High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University"

Transcript

1 High Energy Break-U of Few-Nucleon Systems Misak Sargsian Florida International University Exclusive Worksho, JLab May 2-24, 2007

2 Nuclear QCD

3 Nuclear QCD - identyfy hard subrocess

4 Nuclear QCD - identyfy hard subrocess - aly factorization

5 Nuclear QCD - identyfy hard subrocess - aly factorization - aly QCD to hard subrocess

6 Nuclear QCD - identyfy hard subrocess - aly factorization - aly QCD to hard subrocess - soft art exress through measurable/extractable quatities as PDF s, hadronic amlitudes, FF and calculable nuclear wave functions

7 Nuclear QCD - identyfy hard subrocess - aly factorization - aly QCD to hard subrocess - soft art exress through measurable/extractable quatities as PDF s, hadronic amlitudes, FF and calculable nuclear wave functions - obtain arameter free results

8 Nuclear QCD - EMC effect - Formfactors of Few Nucleon Systems at high momentum transfer Text Energy - Color Transarency - DIS at x > - High Energy Break u of two hadrons in Nuclei

9 Nuclear QCD - EMC effect - Formfactors of Few Nucleon Systems at high momentum transfer Text Energy - Color Transarency - DIS at x > - High Energy Break u of two hadrons in Nuclei

10 N N N N q q q- q g g g

11 N N N N q q q- q g g g

12 - Large CM angle disintegration of nuclei: N γ N D, 3 He(, n) γ Mx N D N s = (k γ + d ) 2 = 2M d E γ + M 2 d Brodsky, Chertock, 976 Holt, 990 Gilman, Gross, 2002 t = (k γ N ) 2 = [cosθ cm ] s M 2 d 2 E γ = 2 GeV, s = 2 GeV 2, t GeV 2, M x = 2 GeV E γ = 2 GeV, s = 4 GeV 2, t GeV 2, M x = 4.4 GeV

13 - Large CM angle disintegration of nuclei: N γ N D, 3 He(, n) γ Mx N D N s = (k γ + d ) 2 = 2M d E γ + M 2 d Brodsky, Chertock, 976 Holt, 990 Gilman, Gross, 2002 t = (k γ N ) 2 = [cosθ cm ] s M 2 d 2 E γ = 2 GeV, s = 2 GeV 2, t GeV 2, M x = 2 GeV E γ = 2 GeV, s = 4 GeV 2, t GeV 2, M x = 4.4 GeV

14 Consider A+B C + D A C f( t s ) B D s A F ( t s ) s n A +n B +n C +n D 2 2 Brodsky, Farrar 975 Matveev, Muradyan, Takhvelidze, 975 dσ dt A 2 s 2 = F 2 ( t s ) s n A+n B +n C +n D 2

15 Consider A+B C + D A C f( t s ) B D additional A F ( t s ) s n A +n B +n C +n D 2 2 s s Brodsky, Farrar 975 Matveev, Muradyan, Takhvelidze, 975 dσ dt A 2 s 2 = F 2 ( t s ) s n A+n B +n C +n D 2

16 γd n Exclusive large-momentum-transfer scattering scaling Dimensional counting rule: d σ -(N= n A + nb + nc + nd -2) dt AB CD S f( t s ) For γ d ( high t ) + n ( high t ) N = = Notice: dσ dσ ( Eγ = GeV/c) / ( Eγ = 4 GeV/c) 0 dt dt 4

17 γd n 20 (GeV 2 ) W 2 # m d x=0 x=0.5 x=.0 x=.5 x= N$ NN ! = E " = Q 2 /2mx (GeV) Gilman, Gross, 2002

