High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University
|
|
- Ἀγαμέμνων Γεωργιάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 High Energy Break-U of Few-Nucleon Systems Misak Sargsian Florida International University Exclusive Worksho, JLab May 2-24, 2007
2 Nuclear QCD
3 Nuclear QCD - identyfy hard subrocess
4 Nuclear QCD - identyfy hard subrocess - aly factorization
5 Nuclear QCD - identyfy hard subrocess - aly factorization - aly QCD to hard subrocess
6 Nuclear QCD - identyfy hard subrocess - aly factorization - aly QCD to hard subrocess - soft art exress through measurable/extractable quatities as PDF s, hadronic amlitudes, FF and calculable nuclear wave functions
7 Nuclear QCD - identyfy hard subrocess - aly factorization - aly QCD to hard subrocess - soft art exress through measurable/extractable quatities as PDF s, hadronic amlitudes, FF and calculable nuclear wave functions - obtain arameter free results
8 Nuclear QCD - EMC effect - Formfactors of Few Nucleon Systems at high momentum transfer Text Energy - Color Transarency - DIS at x > - High Energy Break u of two hadrons in Nuclei
9 Nuclear QCD - EMC effect - Formfactors of Few Nucleon Systems at high momentum transfer Text Energy - Color Transarency - DIS at x > - High Energy Break u of two hadrons in Nuclei
10 N N N N q q q- q g g g
11 N N N N q q q- q g g g
12 - Large CM angle disintegration of nuclei: N γ N D, 3 He(, n) γ Mx N D N s = (k γ + d ) 2 = 2M d E γ + M 2 d Brodsky, Chertock, 976 Holt, 990 Gilman, Gross, 2002 t = (k γ N ) 2 = [cosθ cm ] s M 2 d 2 E γ = 2 GeV, s = 2 GeV 2, t GeV 2, M x = 2 GeV E γ = 2 GeV, s = 4 GeV 2, t GeV 2, M x = 4.4 GeV
13 - Large CM angle disintegration of nuclei: N γ N D, 3 He(, n) γ Mx N D N s = (k γ + d ) 2 = 2M d E γ + M 2 d Brodsky, Chertock, 976 Holt, 990 Gilman, Gross, 2002 t = (k γ N ) 2 = [cosθ cm ] s M 2 d 2 E γ = 2 GeV, s = 2 GeV 2, t GeV 2, M x = 2 GeV E γ = 2 GeV, s = 4 GeV 2, t GeV 2, M x = 4.4 GeV
14 Consider A+B C + D A C f( t s ) B D s A F ( t s ) s n A +n B +n C +n D 2 2 Brodsky, Farrar 975 Matveev, Muradyan, Takhvelidze, 975 dσ dt A 2 s 2 = F 2 ( t s ) s n A+n B +n C +n D 2
15 Consider A+B C + D A C f( t s ) B D additional A F ( t s ) s n A +n B +n C +n D 2 2 s s Brodsky, Farrar 975 Matveev, Muradyan, Takhvelidze, 975 dσ dt A 2 s 2 = F 2 ( t s ) s n A+n B +n C +n D 2
16 γd n Exclusive large-momentum-transfer scattering scaling Dimensional counting rule: d σ -(N= n A + nb + nc + nd -2) dt AB CD S f( t s ) For γ d ( high t ) + n ( high t ) N = = Notice: dσ dσ ( Eγ = GeV/c) / ( Eγ = 4 GeV/c) 0 dt dt 4
17 γd n 20 (GeV 2 ) W 2 # m d x=0 x=0.5 x=.0 x=.5 x= N$ NN ! = E " = Q 2 /2mx (GeV) Gilman, Gross, 2002
18
19 Hard Rescattering Mx Mmax=w > 2 GeV Mx w 2E γ m N q E γ 2.5 GeV d k + q A k 2 k 2 B
