SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK
|
|
- Κύμα Κοντολέων
- 6 χρόνια πριν
- Προβολές:
Transcript
1 SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK
2 STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β) i E α+β = (α+β) i NE α+β. Becuse the nonzero weights uniquely specify the sttes for the djoint representtion up to normliztion fctor it suffices to show tht [E α, E β ] hs root vector α + β. Indeed, since E α E β = [E α, E β ] nd H i E α E β = [H i, E α ] E β + E α H i E β = α i E α E β + E α β i E β = (α + β) i E α E β, we see tht H i [E α, E β ] = (α + β) i [E α, E β ]. Hence [E α, E β ] = NE α+β. If α + β is not root, then N = 0. 6.B. Suppose [E α, E β ] = NE α+β. By 6.A, we lso hve [E α, E α β ] = N E β nd [E β, E α β ] = N E α for some N nd N. Using the Jcoi identity nd [E γ, E γ ] = γ H, we otin 0 = [E α, [E β, E α β ]] + [E β, [E α β, E α ]] + [E α β, [E α, E β ]] = [E α, N E α ] + [E β, N E β ] + [E α β, NE α+β ] = N α H N β H N(α + β) H = ((N N)α (N + N)β) H. Since α nd β re linerly independent, nd the genertors H i (components of H) re linerly independent, it follows tht N = N nd N = N. Therefore, [E β, E α β ] = NE α nd [E α, E α β ] = NE β. 6.C. Tke H = σ 3 = dig(,,, ) nd H = σ 3 τ 3 = dig(,,, ). For the four dimensionl representtion, the sttes nd ssocited weights vectors re clerly (, 0, 0, 0) T with weight (, ) (0,, 0, 0) T with weight (, ) (0, 0,, 0) T with weight (, ) (0, 0, 0, ) T with weight (, ). The weights of the djoint representtion re the differences of these weights, long with the two elements of the Crtn sulger. The distinct differences, up to sign, re (, ) (, ) = (0, ), (, ) (, ) = (, ), (, ) (, ) = (, 0), nd (, ) (, ) = (, ), so the roots re (0, 0), (0, 0), (0, ), (, ), (, 0), (, ), (0, ), (, ), (, 0), (, ). H H
3 SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI 3 Chpter 8 Solutions 8.A. The simple roots re the positive roots tht cnnot e written s the sum of other positive roots, nmely α = (0, ) nd α = (, ). Roots (, 0) nd (, ) re not simple ecuse (, 0) = (, ) + (0, ) nd (, ) = (, ) + (0, ). The fundmentl weights µ j re defined y The fundmentl weights re therefore α j µ k α j = δ jk. µ = (, ) nd µ = (, 0) since (0, ) µ (, ) µ (0, ) = (, ) = nd The ngle etween α nd α is (, ) µ (0, ) µ (, ) = (0, ) = 0. cos θ α α = α α (0, ) (, ) α α = (0, ) (, ) = = θ α α = 35. The Dynkin digrm for the lger is thus the following. 8.B. We my chnge sis nd consider the following six genertors for the lger: 0 0 J = σ + σ η = K = σ σ η = 0 0 J = σ + σ η J 3 = σ 3 + σ 3 η = = We esily clculte tht 0 0 i i 0 0 i i i i 0 0 i i K = σ σ η K 3 = σ 3 σ 3 η = = [J i, J j ] = iε ijk J k, [K i, K j ] = iε ijk K k, [J i, K j ] = 0. Now tke J 3 nd K 3 s the Crtn genertors nd 0 0 J + = J + ij = 0 0 J = J ij = K + = K + ik = K = K ik = i i 0 0 i i i i 0 0 i i
