à p E55x Q2 [.,.8] x.6 à p E55x Q 2 [6., 2.4] x.2 A p E55 Q2 [., 3.3]..8 à p A p x E55x Q 2 [2.3, 6.]..3 x HERMES Q 2 [., 2.8]..3 x E54 Q 2 [.2, 5.8] JAM5 no HT syst(+) syst( ).3..3 x E6-4 Q 2 [2., 3.4] x E99-7 Q 2 [2.7, 4.8].4.5 x E42 Q 2 [., 5.5].3..3 x E54 Q 2 [4., 5.]..3 x E6-4 Q 2 [2.6, 5.2] x E99-7 Q 2 [2.7, 4.8].4.5 x E42 Q 2 [., 5.5].3..3 x E54 Q 2 [.2, 5.8].3. x E6-4 Q 2 [2., 3.4] x Q 2 [4., 5.] E54..3 x E6-4 Q 2 [2.6, 5.2] x A p.35 JAM5 E = 4.8 Q 2 [.,.] E = 4.8 Q 2 [.,.2].25.3 no HT.2.25 syst(+).5.2 syst( ) eg-dvcs x.2.25 x.45.5 E = 4.8 Q 2 [.6,.7] E = 4.8 E = x E = 6. Q 2 [.,.].2.4 x E = 6. Q 2 [.9, 2.] x E = 6. Q 2 [3.9, 4.] x Q 2 [.98, 2.4].3.35 x E = 6. Q 2 [.2,.3].5.2 x E = 6. Q 2 [2.3, 2.4] x E = 6. Q 2 [4.6, 4.7] x Q 2 [2.3, 2.4].35.4 x E = 6. Q 2 [.3,.6] x.5 E = 6. Q 2 [2.7, 2.9] x.35 E = 4.8 Q 2 [.3,.4] x.55 E = Q 2 [2.7, 2.8] x.35 E = 6. Q 2 [.6,.7] x.55 E = 6. Q 2 [3.2, 3.5] x Signal of HT? - A p marginally visible at large x - Not visible in 3 He data - Significant contribution in eg-dvcs A p 2 / 6
15 Results (a).4 (c). - Significant constraints to large x s+ and g x u x d+ x s+ x g (b) xdu xdd xhp xhn (d) - T4 contribution to g consistent with zero... - Non zero T3 quark distributions x x JAM5 JAM3 DSSV9 NNPDF4 BB AAC9 LSS x u+..2 x s Negative s+ (see Talk by J. Ethier) - JAM5 g compatible with resent DSSV fits x d+ 3 2 x g x x 3 / 6
16 Impact of JLab data JAM5 no JLab x u x d Large uncertainties in s+, g removed by JLab data - Non vanishing T3 quark distributions T4 distributions consistent with zero..2 x s x g.4 xhp xhn xd d Constraints on small x from large x weak baryon decay constraints JLab data. < x <.7 xdu x x 4 / 6
17 d 2 matrix element - d 2 (Q 2 ) dxx2 [ 2g T3 (x, Q2 ) + 3g T3 2 (x, Q2 ) ] - d 2 is related to color polarizability or the transverse color force acting on quarks. - Existing measurements of d 2 are in the resonance region (contains TMC T4 and beyond.) - Agreement with data indicates quark-hadron duality d (a) JAM5 p JAM5 n lattice (b) E55x RSS E 2 E6 4 JAM Q 2 (GeV 2 ) Q 2 (GeV 2 ) 5 / 6
18 JAM: Outlook JAM New JAM5 analysis to study impact of all JLab 6 GeV inclusive DIS data at low W and high x New extraction of LT & HT distributions - Upcoming JAM6 analysis to study polarization of sea quarks & gluons. - SIDIS for flavor separation. - polarized pp cross sections (inclusive jet & π production) for g - W boson asymmetries - Threshold resummation impacts on large x - Combined analysis of all inclusive (un)polarized DIS data - Fits to helicity distributions Q 2 EMC (npts = ) SMC (npts = 4) SLAC (npts = 835) JLab 2 HERMES (npts = 98) COMPASS (npts = 8) JLab (npts = 45) - Measurements at high-x q/q - Wider coverage in Q 2 Wcut 2 = 4GeV 2 Wcut g 2 = GeV 2 JLab 2GeV - Determination of pure twist-3 d 2 in DIS x 6 / 6
19 Backup 7 / 6