20 Hard Rescattering Mx Mmax=w > 2 GeV Mx w 2E γ m N q QCD E γ 2.5 GeV d k + q A k 2 k 2 B
21 Hard Rescattering Mx Mmax=w > 2 GeV Mx w 2E γ m N q QCD E γ 2.5 GeV d k + q A k 2 k 2 B N N N N NN -amlitude
22 l regen k k 2 z l regen Landau, Pameranchuk, Migdal
23 l regen k k 2 z l regen > Z Landau, Pameranchuk, Migdal
24 l regen k k 2 z l regen > Z Landau, Pameranchuk, Migdal
25 l regen k k 2 z l regen > Z l regen E γ R 2 Landau, Pameranchuk, Migdal
26 l regen k k 2 z l regen > Z l regen E γ R 2 E> 2.5GeV Landau, Pameranchuk, Migdal
27 l regen k k 2 z l regen > Z l regen E γ R 2 E> 2.5GeV z Landau, Pameranchuk, Migdal
28 l regen k k 2 z l regen > Z l regen E γ R 2 E> 2.5GeV z > fm Landau, Pameranchuk, Migdal
29 q Frankfurt, Miller, MS, Strikman PRL 2000 d k + q A k 2 k 2 B T = ( ψ N (x 2, B, k 2 ) x ū( B 2 + k 2 ) [ igtc F γ ν] e q 2 u(k + q)ū(k + q) [ ieq (k + q) 2 m 2 ɛ γ ] u(k ) ψ ) N(x,, k ) q + iɛ x { ψ N (x, A, k ) x G µν Ψ d(α, ) α ū( A + k ) [ igt F c γ µ ] u(k2 ) ψ N(x 2, 2, k 2 x 2 dx d 2 k dx 2 d 2 k 2 dα x 2(2π) 3 x 2 2(2π) 3 α d 2 2(2π) 3,
30 We use the reference frame where d = ( d0, dz, ) ( s 2 + M 2 d 2, s s 2 M 2 d 2, 0), s with s = (q + d ) 2, s s MD 2, and the hoton four-momentum is q = ( s 2, s 2, 0). -The knocked-out quark roagator. (k + q) 2 m 2 q = x s [( + s (M d 2 m2 n + 2 ) α ) α x m 2 R + k2 + ] m2 q( x ) ( x )x s 2 2 k x s -We are concerned with momenta such that 2 m2 N s and α 2 neglect terms of order 2, m2 N /s to obtain: () so we (k + q) 2 m 2 q + iɛ x s (α α c + iɛ), α c x m 2 R + k2 ( x )x. looking for α (2) s c 2 contribution Here s s ( + M 2 d s ) and m R is the recoil mass of the sectator quark-gluon system of the first nucleon. - The integration over k in the region k 2 ( x )x s 2 x m 2 R does rovide α c = 2.
31 α c = 2
32 x = ( m2 R α c s ) - Keeing only the imaginary art of the quark roagator (eikonal aroximation) leads to α = α c and corresonds to keeing the contribution from the soft comonent of the deuteron wave function. Next we calculate the hoton-quark hard scattering vertex ū(k +q)[γ ]u(k ) and use Eq. (2) to integrate over α -By taking into account only second term in the decomosition of struck quark roagator: (α α c + ɛ) P(α α c ) iπδ(α α c ): q d k + q A k 2 k 2 B ū β (k + q) [ ieɛ µ (λ γ )γ µ ] u α (k ) = ie q 2 2E 2 E( λ γ )δ β,α δ λ γ,α
33 λ A, λ B A λ γ, λ D = { ψ λ B,η 2 N ( B, x 2, k 2 ) ψ λ A,η x 2 N ( B, x, k ) x Ψ λ D,λ,λ 2 (α, ) ( α)α (η,η 2 ),(ξ 2 ),(λ,λ 2 ) eq 2 [ ( αc )x ]( α c )x x s ū η2 ( B k 2 )[ igt F c γ ν ] u λγ ( k + q) ψλ,λ γ N (, x, k ) x ū η ( A k )[ igt F c γ µ ]u ξ2 ( 2 k 2 ) ψλ 2,ξ 2 N ( 2, x 2, k 2 ) x 2 G µ,ν (r) dx x d 2 k 2(2π) 3 dx 2 x 2 d 2 k 2 2(2π) 3 d 2 4(2π) 2. } () A QIM n = ψ N (x 2, B, k 2 ) x 2 ū( B 2 + k 2 ) [ igt F c γ ν] u(k + q) ψ N(x,, k ) x ψ N (x, F, k ) x ū( A + k ) [ igt F ] c γ µ u(k2 ) ψ N (x 2, 2, k 2 ) G µν x 2 dx x d 2 k 2(2π) 3 dx 2 x 2 d 2 k 2 2(2π) 3 ()