4 STEPHEN HANCOCK s the other four genertors for the djoint representtion. We hve [J 3, J ± ] = ±J ±, [K 3, J ± ] = 0, [J 3, K ± ] = 0, [K 3, K ± ] = ±K ±. The six root vectors re therefore J 3 with root (0, 0) J + with root (, 0) J with root (, 0) K 3 with root (0, 0) K + with root (0, ) K with root (0, ). We should lso hve [J +, J ] = (, 0) (J 3, K 3 ) = J 3 nd [K +, K ] = (0, ) (J 3, K 3 ) = K 3, nd it is esily checked tht these re stisfied. K 3 J 3 Both {J, J, J 3 } nd {K, K, K 3 } re nontrivil invrint sulgers, nd thus the lger is not simple. The commuttion reltions show tht the group generted is in fct SU() SU(), nd thus there re no nontrivil elin sugroups nd the group is semisimple. The simple roots re α = (, 0) nd α = (0, ). These re orthogonl, i.e., θ α α = 90, nd so the Dynkin digrm is s follows. 8.C. We re given α =, α =, α 3 =, nd the Dynkin digrm elow. Using Georgi s convention, the Crtn mtrix is defined y A ji = αj α i. α i It follows tht α i A ji = α j A ij nd A ji A ij = cos θ α i α j. Note tht for i j, cos θ α i α j is the numer of lines etween αi nd α j in the Dynkin digrm. Clerly A = A = A 33 = nd A 3 = A 3 = 0. The ove reltions give A /A = A A = nd A 3 /A 3 = A 3 A 3 =, with nonpositive solution A =, A =, A 3 =, A 3 =. The Crtn mtrix is 0. 0
5 SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI 5 Chpter Solutions.A. Using the method discussed in the text, we clculte Cnceling columns with 3 oxes (fctors of ε), we hve shown = or (, ) (, ) = (, ) (5, 0) (, 3) (3, ) (3, ) (0, ) (, ) (, ) (, 0) (0, ). In terms of the corresponding dimensionlities, we cn write this s 5 5 = , where we hve defined 5 (, ) nd 5 (, 0). We use the following procedure to determine which representtions pper symmetriclly in the product nd which pper ntisymmtriclly. Trnspositions in rows contriute fctor of +,
6 6 STEPHEN HANCOCK while trnspositions in columns contriute fctor of. It follows tht or c c c d c c c d c c c d c c c d c c c d 3.E. We clculte + c c c d c c c d c c c d + c c c d c c d c c c c d c c c d c c c d c c c d c c c d + c c c d + + [(, ) (, )] S = (, ) (3, ) (0, ) (, ) (0, ) [(, ) (, )] AS = (5, 0) (, 3) (3, ) (, ) (, 0) [5 5] S = 60 S 5 S 5 3 [5 5] AS = AS 5 AS 6. Chpter 3 Solutions = so tht [] [, ] = [,, ] [3, ]. Using the fctors over hooks rule, we hve nd D([] [, ]) = D[] D[, ] = D([,, ] [3, ]) = D[,, ] + D[3, ] = = N(N )(N + + N ) 8 N(N ) N(N + ) N(N + )(N + )(N ) = N(N )(N) 8 c c c d c c d c c c c d c c c d = N (N ) N(N + )(N )(N ) + = N (N ). Thus D([] [, ]) = D([,, ] [3, ]), nd the dimensions check out for ritrry N. Chpter 9 Solutions 9.A. We must check tht the elements σ, τ, η, nd σ τ η c close under commuttion. Clerly nd we know tht [σ, τ ] = [τ, η ] = [η, σ ] = 0, [σ, σ ] = iε c σ c, [τ, τ ] = iε c τ c, [η, η ] = iε c η c.
7 SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI 7 Next, we hve Finlly, [σ, σ τ c η d ] = [σ, σ ]τ c η d = iε e σ e τ c η d [τ, σ τ c η d ] = [τ, τ c ]η d σ = iε ce σ τ e η d [η, σ τ c η d ] = [η, η d ]σ τ c = iε de σ τ c η e. [σ τ η c, σ d τ e η f ] = [σ, σ d ]τ e τ η f η c + [τ, τ e ]η f η c σ σ d + [η c, η f ]σ σ d τ τ e = iε dg σ g (δ e iε eh τ h )(δ cf iε cfi η i ) + iε eh τ h (δ cf iε cfi η i )(δ d + iε dg σ g ) + iε cfi η i (δ d + iε dg σ g )(δ e + iε eh τ h ) = iδ e δ cf ε dg σ g + δ e ε cfi ε dg η i σ g + δ cf ε dg ε eh σ g τ h iε dg ε eh ε cfi σ g τ h η i + iδ cf δ d ε eh τ h δ cf ε dg ε eh σ g τ h + δ d ε eh ε cfi τ h η i + iε dg ε eh ε cfi σ g τ h η i + iδ d δ e ε cfi η i δ d ε eh ε cfi τ h η i δ e ε cfi ε dg η i σ g iε dg ε eh ε cfi σ g τ h η i = iδ e δ cf ε dg σ g + iδ cf δ d ε eh τ h + iδ d δ e ε cfi η i iε dg ε eh ε cfi σ g τ h η i. The terms lying outside the given set of mtrices cnceled! So we see tht the lger is closed, i.e., the 36 mtrices form Lie lger. Tke the Crtn genertors to e σ 3 = H = dig(,,,,,,, ) τ 3 = H = dig(,,,,,,, ) η 3 = H 3 = dig(,,,,,,, ) σ 3 τ 3 η 3 = H = dig(,,,,,,, ). The weights of the defining representtion re therefore ν = (,,, ), ν = (,,, ), ν 3 = (,,, ), ν = (,,, ), ν 5 = (,,, ), ν 6 = (,,, ), ν 7 = (,,, ), ν 8 = (,,, ). Noting tht ν 5 = ν, ν 6 = ν 3, ν 7 = ν, nd ν 8 = ν, ll differences of weights long with the four elements of the Crtn sulger re 0, 0, 0, 0, ±ν, ±ν, ±ν 3, ±ν, ±(ν + ν ), ±(ν ν ), ±(ν + ν 3 ), ±(ν ν 3 ), ±(ν + ν ), ±(ν ν ), ±(ν + ν 3 ), ±(ν ν 3 ), ±(ν + ν ), ±(ν ν ), ±(ν 3 + ν ), ±(ν 3 ν ). These re the 36 roots. Explicitly, they re (0, 0, 0, 0), (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0), ±(,,, ), ±(,,, ) ±(,,, ) ±(,,, ), ±(,, 0, 0), ±(0, 0,, ), ±(, 0,, 0), ±(0,, 0, ), ±(, 0, 0, ), ±(0,,, 0), ±(, 0, 0, ) ±(0,,, 0), ±(, 0,, 0), ±(0,, 0, ), ±(,, 0, 0), ±(0, 0,, ). We cn check this y finding eigen-genertors of the Crtn genertors under commuttion. Let σ ± = (σ ±iσ )/, τ ± = (τ ±iτ )/, nd η ± = (η ±iη )/. We chnge sis nd consider
8 8 STEPHEN HANCOCK the 3 genertors σ ± ± σ ± τ 3 η 3, τ ± ± σ 3 τ ± η 3, η ± ± σ 3 τ 3 η ±, σ ± τ ± η 3, σ ± τ 3 η ±, σ 3 τ ± η ±, σ ± τ ± η ±, long with our originl Crtn genertors. We find tht [H i, H j ] = α i H j where α = (0, 0, 0, 0) [H i, σ ± ± σ ± τ 3 η 3 ] = α i (σ ± ± σ ± τ 3 η 3 ) where α = (±, 0, 0, ±± ) [H i, τ ± ± σ 3 τ ± η 3 ] = α i (τ ± ± σ 3 τ ± η 3 ) where α = (0, ±, 0, ±± ) [H i, η ± ± σ 3 τ 3 η ± ] = α i (η ± ± σ 3 τ 3 η ± ) where α = (0, 0, ±, ±± ) [H i, σ ± τ ± η 3 ] = α i σ ± τ ± η 3 where α = (±, ±, 0, 0) [H i, σ ± τ 3 η ± ] = α i σ ± τ 3 η ± where α = (±, 0, ±, 0) [H i, σ 3 τ ± η ± ] = α i σ 3 τ ± η ± where α = (0, ±, ±, 0) [H i, σ ± τ ± η ± ] = α i σ ± τ ± η ± where α = (±, ±, ±, ±± ± ), which is in greement with the roots listed previously. The simple roots re seen to e α = (0, 0,, ), α = (0,,, 0), α 3 = (0, 0,, ), α = (,,, ) ecuse ll other positive roots cn e written s sums of these. Using cos θ αβ = α β/( α β ), the ngles etween them re θ α α = 0, θ α α 3 = 0, θ α 3 α = 35, with ll other ngles 90. Also note tht α = α = α 3 = nd α = so tht the first three simple roots re of equl length, while α is longer. The Dynkin digrm is therefore This corresponds to the lger Sp(8) = C. Chpter Solutions.A. Georgi constructs the spinor rep genertors in Chpter. We need simply permute indices 3 3 in his definitions to mke them liner comintions of the 0 mtrices given. We therefore let σ ± = (σ 3 ± iσ )/ nd τ ± = (τ 3 ± iτ )/. The Crtn genertors re σ = H nd τ = H, or explicitly σ = H = 0 0 i i i i 0 0 τ = H = 0 i 0 0 i i 0 0 i 0.