20 Data vs. Theory: proton.4 A p.2. JAM5 no HT syst(+) syst( ) E8/E3 Q 2 [3.3, 5.4] x.2 A p E43..5 Q 2 [.2, 4.5].3..3 x A p E55 Q 2 [., 34.7] x A p COMPASS.6 Q 2 [., 62.] x.8 A p.4.2 EMC Q 2 [3.5, 29.5].3.5. x A p.3.2 E8/E3. Q 2 [5.3, 9.9] x A p E43 Q 2 [2.9, 9.5].2. A p x HERMES Q 2 [., 3.].3..3 x A p COMPASS.6 Q 2 [., 29.8] x.8 A p A p SMC 98 Q 2 [.3, 58.].. x E43 Q 2 [.,.4]..2 x.2 A p E55 Q 2 [., 5.9].4.3. x A p HERMES Q 2 [.2, 9.6] x A p COMPASS.6 Q 2 [., 53.] x.6 A p.2.2 A p SMC 99 Q 2 [., 23.]..3 x E43 Q 2 [., 3.]..3 x.4 A p E55 Q 2 [4., 6.]..3 x.8 A p HERMES Q 2 [2.6, 4.3] x A p COMPASS.6 Q 2 [.2, 96.] x 8 / 6
21 Data vs. Theory: proton.2 A p JAM5 no HT syst(+) syst( ).2 E55 Q 2 [3.7,.6].4..3 x.6 à p E55x Q 2 [5.4, 7.] x.6 A p HERMES 2 Q 2 [.4, 6.8] x.5 A p E43 Q2 [.2, 4.5] x.6 A p HERMES 2 Q 2 [.8,.3].2.2 A p E43 Q2 [2.9, 9.5] x x A p E55 Q2 [7.6, 24.8] à p E55x Q2 [.,.8] x x à p E55x à p E55x Q 2 [., 2.3] Q 2 [6., 2.4] x x.2 A p E55 Q2 [., 3.3]..3. x.8 à p E55x Q 2 [2.3, 6.] x.6 A p HERMES 2 Q 2 [., 2.8] x 9 / 6
22 Data vs. Theory: proton DVCS A p.35 JAM5 E = 4.8 Q 2 [.,.].25.3 no HT E = 4.8 Q 2 [.,.2] syst(+) syst( ) eg-dvcs x x E = 4.8 Q 2 [.6,.7].4 E = E = x E = 6. Q 2 [.,.].2.4 x E = 6. Q 2 [.9, 2.] x E = 6. Q 2 [3.9, 4.] x Q 2 [.98, 2.4] x E = 6..2 Q 2 [.2,.3] x.4 E = 6. Q 2 [2.3, 2.4] x.8 E = 6. Q 2 [4.6, 4.7] x Q 2 [2.3, 2.4] x E = Q 2 [.3,.6] x.5 E = 6. Q 2 [2.7, 2.9] x E = 4.8 Q 2 [.3,.4] x E = 4.8 Q 2 [2.7, 2.8] x.35 E = 6. Q 2 [.6,.7] x.55 E = 6. Q 2 [3.2, 3.5] x Signal of HT contribution. 2 / 6
23 Data vs. Theory: proton EGb JAM5 no HT syst(+).5 E = Q 2 [.6,.7] x.4 E = 5.7 Q 2 [.,.] x.8 E = 5.7 Q 2 [.9, 2.] x.5 E = 5.7 Q 2 [3.8, 4.].5 A p.4 E = 4.2 Q 2 [.,.] syst( ). E = 4.2 Q 2 [.,.2] egb x.2.25 x.8 E = 4.2 Q 2 [.9, 2.].8 E = 4.2 Q 2 [2.3, 2.4] x x.4 E = 5.7 Q 2 [.,.2] x.8 E = 5.7 Q 2 [2.2, 2.4] x E = 5.7 Q 2 [4.56, 4.63] x x.3.2. E = 5.7 Q 2 [.3,.4] x Q 2 [2.7, 2.9] x E = 4.2 Q 2 [.3,.4].25.3x E = 4.2 Q 2 [2.69, 2.73] x E = 5.7 Q 2 [.6,.7] x E = 5.7 Q 2 [3.2, 3.4] x 2 / 6
24 Data vs. Theory: deuteron.4 A d A d.2. E43 Q 2 [., 3] JAM5 no HT syst(+) syst( )..3 x..6.3 x A d HERMES Q 2 [2.6, 4.3].2 E55 Q 2 [4, 6]..3 x.6 A d.2 SMC 98 Q 2 [.3, 54.8]..2. x A d E43 Q. [.2, 4.5] x.6 A d E55 Q 2 [, 34.8] x A d COMPASS Q 2 [., 55.3] x.3 A d SMC 99 Q. 2 [., 22.9]..2 A d..5.. x E43 Q 2 [2.9, 9.5]..5.3 x A d HERMES Q 2 [.2, 3.].5..3 x.2 A d E43 Q. 2 [,.4] x A d E55 Q. [, 6] x.3 A d HERMES Q 2 [., 9.6] x 22 / 6
25 Data vs. Theory: deuteron.. JAM5 no HT syst(+) syst( ).3 A d E55 Q2 [3.7,.6]..3 x.4 à d E55x.2.4 Q 2 [5.4, 6.5].2.5 x.2 A d..2 E43 Q 2 [.2, 4.5].3 A d.. E43 Q 2 [2.9, 9.5].3..3 x x A d E55 à d E55x.2 Q 2 Q2 [.,.8] [7.6, 24.9] x x à d E55x Q2 [., 2.3] à d E55x Q 2 [2.5, 7.5] x.8..3 x.2 A d E55 Q2 [., 3.3]..8 à d à d x E55x Q 2 [2.3, 6.]..3 x E55x Q 2 [6., 2.4].2.5 x 23 / 6
26 Data vs. Theory: deuteron DVCS A d.5 JAM5 Q 2 [.,.].. no HT Q 2 [.2,.3] syst(+) syst( ).5.5 eg-dvcs x x Q 2 [.98, 2.5] Q 2 [2.3, 2.4] Q 2 [.4,.5] x Q 2 [2.8, 2.9] Q 2 [.6,.7] x Q 2 [3.3, 3.4] x x x x.2 Q 2 [3.9, 4.] x 24 / 6