18

19 Hard Rescattering Mx Mmax=w > 2 GeV Mx w 2E γ m N q E γ 2.5 GeV d k + q A k 2 k 2 B

20 Hard Rescattering Mx Mmax=w > 2 GeV Mx w 2E γ m N q QCD E γ 2.5 GeV d k + q A k 2 k 2 B

21 Hard Rescattering Mx Mmax=w > 2 GeV Mx w 2E γ m N q QCD E γ 2.5 GeV d k + q A k 2 k 2 B N N N N NN -amlitude

22 l regen k k 2 z l regen Landau, Pameranchuk, Migdal

23 l regen k k 2 z l regen > Z Landau, Pameranchuk, Migdal

24 l regen k k 2 z l regen > Z Landau, Pameranchuk, Migdal

25 l regen k k 2 z l regen > Z l regen E γ R 2 Landau, Pameranchuk, Migdal

26 l regen k k 2 z l regen > Z l regen E γ R 2 E> 2.5GeV Landau, Pameranchuk, Migdal

27 l regen k k 2 z l regen > Z l regen E γ R 2 E> 2.5GeV z Landau, Pameranchuk, Migdal

28 l regen k k 2 z l regen > Z l regen E γ R 2 E> 2.5GeV z > fm Landau, Pameranchuk, Migdal

29 q Frankfurt, Miller, MS, Strikman PRL 2000 d k + q A k 2 k 2 B T = ( ψ N (x 2, B, k 2 ) x ū( B 2 + k 2 ) [ igtc F γ ν] e q 2 u(k + q)ū(k + q) [ ieq (k + q) 2 m 2 ɛ γ ] u(k ) ψ ) N(x,, k ) q + iɛ x { ψ N (x, A, k ) x G µν Ψ d(α, ) α ū( A + k ) [ igt F c γ µ ] u(k2 ) ψ N(x 2, 2, k 2 x 2 dx d 2 k dx 2 d 2 k 2 dα x 2(2π) 3 x 2 2(2π) 3 α d 2 2(2π) 3,

30 We use the reference frame where d = ( d0, dz, ) ( s 2 + M 2 d 2, s s 2 M 2 d 2, 0), s with s = (q + d ) 2, s s MD 2, and the hoton four-momentum is q = ( s 2, s 2, 0). -The knocked-out quark roagator. (k + q) 2 m 2 q = x s [( + s (M d 2 m2 n + 2 ) α ) α x m 2 R + k2 + ] m2 q( x ) ( x )x s 2 2 k x s -We are concerned with momenta such that 2 m2 N s and α 2 neglect terms of order 2, m2 N /s to obtain: () so we (k + q) 2 m 2 q + iɛ x s (α α c + iɛ), α c x m 2 R + k2 ( x )x. looking for α (2) s c 2 contribution Here s s ( + M 2 d s ) and m R is the recoil mass of the sectator quark-gluon system of the first nucleon. - The integration over k in the region k 2 ( x )x s 2 x m 2 R does rovide α c = 2.

31 α c = 2

32 x = ( m2 R α c s ) - Keeing only the imaginary art of the quark roagator (eikonal aroximation) leads to α = α c and corresonds to keeing the contribution from the soft comonent of the deuteron wave function. Next we calculate the hoton-quark hard scattering vertex ū(k +q)[γ ]u(k ) and use Eq. (2) to integrate over α -By taking into account only second term in the decomosition of struck quark roagator: (α α c + ɛ) P(α α c ) iπδ(α α c ): q d k + q A k 2 k 2 B ū β (k + q) [ ieɛ µ (λ γ )γ µ ] u α (k ) = ie q 2 2E 2 E( λ γ )δ β,α δ λ γ,α

33 λ A, λ B A λ γ, λ D = { ψ λ B,η 2 N ( B, x 2, k 2 ) ψ λ A,η x 2 N ( B, x, k ) x Ψ λ D,λ,λ 2 (α, ) ( α)α (η,η 2 ),(ξ 2 ),(λ,λ 2 ) eq 2 [ ( αc )x ]( α c )x x s ū η2 ( B k 2 )[ igt F c γ ν ] u λγ ( k + q) ψλ,λ γ N (, x, k ) x ū η ( A k )[ igt F c γ µ ]u ξ2 ( 2 k 2 ) ψλ 2,ξ 2 N ( 2, x 2, k 2 ) x 2 G µ,ν (r) dx x d 2 k 2(2π) 3 dx 2 x 2 d 2 k 2 2(2π) 3 d 2 4(2π) 2. } () A QIM n = ψ N (x 2, B, k 2 ) x 2 ū( B 2 + k 2 ) [ igt F c γ ν] u(k + q) ψ N(x,, k ) x ψ N (x, F, k ) x ū( A + k ) [ igt F ] c γ µ u(k2 ) ψ N (x 2, 2, k 2 ) G µν x 2 dx x d 2 k 2(2π) 3 dx 2 x 2 d 2 k 2 2(2π) 3 ()