34 Frankfurt, Sargsian, Strikman, Phys.Rev. Lett 2000 λ A, λ B, A Qi λ γ, λ D = (η,η 2 ),(ξ 2 ),(λ,λ 2 ) eqi f(θ cm ) 2s η 2, λ B η, λ A A i QIM (s, l 2 ) λ, λ γ λ 2 ξ 2 Ψ λ D,λ,λ 2 (α c, ) d2 (2π) 2() Notation used λ nucleon, λ quark Assuming λ = λ γ NN NN γn n a b A NN QIM ab = 2 a b i a, j b Brodsky,Carlson,Likin Phys.Rev.D 979 [I i I j + τ i τ j ]F i,j (s, t) ab a b A Q QIM ab a,b D = 2 a b [I i I j + τ i τ j ](Q i +Q j )F i,j (s, t) ab = (Q u +Q d ) a b A n QIM ab i a, j b (Q u + Q d ) a b A n QIM ab = 3 a b A n ab. A n QIM A n
35 λa, n λb A λ γ, λ D = λ 2 f(θ cm ) 3 2s ( λa, n λb A n (s, t n ) λγ, n λ2 λa, n λb A n (s, u n ) n λγ λ2 ) Ψ λ D,λ γ,λ 2 (α c, ) d2 (2π) 2 () Ψ λ D,λ λ 2 = (2π) 3 2 Ψ J D,λ,λ 2 NR m = [u(k) + w(k) 8 S 2]ξ λ D,λ,λ 2 dσ γd n dt = 8α 9 π4 t )dσn n (s, t) C( s s dt Ψ NR d ( z = 0, ) d 2 m N (2π) 2 2, C( t s ) θ cm =90=
36
37
38 NN NN R.Feynman Photon Hadron Interactions
39 NN NN R.Feynman Photon Hadron Interactions
40 NN NN before R.Feynman Photon Hadron Interactions
41 NN NN x x 2 before R.Feynman Photon Hadron Interactions
42 NN NN x x 2 before after R.Feynman Photon Hadron Interactions
43 B NN NN x x 2 x x 2 C before after R.Feynman Photon Hadron Interactions
44 B NN NN x x 2 x x 2 C before after γd n R.Feynman Photon Hadron Interactions
45 B NN NN x x 2 x x 2 C before after γd n R.Feynman Photon Hadron Interactions
46 B NN NN x x 2 x x 2 C before A after γd n x x 2 R.Feynman Photon Hadron Interactions x + x 2 = x γ = 2 B C 2 x x 2 x x 2
47 B NN NN x x 2 x x 2 C before A after γd n x x 2 R.Feynman Photon Hadron Interactions x + x 2 = x γ = 2 when x, x 2 B = B B C 2 x x 2 x x 2
48 dσ γd n dt = 8α 9 π4 t )dσn n (s, t) C( s s dt Frankfurt, Miller, M.S. Sargsian PRL 2000 Ψ NR d ( z = 0, ) d 2 m N (2π) 2 2, s d"/dt (kb-gev 20 ) E! (GeV)
49 s d"/dt (kb-gev 20 ) ! + d # + n s d"/dt (kb GeV 20 ) E!, GeV
50
51 0 Mirazita, et al, Phys. Rev. C 2004 FIG. 7: (Color) Angular distributions of the deuteron hotodisintegration cross section measured by the CLAS (full/red circles) in the incident hoton energy range GeV. Results from Mainz [26] (oen squares, average of the measured values in the given hoton energy intervals), SLAC [5, 6, 7] (full/green down-triangles), JLab Hall A [0] (full/blue squares) and Hall C [8, 9] (full/black u-triangles) are also shown. Error bars reresent the statistical uncertainties only. The solid line and the hatched area reresent the redictions of the QGS [8] and the HRM [27] models, resectively. FIG. 8: (Color) Same as Fig. 7 for hoton energies GeV.