27 Data vs. Theory: deuteron EGb A d..4 JAM5 E = 4.2 Q 2 [.,.].3 E = 4.2 Q 2 [.,.2] no HT syst(+) syst( ).5.2. egb x x E = 4.2 Q 2 [.6,.7] E = 4.2 Q 2 [2., 2.3] E = 4.2 Q 2 [2.3, 2.4] x.3 E = 5.7 Q 2 [.,.2] x.4 E = 5.7 Q.3 2 [2.3, 2.4] x x.3 E = 5.7 Q 2 [.36,.44] x.6 E = 5.7 Q 2 [2.7, 2.9] x x.3 E = 5.7 Q 2 [.6,.7] x E = 5.7 Q 2 [3.2, 3.4] x E = 4.2 Q 2 [.36,.43] x.3 E = 5.7 Q 2 [.,.] x.4 E = 5.7 Q.3 2 [.9, 2.] x E = 5.7 Q 2 [3.8, 4.] x 25 / 6
28 Data vs. Theory: 3 He E54 Q 2 [.2, 5.8] JAM5 no HT syst(+) syst( ).3..3 x E6-4 Q 2 [2., 3.4] x E99-7 Q 2 [2.7, 4.8]. E42 Q 2 [., 5.5].2 2 E Q 2 [., 5.5] x x E54 E54 Q 2 [.2, 5.8] Q 2 [4., 5.] x x E6-4 Q 2 [2.6, 5.2] E6-4 Q 2 [2., 3.4] x x E E54 Q 2 [4., 5.]..3.3 x E6-4 Q 2 [2.6, 5.2] x x.2.4 Q 2 [2.7, 4.8].4.5 x 26 / 6
29 JAM: moments # fits # fits # fits u +() s +() Σ () # fits # fits d +() g () # fits # fits # fits D u (3) H p (3) d p 2..5 # fits # fits # fits D (3) d H n (3) d n 2 - New extraction of Σ () =.3 ±.3 (Only truncated moments are shown x [ 3,.8]) - First extraction of d 2 matrix element in global QCD analysis - JAM6: reduction of gluon uncertainties (jet data) 27 / 6
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο2004-2005 Διακριτική ικανότητα ανιχνευτή-υπόβαθρο- Υπολογισμός του σήματος Διδάσκοντες : Χαρά Πετρίδου Δημήτριος Σαμψωνίδης 18/4/2005 Υπολογ.Φυσική
Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration
Λ b Baryon Studies Dongliang Zhang (University of Michigan) on behalf of Collaboration Hadron215, Jefferson Lab September 13-18, 215 Introduction Λ b reconstruction Lifetime measurement Helicity study
L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28
L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)
AdS black disk model for small-x DIS
AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Topics on QCD and Spin Physics
Topics on QCD and Spin Physics (fourth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS, JLAB June QCD in a nuclear medium no much interest before 98: low energy scales freeze QCD dof European
ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ
Ó³ Ÿ. 2014.. 11, º 4(188).. 817Ä827 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ Ÿ.. ² ± Ì,. Œ. ŠÊ Íμ,.. μ ± Ö 1, Œ. ƒ. μ ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ò Ê²ÓÉ ÉÒ ³ ÒÌμ μ ÉÖ ²ÒÌ μ μ É μ μ ²Ê μ±μ - Ê Ê μ³ Ö
Large β 0 corrections to the energy levels and wave function at N 3 LO
Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Ανελαστική Σκέδαση. Σπύρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική
Ανελαστική Σκέδαση p Σπύρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 2016 1 p Ελαστική σκέδαση σε πολύ υψηλά q 2 Σε µεγάλα q 2 η έκφραση Rosenbluth για την ελαστική σκέδαση γίνεται Για ελαστική σκέδαση p ο παράγων
Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data
Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data B. Renard, M. Lang, P. Bois To cite this version: B. Renard, M. Lang,
Andreas Peters Regensburg Universtity
Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD
Kaon Weak Matrix Element in 2 Flavor DWF QCD Renormalization an Phyical Vale Sh Li (for the RBC an UKQCD Collaboration) The XXV International Sympoim on Lattice Fiel Theory Regenbrg 7/27 Sh Li (for RBC