34 Frankfurt, Sargsian, Strikman, Phys.Rev. Lett 2000 λ A, λ B, A Qi λ γ, λ D = (η,η 2 ),(ξ 2 ),(λ,λ 2 ) eqi f(θ cm ) 2s η 2, λ B η, λ A A i QIM (s, l 2 ) λ, λ γ λ 2 ξ 2 Ψ λ D,λ,λ 2 (α c, ) d2 (2π) 2() Notation used λ nucleon, λ quark Assuming λ = λ γ NN NN γn n a b A NN QIM ab = 2 a b i a, j b Brodsky,Carlson,Likin Phys.Rev.D 979 [I i I j + τ i τ j ]F i,j (s, t) ab a b A Q QIM ab a,b D = 2 a b [I i I j + τ i τ j ](Q i +Q j )F i,j (s, t) ab = (Q u +Q d ) a b A n QIM ab i a, j b (Q u + Q d ) a b A n QIM ab = 3 a b A n ab. A n QIM A n

35 λa, n λb A λ γ, λ D = λ 2 f(θ cm ) 3 2s ( λa, n λb A n (s, t n ) λγ, n λ2 λa, n λb A n (s, u n ) n λγ λ2 ) Ψ λ D,λ γ,λ 2 (α c, ) d2 (2π) 2 () Ψ λ D,λ λ 2 = (2π) 3 2 Ψ J D,λ,λ 2 NR m = [u(k) + w(k) 8 S 2]ξ λ D,λ,λ 2 dσ γd n dt = 8α 9 π4 t )dσn n (s, t) C( s s dt Ψ NR d ( z = 0, ) d 2 m N (2π) 2 2, C( t s ) θ cm =90=

36

37

38 NN NN R.Feynman Photon Hadron Interactions

39 NN NN R.Feynman Photon Hadron Interactions

40 NN NN before R.Feynman Photon Hadron Interactions

41 NN NN x x 2 before R.Feynman Photon Hadron Interactions

42 NN NN x x 2 before after R.Feynman Photon Hadron Interactions

43 B NN NN x x 2 x x 2 C before after R.Feynman Photon Hadron Interactions

44 B NN NN x x 2 x x 2 C before after γd n R.Feynman Photon Hadron Interactions

45 B NN NN x x 2 x x 2 C before after γd n R.Feynman Photon Hadron Interactions

46 B NN NN x x 2 x x 2 C before A after γd n x x 2 R.Feynman Photon Hadron Interactions x + x 2 = x γ = 2 B C 2 x x 2 x x 2

47 B NN NN x x 2 x x 2 C before A after γd n x x 2 R.Feynman Photon Hadron Interactions x + x 2 = x γ = 2 when x, x 2 B = B B C 2 x x 2 x x 2

48 dσ γd n dt = 8α 9 π4 t )dσn n (s, t) C( s s dt Frankfurt, Miller, M.S. Sargsian PRL 2000 Ψ NR d ( z = 0, ) d 2 m N (2π) 2 2, s d"/dt (kb-gev 20 ) E! (GeV)

49 s d"/dt (kb-gev 20 ) ! + d # + n s d"/dt (kb GeV 20 ) E!, GeV

50

51 0 Mirazita, et al, Phys. Rev. C 2004 FIG. 7: (Color) Angular distributions of the deuteron hotodisintegration cross section measured by the CLAS (full/red circles) in the incident hoton energy range GeV. Results from Mainz [26] (oen squares, average of the measured values in the given hoton energy intervals), SLAC [5, 6, 7] (full/green down-triangles), JLab Hall A [0] (full/blue squares) and Hall C [8, 9] (full/black u-triangles) are also shown. Error bars reresent the statistical uncertainties only. The solid line and the hatched area reresent the redictions of the QGS [8] and the HRM [27] models, resectively. FIG. 8: (Color) Same as Fig. 7 for hoton energies GeV.