52 Secifics of Hard Rescattering Model Helicity Selection Rule - Photon selects nucleon in the nucleus with helicity = to its own - Due to dominance of Helicity Conserving amlitudes in NN scattering, hoton helicity will roogate to the helicty of one of the final nucleons. q d k + q A k 2 k 2 B
53 Polarization Observables λa, n λb A λ γ, λ D = λ 2 f(θ cm ) 3 2s ( λa, n λb A n (s, t n ) λγ, n λ2 λa, n λb A n (s, u n ) n λγ λ2 ) Ψ λ D,λ γ,λ 2 (α c, ) d2 (2π) 2 C x P y C z Gilman, Gross, 2002
54 { } 2Im φ 5 [2(φ + φ 2 ) + φ 3 φ 4 ] P y = 2 φ φ φ φ φ 5 { } 2 2Re φ 5 [2(φ φ 2 ) + φ 3 + φ 4 ] C x = 2 φ φ φ φ φ φ 2 2 φ φ 3 2 φ 4 2 C z = 2 φ φ φ φ φ 5 [ ] 2 2Re φ 5 2 φ 3 φ 4 Σ = 2 φ φ φ φ φ 5 2, φ (s, t n, u n ) = +, + A n +, + φ 2 (s, t n, u n ) = +, + A n, φ 3 (s, t n, u n ) = +, A n +, φ 4 (s, t n, u n ) = +, A n, + φ 5 (s, t n, u n ) = +, + A n +,. () φ φ 3, φ 4 > φ 5 > φ 2.
55 P y E γ, GeV C x E γ, GeV C z E γ, GeV Σ E γ, GeV Sargsian, Phys. Lett. B 2004 q d k + q A k 2 k 2 B
56 Jiang, PRL2007
57 - Hard Photodisintegration of air: γ + 3 He + n Magnitude of vs. n hard hotodisintegration σ ( γ At low hoton energy For 3 E γ He 0.5 GeV/c ) / σ ( γ 3 He n) % σ γ << σ γn σ γ 0 γ 0 π, ρ MEC is the dominant rocess air : only a neutral ion can be exchanged, its couling to the hoton is weak. Laget NP A497 (89) 39, (Saclay data). - Three Body Processes are Dominant
58 Hard Disintegration of from 3He q Brodsky, Frankfurt, Gilman,Hiller, Miller,Piasetzky,M.S. Strikman Phys.Lett. B 2003 A k k 2 r 2 B n n dσ dtd 3 n = ( ) 2 4 8π 4 α EM 5 s M 2 3 He dσ (s, t N ) dt 2 sins Ψ 3 He (, 2, n ) M N d 2 2T (2π) 2 2, where s = (P γ + P3 He) 2, t = (P P γ ) s t N = ( a α ) 2 2 t. = (P γ + P3 He P n ) 2, and
59 - Hard Photodisintegration of air: MS, Carlos Granados,2007 λ A, λ B A Qi λ γ, λ = ef(θcm ) Q λ 2 2s i λ A, λ B A i QIM (s, l 2 ) λ γ, λ 2 Ψ λ,λ γ,λ 2 (α c, ) d2 (2π) 2 a b A Q QIM ab a,b = 2 a b i a, j b [I i I j + τ i τ j ](Q i +Q j )F i,j (s, t) ab = 4 5 a b A QIM ab A QIM A
60 - Hard Photodisintegration of air: MS, Carlos Granados,2007 λ A, λ B A Qi λ γ, λ = ef(θcm ) Q λ 2 2s i λ A, λ B A i QIM (s, l 2 ) λ γ, λ 2 Ψ λ,λ γ,λ 2 (α c, ) d2 (2π) 2 a b A Q QIM ab a,b = 2 a b i a, j b [I i I j + τ i τ j ](Q i +Q j )F i,j (s, t) ab = 4 5 a b A QIM ab He3 q A QIM A roton(uud) A k k 2 r roton(uud) n neutron 2 B n
61 Ā 2 = const 2 [ φ 2 S + (φ φ 4 )S 34 ] S = 2 ψ 2 3 He (λ, λ 2, λ 3 )m d2 2 (2π) 2 2 λ =λ 2,λ 3 = 2 S 34 = 2 ψ 2 3 He (λ, λ 2, λ 3 )m d2 2 (2π) 2 2 λ = λ 2,λ 3 = 2
62 dσ dtd 3 n = ( ) 2 4 6π 4 α 5 S M 2 3 He ( 2c 2 + 2c 2 )dσ dt (s, t n ) S 34 E n c = φ 3,4 φ 2 s d!/dt (kb GeV 20 ) E g