CORDIC Background (4A)
CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC
Σ(85) Ξ(5) Production of and measured by ALICE in pp, ppb and PbPb collisions at the LHC for the ALICE Collaboration Pusan National University, OREA Quark Matter 7 in Chicago 7.. QM7 * suppressed, no suppression
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Moments of Structure Functions in Full QCD
Moments of Structure Functions in Full QCD John W. Negele Lattice 2000 Collaborators MIT Dmitri Dolgov Stefano Capitani Richard Brower Andrew Pochinsky Jefferson Lab Robert Edwards Wuppertal SESAM Klaus
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö
Ó³ Ÿ. 2008.. 5, º 6(148).. 865Ä873 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. Š ˆŒ Œ ˆ ˆ Š - ˆ - LHC.. ³μ,.. μ μö,.. Ö±μ,.. Ê ±μ Î Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö ³μÉ μ ³μ μ ÉÓ μ Ê Ö Éμ - É Éμ - μ μ ³ ³ 700, 1000, 1500, 2000 3000
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
GREECE BULGARIA 6 th JOINT MONITORING
GREECE BULGARIA 6 th JOINT MONITORING COMMITTEE BANSKO 26-5-2015 «GREECE BULGARIA» Timeline 02 Future actions of the new GR-BG 20 Programme June 2015: Re - submission of the modified d Programme according
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.
ΑΡΗΣΟΣΔΛΔΗΟ ΠΑΝΔΠΗΣΖΜΗΟ ΘΔΑΛΟΝΗΚΖ ΣΜΖΜΑ ΜΑΘΖΜΑΣΗΚΧΝ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΧΝ ΠΟΤΓΧΝ Δπηζηήκε ηνπ Γηαδηθηύνπ «Web Science» ΜΔΣΑΠΣΤΥΗΑΚΖ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES
GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES RICHARD J. MATHAR Abstract. The manuscript provides tables of abscissae and weights for Gauss- Laguerre integration on 64, 96 and 128
Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων
Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων ιονύσης Τριανταφυλλόπουλος ECT*, Τρέντο, Ιταλία.Ν. Τριανταφυλλόπουλος (ECT*) Κορεσμός παρτονίων στην QCD ΕΜΠ, Αθήνα, Οκτ. 2007 1 / 22 Σχεδιάγραμμα Βαθειά ανελαστική
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
CORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler
EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan
1 τ-decays at Belle On Behalf of Belle Collaboration Takayoshi Ohshima Nagoya University, Japan KEKB/ Belle PEP-II/ BaBar 1. τ K s π ν τ study Branching ratio Mass spectrum (vector & scalar FF; mass &
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002
A NLO Calculation of pqcd: Total Cross Section of P P W X C. P. Yuan Michigan State University CTEQ Summer School, June Outline. Parton Model Born Cross Section. Factorization Theorem How to organize a
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University
High Energy Break-U of Few-Nucleon Systems Misak Sargsian Florida International University Exclusive Worksho, JLab May 2-24, 2007 Nuclear QCD Nuclear QCD - identyfy hard subrocess Nuclear QCD - identyfy
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions
An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With