9 SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI 9 The genertors corresponding to the roots re σ ±, σ τ ±, nd σ ±τ ±, or explicitly 0 i 0 0 i 0 σ + = 0 0 i i 0 0 σ = 0 0 i i i 0 0 i 0 σ τ + = σ +τ + = 8 σ +τ = 8 It is esily checked tht Tht is, the roots re 0 0 i 0 0 i i 0 0 i 0 0 i i i i i i i i i i i i i i i i σ τ = σ τ + = 8 σ τ = 8 [H i, H j ] = α i H j where α = (0, 0) [H i, σ ±] = α i ( σ ±) where α = (±, 0) [H i, σ τ ± ] = α i ( σ τ ± ) where α = (0, ±) [H i, σ ±τ ± ] = α i ( σ ±τ ± ) where α = (±, ± ). 0 0 i 0 0 i i 0 0 i 0 0 i i i i i i i i i i i i i i i i (0, 0), (0, 0), (, 0), (0, ), (, 0), (0, ), (, ), (, ), (, ), (, ), which defines the spinor rep. We now check tht the genertors ct on the sttes s expected. Tke = ( ) ( ) = i i i i = ( ) ( ) = i i = ( ) ( ) = i i i i These re simultneous eigenvectors of H nd H. We find tht σ + = σ + = σ = σ = σ τ + = σ τ + = σ τ = σ τ = = ( ) ( ) = i i. i i i i. σ +τ + = σ +τ = σ τ + = σ τ =,
10 0 STEPHEN HANCOCK while ny other comintion gives 0, s expected for the spinor rep. The simple roots re α = (0, ) nd α = (, ). Note tht θ α α = 35 nd α > α, yielding the following Dynkin digrm corresponding to SO(5). Following Georgi, the mtrix R is R = σ τ 3 = It is trivil to check tht R = R nd tht T = RT R for ech genertor T..
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραOscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
Διαβάστε περισσότεραSrednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Διαβάστε περισσότεραΣχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραTo find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.
Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραLecture 10 - Representation Theory III: Theory of Weights
Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ
Διαβάστε περισσότεραw o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Διαβάστε περισσότεραSolutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότερα( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραIf ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
Διαβάστε περισσότεραLecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότερα= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραProblem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Διαβάστε περισσότεραSolutions_3. 1 Exercise Exercise January 26, 2017
s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραCHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότερα2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Διαβάστε περισσότεραJesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Διαβάστε περισσότεραNotes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Διαβάστε περισσότεραOrbital angular momentum and the spherical harmonics
Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined
Διαβάστε περισσότεραQuadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Διαβάστε περισσότερα2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Διαβάστε περισσότεραConcrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραg-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Διαβάστε περισσότεραPhysics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.
Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,
Διαβάστε περισσότεραORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραCHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Διαβάστε περισσότεραTutorial problem set 6,
GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant
Διαβάστε περισσότεραforms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Διαβάστε περισσότεραStrain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραMATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Διαβάστε περισσότεραCHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Διαβάστε περισσότεραLecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Διαβάστε περισσότεραENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13
ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραSOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
Διαβάστε περισσότεραA Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Διαβάστε περισσότεραDifferentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Διαβάστε περισσότεραDESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Διαβάστε περισσότερα3.2 Simple Roots and Weyl Group
44 CHAPTER 3. ROOT SYSTEMS 3.2 Simple Roots and Weyl Group In this section, we fix a root system Φ of rank l in a euclidean space E, with Weyl group W. 3.2.1 Bases and Weyl chambers Def. A subset of Φ
Διαβάστε περισσότεραQuantum Field Theory Example Sheet 1, Michælmas 2005
Quntum Field Theory Exmple Sheet 1, Michælms 25 Jcob Lewis Bourjily 1. A string of length with mss per unit length σ under tension T with fixed endpoints is described by the Lgrngin ( 2 1 y L = dx 2 σ
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότεραb. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Διαβάστε περισσότεραTrigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Διαβάστε περισσότεραLecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function
Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function March 22, 2013 References: A. Knapp, Lie Groups Beyond an Introduction. Ch V Fulton-Harris, Representation
Διαβάστε περισσότεραNowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραSCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότεραDIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραMath 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Διαβάστε περισσότεραOn a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραTridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραMATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότεραTrigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Διαβάστε περισσότεραAffine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
Διαβάστε περισσότεραParametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Διαβάστε περισσότερα