63 Polarization Observables λ A, λ B A Qi λ γ, λ = ef(θcm ) Q λ 2 2s i λ A, λ B A i QIM (s, l 2 ) λ γ, λ 2 Ψ λ,λ γ,λ 2 (α c, ) d2 (2π) 2 { } 2Im φ 5 [2(φ + φ 2 ) + φ 3 φ 4 ] P y = 2 φ φ φ φ φ 5 { } 2 2Re φ 5 [2(φ φ 2 ) + φ 3 + φ 4 ] C x = 2 φ φ φ φ φ φ 2 2 φ φ 3 2 φ 4 2 C z = 2 φ φ φ φ φ 5 [ ] 2 2Re φ 5 2 φ 3 φ 4 Σ = 2 φ φ φ φ φ 5 2, () Helicity Selection Rule C z = 0!
64 Conclusion and Outlook - High Energy Photodisintegration of Few Nucleon System may eventually rovide a framework of robing the QCD structure of NN force - Hard Rescattering Mechanism reresents one such examle - disintegration data are crucial for verifying the validity of the HR mechanism New Venues - Hard disintegration into Delta airs σ(γd ++ ) σ(γd n) A(NN ++ ) A(NN NN) 2 - Hard Disintegraion into Strange Baryons
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28
L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Andreas Peters Regensburg Universtity
Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
NN scattering formulations without partial-wave decomposition
NN scattering formulations without partial-wave decomposition Departemen Fisika, Universitas Indonesia, Depok 644, Indonesia E-mail: imam.fachruddin@sci.ui.ac.id Agus Salam Departemen Fisika, Universitas
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1
EPS-HEP 5 DOUBLE-SCTTERING MECHNISM OF PRODUCTION OF TWO MESONS IN ULTRPERIPHERL, ULTRRELTIISTIC HEY ION COLLISIONS ntoni Szczurek, Mariola Kłusek-Gawenda Institute of Nuclear Physics PN Kraków University
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Iterative Monte Carlo analysis of spin-dependent parton distributions
Iterative Monte Carlo analysis of spin-dependent parton distributions (arxiv:6.7782) Nobuo Sato In Collaboration with: W. Melnitchouk, S. E. Kuhn, J. J. Ethier, A. Accardi Next Generation Nuclear Physics
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
AdS black disk model for small-x DIS
AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns
Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΟΥ ΠΑΡΚΟΥ ΜΕ ΟΙΚΙΣΚΟΥΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕΣΗΣ ΤΑΣΗΣ STUDY PHOTOVOLTAIC PARK WITH SUBSTATIONS
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Universidade Cruzeiro do Sul. e Tecnológicas - CETEC. Light-Cone QCD, and Nonpertubative Hadrons Physics. Electromagnetic Current of a Composed
. Universidade Cruzeiro do Sul Centro de Ciências Exatas e Tecnológicas - CETEC Light-Cone QCD, and Nonpertubative Hadrons Physics Electromagnetic Current of a Composed Vector Particle in the Light-Front
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.
Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Προστασία ηλεκτροδίων
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.