52 Secifics of Hard Rescattering Model Helicity Selection Rule - Photon selects nucleon in the nucleus with helicity = to its own - Due to dominance of Helicity Conserving amlitudes in NN scattering, hoton helicity will roogate to the helicty of one of the final nucleons. q d k + q A k 2 k 2 B

53 Polarization Observables λa, n λb A λ γ, λ D = λ 2 f(θ cm ) 3 2s ( λa, n λb A n (s, t n ) λγ, n λ2 λa, n λb A n (s, u n ) n λγ λ2 ) Ψ λ D,λ γ,λ 2 (α c, ) d2 (2π) 2 C x P y C z Gilman, Gross, 2002

54 { } 2Im φ 5 [2(φ + φ 2 ) + φ 3 φ 4 ] P y = 2 φ φ φ φ φ 5 { } 2 2Re φ 5 [2(φ φ 2 ) + φ 3 + φ 4 ] C x = 2 φ φ φ φ φ φ 2 2 φ φ 3 2 φ 4 2 C z = 2 φ φ φ φ φ 5 [ ] 2 2Re φ 5 2 φ 3 φ 4 Σ = 2 φ φ φ φ φ 5 2, φ (s, t n, u n ) = +, + A n +, + φ 2 (s, t n, u n ) = +, + A n, φ 3 (s, t n, u n ) = +, A n +, φ 4 (s, t n, u n ) = +, A n, + φ 5 (s, t n, u n ) = +, + A n +,. () φ φ 3, φ 4 > φ 5 > φ 2.

55 P y E γ, GeV C x E γ, GeV C z E γ, GeV Σ E γ, GeV Sargsian, Phys. Lett. B 2004 q d k + q A k 2 k 2 B

56 Jiang, PRL2007

57 - Hard Photodisintegration of air: γ + 3 He + n Magnitude of vs. n hard hotodisintegration σ ( γ At low hoton energy For 3 E γ He 0.5 GeV/c ) / σ ( γ 3 He n) % σ γ << σ γn σ γ 0 γ 0 π, ρ MEC is the dominant rocess air : only a neutral ion can be exchanged, its couling to the hoton is weak. Laget NP A497 (89) 39, (Saclay data). - Three Body Processes are Dominant

58 Hard Disintegration of from 3He q Brodsky, Frankfurt, Gilman,Hiller, Miller,Piasetzky,M.S. Strikman Phys.Lett. B 2003 A k k 2 r 2 B n n dσ dtd 3 n = ( ) 2 4 8π 4 α EM 5 s M 2 3 He dσ (s, t N ) dt 2 sins Ψ 3 He (, 2, n ) M N d 2 2T (2π) 2 2, where s = (P γ + P3 He) 2, t = (P P γ ) s t N = ( a α ) 2 2 t. = (P γ + P3 He P n ) 2, and

59 - Hard Photodisintegration of air: MS, Carlos Granados,2007 λ A, λ B A Qi λ γ, λ = ef(θcm ) Q λ 2 2s i λ A, λ B A i QIM (s, l 2 ) λ γ, λ 2 Ψ λ,λ γ,λ 2 (α c, ) d2 (2π) 2 a b A Q QIM ab a,b = 2 a b i a, j b [I i I j + τ i τ j ](Q i +Q j )F i,j (s, t) ab = 4 5 a b A QIM ab A QIM A

60 - Hard Photodisintegration of air: MS, Carlos Granados,2007 λ A, λ B A Qi λ γ, λ = ef(θcm ) Q λ 2 2s i λ A, λ B A i QIM (s, l 2 ) λ γ, λ 2 Ψ λ,λ γ,λ 2 (α c, ) d2 (2π) 2 a b A Q QIM ab a,b = 2 a b i a, j b [I i I j + τ i τ j ](Q i +Q j )F i,j (s, t) ab = 4 5 a b A QIM ab He3 q A QIM A roton(uud) A k k 2 r roton(uud) n neutron 2 B n

61 Ā 2 = const 2 [ φ 2 S + (φ φ 4 )S 34 ] S = 2 ψ 2 3 He (λ, λ 2, λ 3 )m d2 2 (2π) 2 2 λ =λ 2,λ 3 = 2 S 34 = 2 ψ 2 3 He (λ, λ 2, λ 3 )m d2 2 (2π) 2 2 λ = λ 2,λ 3 = 2

62 dσ dtd 3 n = ( ) 2 4 6π 4 α 5 S M 2 3 He ( 2c 2 + 2c 2 )dσ dt (s, t n ) S 34 E n c = φ 3,4 φ 2 s d!/dt (kb GeV 20 ) E g

63 Polarization Observables λ A, λ B A Qi λ γ, λ = ef(θcm ) Q λ 2 2s i λ A, λ B A i QIM (s, l 2 ) λ γ, λ 2 Ψ λ,λ γ,λ 2 (α c, ) d2 (2π) 2 { } 2Im φ 5 [2(φ + φ 2 ) + φ 3 φ 4 ] P y = 2 φ φ φ φ φ 5 { } 2 2Re φ 5 [2(φ φ 2 ) + φ 3 + φ 4 ] C x = 2 φ φ φ φ φ φ 2 2 φ φ 3 2 φ 4 2 C z = 2 φ φ φ φ φ 5 [ ] 2 2Re φ 5 2 φ 3 φ 4 Σ = 2 φ φ φ φ φ 5 2, () Helicity Selection Rule C z = 0!

64 Conclusion and Outlook - High Energy Photodisintegration of Few Nucleon System may eventually rovide a framework of robing the QCD structure of NN force - Hard Rescattering Mechanism reresents one such examle - disintegration data are crucial for verifying the validity of the HR mechanism New Venues - Hard disintegration into Delta airs σ(γd ++ ) σ(γd n) A(NN ++ ) A(NN NN) 2 - Hard Disintegraion into Strange Baryons

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28 L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Andreas Peters Regensburg Universtity

Andreas Peters Regensburg Universtity Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

NN scattering formulations without partial-wave decomposition

NN scattering formulations without partial-wave decomposition NN scattering formulations without partial-wave decomposition Departemen Fisika, Universitas Indonesia, Depok 644, Indonesia E-mail: imam.fachruddin@sci.ui.ac.id Agus Salam Departemen Fisika, Universitas

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1 EPS-HEP 5 DOUBLE-SCTTERING MECHNISM OF PRODUCTION OF TWO MESONS IN ULTRPERIPHERL, ULTRRELTIISTIC HEY ION COLLISIONS ntoni Szczurek, Mariola Kłusek-Gawenda Institute of Nuclear Physics PN Kraków University

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

Iterative Monte Carlo analysis of spin-dependent parton distributions

Iterative Monte Carlo analysis of spin-dependent parton distributions Iterative Monte Carlo analysis of spin-dependent parton distributions (arxiv:6.7782) Nobuo Sato In Collaboration with: W. Melnitchouk, S. E. Kuhn, J. J. Ethier, A. Accardi Next Generation Nuclear Physics

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΟΥ ΠΑΡΚΟΥ ΜΕ ΟΙΚΙΣΚΟΥΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕΣΗΣ ΤΑΣΗΣ STUDY PHOTOVOLTAIC PARK WITH SUBSTATIONS

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Universidade Cruzeiro do Sul. e Tecnológicas - CETEC. Light-Cone QCD, and Nonpertubative Hadrons Physics. Electromagnetic Current of a Composed

Universidade Cruzeiro do Sul. e Tecnológicas - CETEC. Light-Cone QCD, and Nonpertubative Hadrons Physics. Electromagnetic Current of a Composed . Universidade Cruzeiro do Sul Centro de Ciências Exatas e Tecnológicas - CETEC Light-Cone QCD, and Nonpertubative Hadrons Physics Electromagnetic Current of a Composed Vector Particle in the Light-Front

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Προστασία ηλεκτροδίων

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα