(RHP notes, revised and corrected; Notes added in September 02 by LMB; last on 10:00pm September 30, 2002 by LMB and RHP)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(RHP notes, revised and corrected; Notes added in September 02 by LMB; last on 10:00pm September 30, 2002 by LMB and RHP)"

Transcript

1 ~rprice/area51/documents/3droswell.pdf 3D ROSWELL COORDINATES FOR TWO CENTERS RHP notes, revised and corrected; Notes added in September 2 by LMB; last on 1:pm September 3, 22 by LMB and RHP) I. Definitions of coordinates To create 3D Roswell coordinates, we introduce a third Roswell coordinate Φ. This is an azimuthal coordinate, ranging from to 2π, whose axis is the line between the Roswell centers. This is illustrated in Fig. a). χ =2 Φ= z Y y X Θ=.8 a) b) x Z We will need a disturbingly large number of coordinate systems due to the importance of two different axes: the line through the centers, and the rotation axes of the objects. We define the following coordinates: Name Symbols Character 3D Roswell coordinates χ, Θ, Φ Conform to centers Roswell-related Cartesians X, Y, Z The Z axis goes through the centers. Roswell-related Sphericals r, θ, φ Spherical polar coords related to X, Y, Z Ordinary Cartesians x, y, z The z axis is the rotation axis. Ordinary Sphericals r, θ, ϕ Spherical polar coords related to x, y, z. The two sets of Cartesians are illustrated in part b) of the figure. The ordinary Cartesians and Sphericals will be important for expressing the symmetry of the periodic solution; they will also be important for multipole structure of the radiation. The Roswell coordinates will be important because the solution will have very little multipole structure, in terms of these coordinates, in the nonlinear strong-field region near the centers. Note that multipoles in terms of θ, ϕ, and multipoles in terms of θ, φ are easily expressed in terms of each other through the use of the addition theorem of Spherical harmonics. This means that it will be relatively simple to work in Roswells, and to impose standing wave boundary conditions in terms of ordinary multipoles. 1

2 For definiteness, we present here the relations among the coordinates. Roswell-related Cartesians in terms of 3D Roswells: 1 Z = a χ 2 cos 2Θ + a 4 + 2a 2 χ 2 cos 2Θ + χ 4 ) 1) 1 X = a 2 2 χ 2 cos 2Θ + a 4 + 2a 2 χ 2 cos 2Θ + χ 4 ) cos Φ 2) 1 Y = a 2 2 χ 2 cos 2Θ + a 4 + 2a 2 χ 2 cos 2Θ + χ 4 ) sin Φ 3) 3D Roswells in terms of Roswell-related Cartesians: χ = r 1 r 2 = { Z a) 2 + X 2 + Y 2 Z + a) 2 + X 2 + Y 2} 1/4 Θ = 1 2 θ 1 + θ 2 ) = 1 ) 2Z X2 + Y 2 2 tan 1 Z 2 a 2 X 2 Y 2 Φ = tan 1 Y/X) 6) Ordinary Cartesians in terms of Roswell-related Cartesians and vice versa: Roswell-related Sphericals in terms of Roswell-related Cartesians: Z = x X = y Y = z 7) r = X 2 + Y 2 + Z 2 θ = tan 1 X2 + Y 2 /Z ) φ = tan 1 Y/X) 8) Roswell-related Cartesians in terms of Roswell-related Sphericals: Z = r cos θ X = r sin θ cos φ y = r sin θ sin φ 9) 4) 5) Ordinary Sphericals in terms of Ordinary Cartesians: ) r = x 2 + y 2 + z 2 θ = tan 1 x 2 + y 2 /z ϕ = tan 1 y/x) 1) Ordinary Cartesians in terms of Ordinary Sphericals: z = r cos θ x = r sin θ cos ϕ y = r sin θ sin ϕ 11) Relationship of Roswell-related Sphericals and Ordinary Sphericals: Of course, r = r. The relationship of { θ, φ} and {θ, ϕ} is given implicitly by Eqs. 7) 11). 2

3 II. 3D Wave equation in 3D Roswell coordinates Our scalar function has the form Ψr, θ, ϕ = φ Ωt). In these coordinates, the wave equation is simplified with the replacement As in the 2D case, we also have in the 3D case LΨ = 2 Ψ 1 c 2 2 Ψ t = 12) t = Ω ϕ. 13) ϕ = x y y x. 14) It is trivial to re-express this, in terms of the Roswell-related Cartesians, as so that the wave equation, with the symmetry embodied in it, becomes ϕ = Z X X Z, 15) LΨ = 2 Ψ Ω 2 1 Z c 2 X X ) 2 Ψ =. 16) Z The 2 part can easily be expressed in terms of the Roswell-related coordinates, so that our wave equation becomes LΨ = 2 Ψ X + 2 Ψ 2 Y + 2 Ψ 2 Z 1 2 Ω2 Z c 2 X X ) 2 Ψ =. 17) Z Equations 1) 6) can now be used to express the wave equation entirely in terms of the 3D Roswell coordinates. III. Simplifying the wave equation In terms of the Roswell coordinates, the wave equation can be written LΨ = A χχ 2 Ψ χ 2 + A ΘΘ 2 Ψ Θ 2 + A ΦΦ 2 Ψ Φ 2 + 2A χθ +B χ Ψ χ + B Θ Ψ Θ + B Φ 2 Ψ χ Θ + 2A χφ 2 Ψ χ Φ + 2A ΘΦ 2 Ψ Θ Φ Ψ Φ. 18) 3

4 The Laplacian is written as where 2 χ ) 2 χ X χ + 2 χ Z 2 and so forth. We write the rotational term as = Āχχ 2 Ψ = Ψ, χχ χ ) 2 + Ψ,ΘΘ Θ ) 2 + Ψ,ΦΦ Φ ) 2 +2Ψ, χθ Θ χ ) + 2Ψ,χΘ Θ χ ) + 2Ψ,χΘ Θ χ ) 2 Ψ χ 2 + ĀΘΘ In terms of this notation, we have +Ψ χ 2 χ + Ψ Θ 2 Θ + Ψ Φ 2 Φ, 19) χ ) Θ ) χ X ) ) Θ + X 2 Ψ ϕ = Z 2 X X ) 2 Ψ Z 2 Ψ Θ 2 + ĀΦΦ 2 Ψ Φ 2 + 2ĀχΘ 2 Ψ χθ + 2ĀχΦ χ Y ) ) Θ + Y 2 Ψ χφ + 2ĀΘΦ χ Z 2 Ψ ΘΦ ) ) Θ Z + B χ Ψ χ + B Θ Ψ Θ + B Φ Ψ Φ. 2) A χχ = ) χ 2 Ω 2 c 2 Āχχ 21) A ΘΘ = ) Θ 2 Ω 2 c 2 ĀΘΘ 22) A ΦΦ = ) Φ 2 Ω 2 c 2 ĀΦΦ 23) A χθ = ) ) χ Θ Ω 2 c 2 ĀχΘ 24) A χφ = ) ) χ Φ Ω 2 c 2 ĀχΦ 25) A ΘΦ = Θ ) Φ ) Ω 2 c 2 ĀΘΦ 26) B χ = 2 χ ) Ω2 c 2 B χ 27) B Θ = 2 Θ ) Ω2 c 2 B Θ 28) B Φ = 2 Φ ) Ω2 c 2 B Φ. 29) 4

5 The dot products of the gradients are zero, since the coordinates are orthogonal. Furthermore as was checked with maple) the Φ coordinate is harmonic. We are thus left with a slightly simplified set of equations: IV. Explicit expressions for the wave equation A χχ = ) χ 2 Ω 2 c 2 Āχχ 3) A ΘΘ = ) Θ 2 Ω 2 c 2 ĀΘΘ 31) A ΦΦ = ) Φ 2 Ω 2 c 2 ĀΦΦ 32) A χθ = Ω2 c 2 ĀχΘ 33) A χφ = Ω2 c 2 ĀχΦ 34) A ΘΦ = Ω2 c 2 ĀΘΦ 35) B χ = 2 χ ) Ω2 c 2 B χ 36) B Θ = 2 Θ ) Ω2 c 2 B Θ 37) B Φ = Ω2 c 2 B Φ. 38) In explicit computations it is useful, as in the 2D case, to use the expression: Q With Maple we find the following expressions: a 4 + 2a 2 χ 2 cos 2Θ + χ 4 39) 2 χ = a2 + 2Q 4) χ 3 Q + a 2 + χ 2 cos2 Θ) 2 Q a 2 ) Θ = 41) Q a 2 χ 2 cos2 Θ) χ 4 2 Φ = 42) 5

6 χ χ = Q χ 2 43) Θ Θ = Q χ 4 44) Φ Φ = 2 Q + a2 + χ 2 cos2 Θ) χ 4 sin 2 2 Θ) The Ā and B terms are computed from the following: ) 2 ) 2 ) ) χ χ χ χ Ā χχ = Z 2 + X 2 2XZ X Z X Z ) 2 ) 2 ) ) Θ Θ Θ Θ Ā ΘΘ = Z 2 + X 2 2XZ X Z X Z ) 2 ) 2 ) ) Φ Φ Φ Φ Ā ΦΦ = Z 2 + X 2 2XZ X Z X Z ) ) ) ) ) ) ) ) χ Θ χ Θ χ Θ χ Θ Ā χθ = Z 2 + X 2 XZ + X X Z Z Z X X Z ) ) ) ) ) ) ) ) χ Φ χ Φ χ Φ χ Φ Ā χφ = Z 2 + X 2 XZ + X X Z Z Z X X Z ) ) ) ) ) ) ) ) Θ Φ Θ Φ Θ Φ Θ Φ Ā ΘΦ = Z 2 + X 2 XZ + X X Z Z Z X X Z B χ = Z 2 2 ) χ + X 2 2 ) χ 2 ) ) ) χ χ χ 2XZ X Z X 2 Z 2 X Z X Z B Θ = Z 2 2 ) Θ + X 2 2 ) Θ 2 ) ) ) Θ Θ Θ 2XZ X Z X 2 Z 2 X Z X Z B Φ = Z 2 2 ) Φ + X 2 2 ) Φ 2 ) ) ) Φ Φ Φ 2XZ X Z X 2 Z 2 X Z X Z 45) 46) 47) 48) 49) 5) 51) 52) 53) 54) 6

7 From Maple we find: Ā χχ = a4 sin 2 2Θ) cos 2 Φ χ 2 corrected Feb 12) 55) Ā ΘΘ = cos2 Φ χ 2 + a 2 cos2θ) 2 χ 4 ; 56) Ā ΦΦ = sin 2 Φ Q + a2 + χ 2 cos2θ) Q a 2 χ 2 cos2θ) 57) Ā χθ = a2 χ 2 + a 2 cos2θ) sin2θ) cos 2 Φ χ 3 58) Ā χφ = a2 Q + a 2 + χ 2 cos2θ) sin Φ cos Φ χ 3 59) Ā ΘΦ = sinφ) cosφ) a2 + χ 2 cos2 Θ) + Q χ 2 + a 2 cos2 Θ) χ 4 sin2 Θ) 6) B χ = a2 cos 2 Φ) {3a 2 cos 2 2Θ) Q 2a 2 + χ 2 cos2θ)} + Q + a 2 + χ 2 cos2θ) χ 3 61) B Θ = Q + a 2 + χ 2 cos2θ) χ 6 Q a 2 χ 2 cos2θ) c cos2 Φ + d) 62) where c a 2 χ 4 cos2 Θ) + 2 a 4 χ a 6 cos2 Θ) + 4 a 4 χ 2 cos2 Θ)) 2 4 a 4 Q cos2 Θ) 2 a 2 Qχ 2 χ 6 63) d χ 4 a 2 cos2 Θ) + χ 2) 64) B Φ = 3Q + a2 + χ 2 cos 2Θ) sinφ) cosφ) Q a 2 χ 2 cos 2Θ 65) V. Choice of weight function In the 3D case, we write our spectral expansion as Ψχ, Θ, Φ) = lm a lm χ) Y lm Θ, Φ), 66) 7

8 and we substitute it in the wave equation 18) to get LΨ = lm 2 a lm χ 2 A χχ Y lm + a lm χ) + a lm χ A ΘΘ 2 Y lm Θ 2 + A ΦΦ 2 Y lm Φ 2 Y lm 2A χθ Θ + 2A Y lm χφ Φ + B χy lm 2 Y lm + 2A ΘΦ Θ Φ + B Y lm Θ Θ + B Y lm Φ Φ. 67) We know must consider how to project out the multipole equations. We note that the flat 3D metric in Roswell coordinates is ds 2 = χ2 Q dχ2 + χ4 Q dθ Note the limits. For χ a, Q χ 2 and the metric becomes For χ q, Q a 2 and the metric becomes χ 4 sin 2 2Θ) Q + a 2 + χ 2 cos 2Θ) dφ2. 68) ds 2 = + χ 2 dθ 2 + χ 2 sin 2 Θ) dφ 2. 69) ds 2 = χ2 a 2 dχ2 + χ4 a 2 dθ2 + χ4 sin 2 2Θ) 4a 2 dφ 2. 7) This last expression is the metric in spherical coordinates r, θ, Φ if we interpret χ = 2ar and Θ = θ/2. We want the extraction of multipoles to correspond to the spherical coordinates at both limits, so we choose to project with 2π dθ dφ g 71) Since the factors of χ don t matter, we choose them for convenience, and end up with the following projection 2π dθ dφ χ3 Q We multiply Eq. 67) by the weight factor sin 2Θ) 2Q + a 2 + χ 2 cos 2Θ)). 72) W χ, Θ) = χ3 Q sin 2Θ) 2Q + a 2 + χ 2 cos 2Θ)) = χ Q a2 χ 2 cos 2Θ) Q 2. 73) The second form on the right is better since it has no branch ambiguities. Note also, that the square root in that expression is X 2 + Y 2. 8

9 The weight function in Eq. 73) is inconvenient. It destroys the ability we had in 2D to relate all integrals to Legendre complete elliptic integrals. On the other hand it has some important or crucial features: i) It vanishes at Θ = π/2 when χ a, but does not vanish for Θ = π/2 when χ > a. ii) It reduces to the appropriate weight function for spherical harmonics in the χ >> a limit. Property i) is important because it means that the integration over the surface of the hole is not singular at the axis. Property ii), of course, is crucial. It does not appear possible at this point to construct an analytically simple replacement for W that has these properties. What we can do is to choose how much of the Q factor to put into our weight expressions. In the 2D case, the choice of the weight function had a clear motivation: it achieved a good separation of the highest derivatives of the multipoles; there is complete separation for Ω. We cannot do that in 3D, so the motivation is gone. The second χ derivatives will couple, but only in the transition region. This is obvious physically, since the coordinates go over to sphericals in both limits. It is also obvious in the details of Q. Both near the holes and far from the holes, Q is angle independent. For simplicity, and simplification of the integrals, we first on March 13) choose to have no factors of Q and to use the weight function Q a2 χ W χ, Θ) = 2 cos 2Θ). 74) 2 On March 13, there are vague reasons to think that this is not the best choice. The factor Q vanishes at the trouble point, the midpoint between the holes. We might want to have that Q in the denominator to increase the first term... the Ω-free term... in A χχ relative to the Ω term that strongly couples modes. We will start, on March 13, with the simplest case. We will take the weight function of Eq. 74) and we will set Ω =. VI. Coefficients The next step is to multiply by W χ, Θ) and by Y l m, and to integrate over Θ and Π. The result is our multipole equations where α l m lm = β l m lm = γ l m lm = 2π 2π 2π dφ dφ lm 2 a lm χ) a lm χ) α l m lm + β χ 2 l m lma lm χ) + γ l m lm χ dθ W χ, Θ) Y l m Θ, Φ)A χχy lm Θ, Φ) dθ W χ, Θ) Yl m Θ, Φ) 2 Y lm 2 Y lm A ΘΘ + A Θ 2 ΦΦ Φ 2 π dφ dθ W χ, Θ) Yl m Θ, Φ) Y lm 2A χθ Θ + 2A Y lm χφ Φ + B χy lm 9 =, 75) 2 Y lm + 2A ΘΦ Φ Θ + B Θ Y lm Θ + B Φ Y lm Φ. 76)

10 Note that the coefficients inherit all the symmetries that come from the relationship Thus, for example, α l, m,l, m = α l,m,l,m. Y lm θ, φ) = 1) m Ylm θ, φ). 77) VII. Explicit standing wave expressions for monopole and quadrupole, in the case Ω = For notational clarity, minuses are indicated as overbars. Integrals for l, m =, : We use a superscript N here to denote nonrotating. α N = 1 /2 QW dθ 78) χ 2 α N 2 = 5 2χ 2 /2 3 cos 2 Θ 1)QW dθ 79) β = β 2 = β 2 = β 2 2 = 8) γ N = 1 /2 a 2 + 2Q ) W dθ 81) χ 3 γ N 2 = 5 2χ 3 /2 a 2 + 2Q ) 3 cos 2 Θ 1)W dθ Corrected 1/χ 2 1/χ 3 ) March 29 82) γ N 22 = γ N 2 2 =. 83) Integrals for l, m = 2, : β N 2 = 3 5 2χ 4 /2 α N 2 = α N 2 = 5 2χ 2 /2 3 cos 2 Θ 1)QW dθ. 84) α22 N = 5 /2 3 cos 2 Θ 1) 2 QW dθ. 85) 4χ 2 α N 222 = αn 2 22 =. 86) Q + a χ 2 cos 2Θ) cos 2Θ) Q + Q a 2 χ 2 cos 2Θ) Q a2 ) sin 2Θ) W dθ 87) 1

11 β N 22 = 15 4χ 4 /2 Q + a χ 2 cos 2Θ) cos 2Θ) Q + Q a 2 χ 2 cos 2Θ) Q a2 ) sin 2Θ) 3 cos 2 Θ 1)W dθ 88) Integrals for l, m = 2, 2: γ N 2 = 5 2χ 3 γ N 22 = 5 4χ 3 /2 /2 β N 222 = β N 2 22 =. 89) a 2 + 2Q ) 3 cos 2 Θ 1) W dθ 9) a 2 + 2Q ) 3 cos 2 Θ 1) 2 W dθ 91) γ N 222 = γ N 2 22 =. 92) α N 22 = αn 222 = αn =. 93) α2222 N = 15 /2 Q W sin 4 Θ dθ corrected March 18) 94) 8χ 2 β2222 N = 15 π/2 2Q cos 2Θ) 8 Q + a2 + χ 2 cos 2Θ) 8χ 4 sin 2 2Θ) β N 22 = β N 222 = β N =. 95) sin 2 Θ corrected March 2) Q + a 2 + χ 2 cos 2Θ) + Q a 2 χ 2 cos 2Θ) Q a2 ) sin 2Θ) sin 2 Θ W dθ 96) γ N 2222 = 15 8χ 3 γ N 22 = γ N 222 = γ N =. 97) /2 a 2 + 2Q ) sin 4 Θ W dθ 98) Integrals for l, m = 2, 2: These follow from the symmetry of the coefficients. In particular, all coefficients are zero except 11

12 α N = αn 2222 β N = βn 2222 γ N = γn ) VIII. Expressions for Ω 2 mode computation; checked by Lior and Maria, April 9 All the coefficients will be written as sums of the Ω-independent part and a part that is multiplied by Ω 2. Thus we write α l m lm as α l m lm = αl N m lm Ω2 αl Ω m lm. 1) Here the superscript N denotes the part for Ω =, i.e., the nonrotating contributions that are given in the previous section. Integrals for l =, m = : α Ω = 2 a4 χ 2 α Ω 2 = 5 a 4 χ 2 /2 /2 sin 2 Θ cos 2 Θ W dθ 11) 3 cos 2 Θ 1) sin 2 Θ cos 2 Θ W dθ 12) β Ω = βω 2 =. 13) γ Ω = a2 2 χ 3 /2 3a 2 cos 2 2Θ + Q + 3χ 2 cos 2Θ ) W dθ. 14) γ Ω 2 = 5 4 Integrals for l = 2, m = : a 2 /2 3 cos 2 Θ 1) 3a 2 cos 2 2Θ + Q + 3χ 2 cos 2Θ ) W dθ. 15) χ 3 α Ω 2 = 5 a 4 χ 2 /2 3 cos 2 Θ 1) sin 2 Θ cos 2 Θ W dθ 16) α22 Ω = 5 a4 π/2 3 cos 2 Θ 1) 2 sin 2 Θ cos 2 Θ W dθ 17) 2 χ 2 12

13 + sin 2Θ χ 6 β2 Ω = 3 5 π/2 {2 cos 2Θ χ2 + a 2 cos 2Θ) 2 4 χ 4 Q + a 2 + χ 2 cos 2Θ) Q a 2 χ 2 cos 2Θ) 2a 4 χ 2 + χ 6 + cos 2Θ 4a 6 + 3a 2 χ 4) +4a 4 χ 2 cos 2 2Θ 2a 2 Q χ 2 + 2a 2 cos 2Θ )} W dθ 18) + sin 2Θ χ 6 β Ω 22 = 15 8 /2 Q + a 2 + χ 2 cos 2Θ) Q a 2 χ 2 cos 2Θ) {2 cos 2Θ χ2 + a 2 cos 2Θ) 2 χ 4 2a 4 χ 2 + χ 6 + cos 2Θ 4a 6 + 3a 2 χ 4) +4a 4 χ 2 cos 2 2Θ 2a 2 Q χ 2 + 2a 2 cos 2Θ )} 3 cos 2 Θ 1) W dθ 19) γ2 Ω = a2 5 χ 3 4 /2 { 6 sin 2 2Θ χ 2 + a 2 cos 2Θ ) 3 cos 2 Θ 1) 3a 2 cos 2 2Θ + Q + 3χ 2 cos 2Θ } W dθ 11) γ22 Ω = a2 5 χ 3 8 /2 { 6 sin 2 2Θ χ 2 + a 2 cos 2Θ ) 3 cos 2 Θ 1) 3a 2 cos 2 2Θ + Q + 3χ 2 cos 2Θ } 3 cos 2 Θ 1) W dθ 111) VIII. Nonlinear and multiple-mode code Our starting point is Eq. 18), generalized to read LΨ = A χχ 2 Ψ χ 2 + A ΘΘ 2 Ψ Θ 2 + A ΦΦ +B χ Ψ χ + B Θ 2 Ψ Φ 2 + 2A χθ Ψ Θ + B Φ 13 Ψ Φ 2 Ψ χ Θ + 2A χφ 2 Ψ χ Φ + 2A ΘΦ 2 Ψ Θ Φ = F χ, Θ, Ψ). 112)

14 Here the coefficients A χχ,... B Φ are the same as those for Eq. 18) given in Eqs. 3) 38) and 55) 65). Ψχ, Θ, Φ) = lm a lm χ) Y lm Θ, Φ), 113) and we substitute it in the wave equation 112) to get lm d 2 a lm A χχ Y lm = lm + da lm dχ { a lm χ) A ΘΘ d 2 Y lm dθ 2 + A ΦΦ 2 Y lm Φ 2 } Y lm 2A χθ Θ + 2A Y lm χφ Φ + B χy lm + F χ, Θ, lm 2 Y lm + 2A ΘΦ Θ Φ + B Y lm Θ Θ + B Φ a lm χ) Y lm Θ, Φ) ) Y lm Φ 114). 115) The next step is to multiply by a chosen weight function W χ, Θ) and by Yl m, and to integrate over Θ and Φ. The result is our multipole equations where + da lm dχ lm d 2 a lm χ) α l m lm = R l m χ, a pn, da pn /dχ), 116) 2π α l m lm = dφ dθ W χ, Θ) Y 2π π R l m = dφ dθ W χ, Θ) Yl m Θ, Φ) lm +A ΦΦ 2 Y lm Φ 2 2 Y lm + 2A ΘΦ Θ Φ + B Y lm Θ Y lm 2A χθ Θ + 2A Y lm χφ Φ + B χy lm } l m Θ, Φ)A χχy lm Θ, Φ) 117) { 2 Y lm a lm χ) A ΘΘ Θ 2 Y lm Φ + F Θ + B Φ χ, Θ, lm a lm χ) Y lm Θ, Φ) The equations that we use follow by inverting the equations in 116) in the form ). 118) d 2 a lm χ) = lm α inv lml m R l m χ, a pn, da pn /dχ). 119) These can them be solved with Runge-Kutta or whatever. 14

15 IX. Specific 2 mode linear problem Angular mode for l = 2 As our first problem we consider only two modes. One, of course, is the monopole. The second is the relevant combination of l = 2, m = 2 modes referred to the rotation axis, z. We use the notation θ, ϕ for these angular coordinates. Our l = 2 mode of interest is The normalization is chosen so that Y Y 2,2 θ, ϕ) + Y 2, 2 θ, ϕ) = 1 4 2π sin θdθ dϕ Y 2 ) 2 = π sin2 θ cos 2ϕ. 12) From the relationship of x, y, z and X, Y, Z given in Eq. 7) it is straightforward to show that and hence It is simple to show that sin 2 θ cos 2ϕ = 1 2 Y 2 = π 3 cos 2 Θ 1 ) 1 2 sin2 Θ cos 2Φ 121) 3 cos 2 Θ 1) sin 2 Θ cos 2Φ 122) 3 Y 2 = 2 Y 2,Θ, Φ) 1 1 Y 2,2 Θ, Φ) + Y 2, 2 Θ, Φ), 123) 2 2 but we will use the expression in Eq. 122) in our computations. Note that Y 2 is not single valued at Θ = π/2. Damn!) Equations for 2 modes With our two modes, we now rewrite Eq. 114) as In place of Eq. 116) we now have Ψ = a χ)y + a 2 χ)y ) d 2 a a dχ + a d 2 a = R χ, a, a 2, da /dx, da 2 /dx) 125) d 2 a a 2 dχ + a d 2 a = R 2 χ, a, a 2, da /dx, da 2 /dx). 126) 15

16 Explicit αs Our explicit α expressions are α = 2π dφ dθ W χ, Θ) Yl m Θ, Φ)A χχy lm Θ, Φ) = 1 2π dφ dθ W χ, Θ) A χχ 127) 4π α 2 = α 2 = 1 2π dφ dθ W χ, Θ) Y 2 Θ, Φ)A χχ 128) 4π 2π α 2 2 = dφ dθ W χ, Θ) Y 2 Θ, Φ)) 2 A χχ 129) Since A χχ is perfectly well behaved, any weight function will do. Explicit Rs Our explicit expressions for the Rs are a 2 χ) R = 2π A ΘΘ 2 Y 2 Θ 2 da 2 dχ { π dφ dθ W χ, Θ) Y da dχ B χy + A 2 Y 2 ΦΦ Φ 2 2A χθ Θ + 2A χφ + 2A 2 Y 2 ΘΦ Θ Φ + B Θ Θ + B Φ Φ + B χy 2 } Φ 13) a 2 χ) R 2 = 2π A ΘΘ 2 Y 2 Θ 2 da 2 dχ { π dφ dθ W χ, Θ) Y 2 da dχ B χy + A 2 Y 2 ΦΦ Φ 2 2A χθ Θ + 2A χφ + 2A 2 Y 2 ΘΦ Θ Φ + B Θ Θ + B Φ Φ + B χy 2 } Φ 131) 16

17 Weight function The difficulty in the weight function occurs at Θ = π/2, and is associated with the expression τ Q a2 χ 2 cos 2Θ in the denominator. Near Θ = π/2 this factor is finite for χ > a, but for χ a behaves as τ 2 = Q a 2 χ 2 cos 2Θ 2χ4 a 2 χ 2 cos2 Θ 2χ4 a 2 χ 2 Θ π ) 2 2 Our early choice of weight function, in Eq. 74), contains τ, which helps to cancel out this term in the denominator. Problems still occur because ĀΦΦ and B Φ contain τ 2 in the denominator. This presents fatal troubles unless the singularities due to ĀΦΦ and B Φ cancel in the Φ integration. At this point June 14, 1:3am) it appears that they DO cancel in R, but not in R 2. In place of Eq. 74), we tentatively adopt the following weight function: W tent = Q a2 χ 2 cos 2Θ) 2 a 2 + χ 2 sin 2 Θ 132) Note that: i) The denominator has no real poles. ii) For χ < a, and Θ near π/2 the weight function is approximately τ 2 /2 a 2 + χ 2 ). iii) For χ a, the weight function is approximately χ sin Θ. We write R and R 2 as a 2 χ) Terms in R and R 2 R = 2π dθ W χ, Θ) { da dχ Y B χ Y 2 Y 2 Y A ΘΘ Θ + Y 2 Y 2 A 2 ΦΦ Φ +2 Y 2 Y 2 A 2 ΘΦ Θ Φ + Y B Θ Θ } + Y B Φ Φ a 2 χ) da 2 dχ R 2 = 2π 2 Y A χθ Θ +2 Y A χφ Φ + Y B χ Y 2 { π dθ W χ, Θ) da dχ Y 2B χ Y 2 Y 2 Y 2 A ΘΘ Θ + Y 2 Y 2 2A 2 ΦΦ Φ +2 Y 2 Y 2 2A 2 ΘΦ Θ Φ + Y 2B Θ Θ } + Y 2 B Φ Φ da 2 dχ 2 Y 2 A χθ Θ +2 Y 2A χφ Φ + Y 2B χ Y 2 17.

18 Here the notation means the average over Φ, that is f 1 f dφ 2π We now need to write down explicitly the 18 Φ averages in analytic form. We will break each of these down into two pieces, in the spirit of the β coefficients. Thus we have for example Below we use the notation R 5N Y B N Θ 2π Y B χ Y = Y B χ Y N Ω 2 Y B χ Y Ω. κ = π R 1N Y B N χ Y N = 1 4π 133) a 2 + 2Q χ 3 134) R 2N Y A N 2 Y 2 ΘΘ Θ 2 N = 1 κ Q 6 cos 2Θ) 135) 4π χ4 = R 3N Y A N 2 Y 2 ΦΦ Φ 2 N = 136) R 4N Y A N 2 Y 2 ΘΦ Θ Φ N = 137) Q + a 2 + χ 2 cos2 Θ) Q a 2 ) 1 Θ N = κ 3 sin 2Θ) Q a 2 χ 2 cos2 Θ) χ 4 4π sin2θ) Q a 2 χ 2 cos2 Θ) R 6N Y B N Φ Q a 2 ) χ 2 1 4π κ 3 sin 2Θ) 138) Φ N = 139) R 7N Y A N χθ Θ N = 14) R 8N Y A N χφ Φ N = 141) R 9N Y B N χ Y 2 N = 1 4π κ a2 + 2Q χ 3 3 cos 2 Θ 1 142) 18

19 R2 1N Y 2 B N χ Y N = R 9N = 1 4π κ a2 + 2Q χ 3 3 cos 2 Θ 1 143) R2 2N Y 2 A N 2 Y 2 ΘΘ Θ 2 N = κ 2 Q χ cos 2Θ 19 cos 2 Θ 7 144) 4 R2 3N Y 2 A N 2 Y 2 ΦΦ Φ 2 N = 2κ 2 sin 4 Θ ) 2 Q + a2 + χ 2 cos2 Θ) χ 4 sin 2 2 Θ) = κ 2 sin2 Θ cos 2 Θ Q + a 2 + χ 2 cos 2 Θ χ 4 145) R2 5N Y 2 B N Θ κ 2 R2 4N Y 2 A N 2 Y 2 ΘΦ Θ Φ N = 146) Θ N = Q + a 2 + χ 2 cos2 Θ) Q a 2 χ 2 cos2 Θ) = 2κ 2 sin 2 Θ cos 2 Θ Q a 2 χ 2 cos 2Θ R2 6N Y 2 B N Φ Q a 2 ) 2χ 4 sin 2Θ 19 cos 2 Θ 7 Q a 2 ) χ 2 19 cos 2 Θ 7) 147) Φ N = 148) R2 7N Y 2 A N χθ Θ N = 149) R2 8N Y 2 A N χφ Φ N = 15) R2 9N Y 2 B N χ Y 2 N = κ 2 a2 + 2Q χ 3 3 cos 2 Θ 1 ) sin4 Θ 151) 19

20 1 4π R 1Om Y Bχ Y Ω = a 2 2χ 3 3a 2 cos 2 2Θ + 3χ 2 cos 2Θ + Q 152) 2 Y 2 R 2Om Y Ā ΘΘ Θ 2 Ω = κ 7 χ 2 + a 2 cos 2Θ 2 cos 2Θ 153) 4π 4χ 4 2 Y 2 R 3Om Y Ā ΦΦ Φ 2 Ω = κ Q + a 2 + χ 2 ) cos2θ) sin 2 Θ 154) 4π Q a 2 χ 2 cos2θ) 2 Y 2 R 4Om Y Ā ΘΦ Θ Φ Ω = κ a 2 + χ 2 cos2 Θ) + Q χ 2 + a 2 cos2 Θ) 4π 2χ 4 155) R 5Om Y BΘ Θ Ω = κ 4π Q + a 2 + χ 2 cos2θ) sin 2Θ) 2χ 6 Q a 2 χ 2 cos2θ) 7 2 c + 6d = 2κ 4π with c and d given in Eqs. 63), 64). sin 2 Θ cos 2 Θ χ 4 Q a 2 χ 2 cos2θ)) 7 2 c + 6d 156) R 6Om Y BΦ Φ Ω = R 7Om Y Ā χθ Θ Ω = κ 3Q + a 2 + χ 2 cos 2Θ) 4π 2 Q a 2 χ 2 cos 2Θ) sin2 Θ 157) κ 7 4π 4 a 2 χ 2 + a 2 cos2θ) sin 2 2Θ) χ 3 158) R 8Om Y Ā χφ Φ Ω = κ a 2 Q + a 2 + χ 2 cos2θ) sin 2 Θ 4π 2χ 3 159) R 9Om Y Bχ Y 2 Ω = 1 a 2 κ 1 3 cos 2 Θ 1 ) h sin2 Θ j, 4π χ ) where h and j are given in Eqs. 17),171). 2

21 R2 1Om Y 2 Bχ Y Ω = R 9Om. 161) R2 2Om Y 2 Ā ΘΘ 2 Y 2 Θ 2 Ω = κ 2 χ2 + a 2 cos 2Θ 2 2χ 4 cos 2Θ cos 2 Θ ). 162) R2 3Om Y 2 Ā ΦΦ 2 Y 2 Φ 2 Ω = 2κ 2 Q + a 2 + χ 2 cos2θ) Q a 2 χ 2 cos2θ) ) sin 2 Θ cos 2 Θ 163) R2 4Om Y 2 Ā ΘΦ 2 Y 2 Θ Φ Ω = κ 2 a2 + χ 2 cos2 Θ) + Q χ 2 + a 2 cos2 Θ) 3 cos 2 Θ 1 2χ 4 164) R2 5Om Y 2 BΘ Θ Ω = Q + a 2 + χ 2 cos2θ) κ 2 sin 2Θ 2χ 6 Q a 2 χ 2 cos2θ) = 2κ 2 sin 2 Θ cos 2 Θ χ 4 Q a 2 χ 2 cos 2Θ) with c and d given in Eqs. 63),64). where and 25 c 2 cos2 Θ 11 ) + d 19 cos 2 Θ 7 ) 2 25 c 2 cos2 Θ 11 ) + d 19 cos 2 Θ 7 ) 165) 2 R2 6Om Y 2 BΦ Φ Ω = κ 2 3Q + a2 + χ 2 cos 2Θ) 2 Q a 2 χ 2 cos 2Θ) sin2 Θ 3 cos 2 Θ 1 ) 166) R2 7Om Y 2 Ā χθ Θ Ω = κ 2 a2 χ 2 + a 2 cos2θ) sin 2 2Θ) 4χ 3 25 cos 2 Θ 11 ) 167) R2 8Om Y 2 Ā χφ Φ Ω = κ 2 a2 Q + a 2 + χ 2 cos2θ) 2χ 3 sin 2 Θ 3 cos 2 Θ 1 ) 168) R2 9Om Y 2 Bχ Y 2 Ω = κ2 a χ 3 2 cos4 Θ 7 cos 2 Θ + 2) 3 h sin 2 Θ3 cos 2 Θ 1) j 169) h = 3a 2 cos 2 2Θ + Q + 3χ 2 cos 2Θ 17) j = 3a 2 cos 2 2Θ Q 2a 2 + χ 2 cos 2Θ. 171) 21

22 Explicit αs and solution α = 2π dθ W Y A χχ Y 172) α 2 = 2π dθ W Y A χχ Y 2 173) α 2 2 = 2π dθ W Y 2 A χχ Y 2 174) A N Y A χχ Y N = 1 4π A2 N Y A χχ Y 2 N = A22 N Y 2 A χχ Y 2 N = κ 2 Q χ 2 175) κ Q 4π χ 3 2 cos2 Θ 1) 176) Q 2χ 2 19 cos4 Θ 14 cos 2 Θ + 3) 177) A Om Y Ā χχ Y Ω = 1 4π 2a 4 sin 2 Θ cos 2 Θ χ 2 178) A2 Om Y Ā χχ Y 2 Ω = κ 4π a 4 sin 2 Θ cos 2 Θ χ 2 7 cos 2 Θ 3) 179) A22 Om Y 2 Ā χχ Y 2 Om = κ 2 2a4 sin 2 Θ cos 2 Θ χ cos4 Θ 11 cos 2 Θ ) D α α 2 2 α ) db dχ = 1 D α 2 2R α R 2 182) db 2 dχ = 1 D α R 2 α 2R 183) 22

23 X. 3 Dimensional rotation with 3 Modes We assume the form Basic expansion Ψ = a χ)y + a 2 χ)y 2 + a c χ)y c. 184) The notation here is rather inconsistent. The symbol Y represents Y = 1/ 4π, and Y 2 stands for the usual l = 2 spherical harmonic 5 3 cos 2 Θ 1) Y 2 Y 2 = 185) 4π 2 The function Y c is the normalized relevant real combination of l = 2, m = ±2: Y c = π sin2 Θ cos 2Φ. 186) We now substitute this sum in the wave equation 112) to get a slight notational modification of Eq. refsum1) k=,2,c d 2 a k A χχ Y k = + da k dχ k=,2,c { a k χ) d 2 Y k A ΘΘ dθ + A 2 Y k 2 ΦΦ Φ 2 } Y k 2A χθ Θ + 2A Y k χφ Φ + B χy k + F χ, Θ, k + 2A 2 Y k ΘΦ Θ Φ + B Θ a k χ) Y k Θ, Φ) Y k Θ + B Φ ) Y k Φ. 187) We next multiply by a weight function W, then generate three equations by projecting respectively by Y, Y, Y c, and integrate over all Θ and Φ. These lead to the following equations: where and α pk = k=,2,c 2π α pk d 2 a k χ) = R p χ, a n, da n /dχ), 188) dφ dθ W χ, Θ) Y p Θ, Φ)A χχ Y k Θ, Φ) 189) 23

24 2π π R p = dφ dθ W χ, Θ) Y p Θ, Φ) k=,2,c + da k dχ +A ΦΦ 2 Y k Φ 2 2A χθ Y k Θ + 2A χφ + 2A 2 Y k ΘΦ Θ Φ + B Y k Θ Θ + B Φ } Y k Φ + B χy k + F { χ, Θ, k 2 Y k a k χ) A ΘΘ Θ 2 Y k Φ ) a k χ) Y k Θ, Φ) The equations that we use follow by inverting the equations in 188) in the form. 19) d 2 a k χ) = p α inv kp R pχ, a n, da n /dχ). 191) The explicit expressions of these equations involves the determinant D = α α 22 α cc α α 2c α c2 α 2 α 2 α cc + α 2 α c α c2 + α c α 2 α 2c α c α c α ) Decomposition in Φ parts To simplify expressions we introduce the following notation: Y c = Y c cos 2Φ Y c = π sin2 Θ 193) A Ω χχ = A Ω χχ 1 + cos 2Φ) A Ω ΘΘ = AΩ ΘΘ 1 + cos 2Φ) AΩ A Ω χχ = a4 sin 2 2Θ) 2χ 2 194) ΘΘ = χ2 + a 2 cos2θ) 2 2χ 4 195) A Ω ΦΦ = AΩ ΦΦ 1 cos 2Φ) AΩ ΦΦ = 1 2 Q + a 2 + χ 2 cos2θ) Q a 2 χ 2 cos2θ) = 2χ 4 sin 2 Θ cos 2 Θ Q a 2 χ 2 cos2θ)) 2 196) A Ω χθ = AΩ χθ 1 + cos 2Φ) AΩ A Ω χφ = AΩ χφ sin 2Φ AΩ χθ = a2 χ 2 + a 2 cos2θ) sin2θ) 2χ 3 197) χφ = a2 Q + a 2 + χ 2 cos2θ) 2χ 3 198) 24

25 A Ω ΘΦ = A Ω ΘΦ sin 2Φ A Ω ΘΦ = a2 + χ 2 cos2 Θ) + Q χ 2 + a 2 cos2 Θ) 2 χ 4 sin2 Θ) 199) B Ω1 χ = a2 2χ 3 3a 2 cos 2 2Θ + Q + 3χ 2 cos 2Θ B Ω χ = BΩ1 χ + BΩ2 χ cos 2Φ 2) B Ω2 χ = a2 2χ 3 3a 2 cos 2 2Θ Q 2a 2 + χ 2 cos 2Θ 21) where B Ω Θ = BΩ1 Θ B Ω1 Θ = c + 2d) sin Θ cos Θ χ 4 Q a 2 χ 2 cos 2Θ) + BΩ2 Θ cos 2Φ 22) B Ω2 Θ = c sin Θ cos Θ χ 4 Q a 2 χ 2 cos 2Θ) 23) c a 2 χ 4 cos2 Θ) + 2 a 4 χ a 6 cos2 Θ) + 4 a 4 χ 2 cos2 Θ)) 2 4 a 4 Q cos2 Θ) 2 a 2 Qχ 2 χ 6 24) d χ 4 a 2 cos2 Θ) + χ 2) 25) BΦ Ω = BΩ Φ sin 2Φ BΩ Φ = 3Q + a2 + χ 2 cos 2Θ) 2 Q a 2 χ 2 cos 2Θ) 26) The α s and the averages over Φ are related by: Expressions for αs α ij = α N ij Ω 2 α Ω ij 27) α = 2π dθ W Y A χχ Y 28) α 2 = α 2 = 2π dθ W Y A χχ Y 2 29) α 22 = 2π dθ W Y 2 A χχ Y 2 21) α c = α c = 2π dθ W Y A χχ Y c. 211) α 2c = α c2 = 2π dθ W Y 2 A χχ Y c. 212) 25

26 With x cos Θ the αs then follow explicitly from α cc = 2π dθ W Y c A χχ Y c 213) 1 W α ij = 4π 1 x 2 Aij dx 214) and from A Y A χχ Y = Y A N χχ Ω 2 A Ω χχ) Y 215) A2 Y A χχ Y 2 = Y A N χχ Ω 2 A Ω χχ) Y2 216) Ac = Y A χχ Y c = Ω2 2 Y A Ω χχ Y c 217) A22 Y 2 A χχ Y 2 = Y 2 A N χχ Ω 2 A Ω χχ) Y2 218) A2c = Y 2 A χχ Y c = Ω2 2 Y 2A Ω χχ Y c 219) Acc Y c A χχ Y c = 1 2 Y c ) A N χχ Ω 2 A Ω χχ Y c 22) 26

27 In general, the source terms are given by 2 Y k + Y p A ΦΦ Φ 2 + da k dχ R p = 2π dθ W χ, Θ) Explicit R c for linear case k=,2,c { a k χ) Y p A ΘΘ 2 Y k Θ 2 +2 Y 2 Y k pa ΘΦ Θ Φ + Y Y k pb Θ Θ + Y Y k pb Φ Φ 2 Y p A χθ Y k Θ +2 Y pa χφ Y k Φ + Y pb χ Y k In the case of p = c, this becomes with notation b i = da i /dχ and x = cos Θ): a c χ) a 2 χ) 1 R c = 4π dx W χ, Θ) 1 x 2 2 Y 2 Y c A ΘΘ Θ + Y cb 2 Θ Θ }. 221) Y c A ΘΘ 2 Y c Θ 2 + Y ca ΦΦ 2 Y c Φ 2 +2 Y ca ΘΦ 2 Y c Θ Φ + Y cb Θ Y c Θ + Y cb Φ Y c Φ b Y c B χ Y b 2 2 Y c A χθ Θ + Y cb χ Y 2 b c 2 Y c A χθ Y c Θ +2 Y ca χφ Y c Φ + Y cb χ Y c The following expressions are used for computation: Rca2 1 = Y c A ΘΘ 2 Y 2 Θ 2 = Ω2 2 Y c A Ω ΘΘ 222) 2 Y 2 Θ 2 223) Rca2 2 = Y c B Θ Θ = Ω2 2 Y c BΘ Ω2 Θ 224) 2 Y c Rcac 1 = Y c A ΘΘ Θ = Y c A N ΘΘ Ω 2 A ) Ω 2 Yc ΘΘ 225) Θ 2 27

28 2 Y c Rcac 2 = Y c A ΦΦ = 2Y Φ2 c Rcac 3 = Y c A ΘΦ 2 Y c Θ Φ ) A N ΦΦ Ω 2 A Ω ΦΦ Y c 226) = 227) Y c Rcac 4 = Y c B Θ Θ = 1 2 Y c B N Θ Ω 2 B ) Θ Ω1 Yc Θ 228) Rcac 5 = Y c B Φ Y c Φ = 229) Rcb = Y c B χ Y = Ω2 2 Y c Bχ Ω2 Y 23) Rcb2 1 = Y c A χθ Θ = Ω2 2 Y c A Ω χθ Θ 231) Rcb2 2 = Y c B χ Y 2 = Ω2 2 Y c Bχ Ω2 Y 2 232) Rcbc 1 = Y c A χθ Y c Θ Rcbc 2 = Y c A χφ Y c Φ Rcbc 3 = Y c B χ Y c = 1 2 Y c = Ω2 2 Y c A Ω χθ Y c Θ 233) = 234) ) B N χ Ω 2 Bχ Ω1 Y c 235) 28

29 In the case of p = 2, Eq. 221) becomes a c χ) a 2 χ) Explicit R 2 for linear case R 2 = 4π 1 dx W χ, Θ) 1 x 2 2 Y 2 Y 2 A ΘΘ Θ + Y 2B 2 Θ Θ Y 2 A ΘΘ 2 Y c Θ 2 + Y 2A ΦΦ 2 Y c Φ 2 +2 Y 2A ΘΦ 2 Y c Θ Φ + Y 2B Θ Y c Θ + Y 2B Φ Y c Φ b Y 2 B χ Y b 2 2 Y 2 A χθ Θ + Y 2B χ Y 2 b c 2 Y 2 A χθ Y c Θ +2 Y 2A χφ Y c Φ + Y 2B χ Y c The following expressions are used for computation: 236) 2 Y 2 R2a2 1 = Y 2 A ΘΘ Θ = Y 2 2 A N ΘΘ Ω 2 A ) Ω 2 Y 2 ΘΘ 237) Θ 2 R2a2 2 = Y 2 B Θ Θ = Y 2 B N Θ Ω 2 B ) Θ Ω1 Θ 2 Y c R2ac 1 = Y 2 A ΘΘ = Ω2 Θ2 2 Y 2 A Ω ΘΘ 238) 2 Y c Θ 2 239) R2ac 2 = Y 2 A ΦΦ 2 Y c Φ 2 = 2Ω2 Y 2 A Ω ΦΦ Y c 24) R2ac 3 = Y 2 A ΘΦ R2ac 4 = Y 2 B Θ Y c Θ 2 Y c Θ Φ = Ω2 Y 2 A Ω ΘΦ = Ω2 2 Y 2 BΘ Ω2 Y c Θ Y c Θ 241) 242) R2ac 5 = Y 2 B Φ Y c Φ = Ω2 Y 2 B Ω Φ Y c 243) 29

30 R2b = Y 2 B χ Y = Y 2 B N χ ) Ω 2 Bχ Ω1 Y 244) R2b2 1 = Y 2 A χθ Θ = Ω2 Y 2 A Ω χθ Θ 245) R2b2 2 = Y 2 B χ Y 2 = Y 2 B N χ ) Ω 2 Bχ Ω1 Y2 246) R2bc 1 = Y 2 A χθ Y c Θ = Ω2 2 Y 2 A Ω χθ Y c Θ 247) R2bc 2 = Y 2 A χφ Y c Φ = Ω2 Y 2 A Ω χφ Y c 248) R2bc 3 = Y 2 B χ Y c = Ω2 2 Y 2 B Ω2 χ Y c 249) Summary To compute the αs, the following functions of χ and Θ must be put into the program: A N χχ, AΩ χχ, Y, Y 2, Y c 25) The αs are then computed from 1 αij = 4π W Aijdx 251) with the Aij given by Eqs. 215) 22). If only the c mode is to be propagated, then the only equation that must be solved is α c d 2 a + α d 2 a 2 c2 dχ + α d 2 a c 2 cc dχ = R 2 c. 252) If both the c and the 2 mode are propagated, but the mode is fixed, then the equations to be solved are α c d 2 a + α d 2 a 2 c2 dχ + α d 2 a c 2 cc = R c 253) d 2 a α 2 dχ + α d 2 a α d 2 a c 2c = R )

31 To separate these we define so that d 2 a c = 1 d α 2 a 22 R c α c D 2c dχ α 2 cc d 2 a 2 = 1 D 2c D 2c α cc α 22 α 2c α c2 255) R 2 α 2 d 2 a ) d 2 ) a α c2 R 2 α 2 ) d 2 ) a α 2c R c α c 256). 257) WARNING! We will want to keep α ij distinct from α ji, since we may be using different weight functions to project out Eq. 253) and 254). To compute R c or R 2 we need the following functions of χ along with the following Θ dependent parts of the spherical harmonics Y a 2, a c, b, b 2, b c, 258) c, dyc dθ, d 2 Yc dθ, Y 2, 2 In addition, to compute R c we need the following Roswell functions dy 2 dθ, d 2 Y 2 dθ 2,. 259) A N ΘΘ, AΩ ΘΘ, AΩ χθ, AN ΦΦ, AΩ ΦΦ, To compute R 2 we need instead A N ΘΘ, AΩ ΘΘ, AΩ χθ, AΩ ΘΦ, AΩ ΦΦ, AΩ χφ, Finally R c is computed from BN Θ, BΩ1 Θ, BΩ2 Θ, BN Θ, BΩ1 Θ, BΩ2 Θ, BN χ, BΩ1 χ, BΩ2 χ. 26) BN χ, BΩ1 χ, BΩ2 χ, BΩ Φ. 261) 1 W R c = 4π dx total integrand 1 x 2 c 262) where total integrand c = a 2 Rca2 1 + Rca2 2 a c Rcac2 1 + Rcac Rcac2 3 + Rcac2 4 + Rcac2 5 And R 2 is computed from b Rcb b 2 2 Rcb2 1 + Rcb2 2 b c 2 Rcbc Rcbc 2 + Rcbc ) R c = 4π 1 W 1 x 2 dx total integrand 2 264) 31

32 where total integrand 2 = a 2 R2a2 1 + R2a2 2 a c R2ac2 1 + R2ac R2ac2 3 + R2ac2 4 + R2ac2 5 b R2b b 2 2 R2b2 1 + R2b2 2 b c 2 R2bc R2bc 2 + R2bc ) Relationship of Modes First we repeat the definitions of l = 2 spherical harmonics used before and we introduce some new definitions: From Eqs. 185) and 186) Y 2 Y 2 = 5 4π 3 cos 2 Θ 1) 2 Y c = π sin2 Θ cos 2Φ. We now repeat the definition of the real, normalized, l = 2, m = ±2 multipole about the rotation axis in Eq. 122) Y 2 = cos 2 Θ 1) sin 2 Θ cos 2Φ 8 π We now introduce the symbol Y to represent the l = 2, m = multipole about the rotation axis. In terms of Roswell coordinates, this is Y = π We now write our solution in the form and we note the following relationships 1 3 cos 2 Θ) 3 sin 2 Θ cos 2Φ 266) Ψ = a Y + a 2 Y 2 + a c Y c = a Y + A 2 Y 2 + A c Y c 267) Y 2 = Y2 Y ) Y 2 = 1 2 Y2 + 3 Y ) 268) and A = 1 2 a2 + 3 a c ) A 2 = a2 a c ) 269) 32

33 X. 3 Dimensional Ingoing/Outgoing Waves with 4 Modes We assume the form Notes here and below primarily by LMB) Ψ = a χ)y + a 2 χ)y 2 + a C χ)y C + a S χ)y S. 27) The notation here is rather inconsistent. The symbol Y represents Y = 1/ 4π, and Y 2 stands for the usual l = 2 spherical harmonic Y 2 Y 2 = π 1 3 cos 2 Θ 3 sin 2 Θ cos 2Φ ) 271) The functions Y C and Y S are given for the normalized) real and imaginary parts of the Y 2,2 function about the axis of rotation instead of around the Z axis in the Roswell coordinates), given in terms of the Roswell coordinates: Y C = π 3 cos2 Θ 1) sin 2 Θ cos 2Φ, 272) and and Y S = π As before, for the linearized case we can use the notation: Y C = Y C Y Φ C cos 2Φ Y C = 1 8 sin 2Θ cos Φ. 273) 15 π 3 cos2 Θ 1) Y Φ C = 1 8 Y S = Y Φ S cos Φ Y Φ S = π 15 π sin2 Θ 274) sin 2Θ. 275) We abuse the notation one more time, and replace the caligraphic Y with a regular Y. That is, we denote Y C Y C and Y S Y S. Alternative notation might be Y R and Y I, to denote the real and imaginary parts.) We now substitute this sum in the wave equation 112) to get a slight notational modification of Eq. 114) k=,2,c,s d 2 a k A χχ Y k = + da k dχ k=,2,c,s { a k χ) d 2 Y k A ΘΘ dθ + A 2 Y k 2 ΦΦ Φ 2 } Y k 2A χθ Θ + 2A Y k χφ Φ + B χy k + F χ, Θ, k A 2 Y k ΘΦ Θ Φ + B Θ a k χ) Y k Θ, Φ) ) Y k Θ + B Φ Y k Φ. 276)

34 We next multiply by a weight function W, then generate four equations by projecting respectively by Y, Y 2, Y C, Y S, and integrate over all Θ and Φ. These lead to the following equations: where and R p = + da k dχ 2π α pk = k=,2,c,s 2π α pk d 2 a k χ) = R p χ, a n, da n /dχ), 277) dφ dθ W χ, Θ) Y p Θ, Φ)A χχ Y k Θ, Φ) 278) π dφ dθ W χ, Θ) Y p Θ, Φ) +A ΦΦ 2 Y k Φ 2 2A χθ Y k Θ + 2A χφ k=,2,c,s + 2A 2 Y k ΘΦ Θ Φ + B Y k Θ Θ + B Φ } Y k Φ + B χy k + F χ, Θ, k { a k χ) Y k Φ A ΘΘ 2 Y k Θ 2 a k χ) Y k Θ, Φ) ). 279) Expressions for αs We keep the notation... to denote the Φ integral for notational simplicity, also when we do not do the Φ integrals explicitly. The α s and the averages over Φ are related by: α ij = α N ij Ω2 α Ω ij 28) α = 2π dθ W Y A χχ Y 281) α 2 = α 2 = 2π dθ W Y A χχ Y 2 282) α C = α C = 2π dθ W Y A χχ Y C 283) α S = α S = 2π dθ W Y A χχ Y S 284) α 22 = 2π dθ W Y 2 A χχ Y 2 285) 34

35 α 2C = α C2 = 2π dθ W Y 2 A χχ Y C 286) α 2S = α S2 = 2π α CS = α SC = 2π With x cos Θ the αs then follow explicitly from and from dθ W Y 2 A χχ Y S 287) dθ W Y C A χχ Y S 288) α CC = 2π dθ W Y C A χχ Y C 289) α SS = 2π dθ W Y S A χχ Y S 29) 1 W α ij = 4π 1 x 2 Aij dx 291) A Y A χχ Y 292) A2 Y A χχ Y 2 293) AC Y A χχ Y C 294) A22 Y 2 A χχ Y 2 295) A2C Y 2 A χχ Y C 296) AS Y A χχ Y S 297) A2S Y 2 A χχ Y S 298) ACS Y C A χχ Y S 299) ACC Y C A χχ C S 3) 35

36 ASS Y S A χχ Y S sorry about that...) 31) which can be evaluated by hand for the linearized case if so desired. In general, the source terms are given by 2 Y k + Y p A ΦΦ Φ 2 + da k dχ R p = 2π dθ W χ, Θ) Explicit R p s k=,2,c,s { a k χ) Y p A ΘΘ 2 Y k Θ 2 +2 Y 2 Y k pa ΘΦ Θ Φ + Y Y k pb Θ Θ + Y Y k pb Φ Φ 2 Y p A χθ Y k Θ +2 Y pa χφ Y k Φ + Y pb χ Y k In the cases p = 2, C, S, this becomes with notation b i = da i /dχ and x = cos Θ): a C χ) a S χ) Y 2 A ΘΘ 2 Y C Θ 2 Y 2 A ΘΘ 2 Y S Θ 2 { a 2 χ) R 2 = 4π + Y 2A ΦΦ 2 Y C Φ 2 + Y 2A ΦΦ 2 Y S Φ 2 1 dx W χ, Θ) 1 x 2 2 Y 2 Y 2 A ΘΘ Θ + Y 2B 2 Θ Θ } + Y p F. 32) +2 Y 2A ΘΦ 2 Y C Θ Φ + Y 2B Θ Y C Θ + Y 2B Φ Y C Φ +2 Y 2A ΘΦ 2 Y S Θ Φ + Y 2B Θ Y S Θ + Y 2B Φ Y S Φ b Y 2 B χ Y b 2 2 Y 2 A χθ Θ + Y 2B χ Y 2 b C 2 Y 2 A χθ Y C Θ +2 Y 2A χφ Y C Φ + Y 2B χ Y C b S 2 Y 2 A χθ Y S Θ +2 Y 2A χφ Y S Φ + Y 2B χ Y S + Y 2 F } 33) 36

37 a C χ) a S χ) a C χ) a S χ) Y C A ΘΘ 2 Y C Θ 2 Y C A ΘΘ 2 Y S Θ 2 Y S A ΘΘ 2 Y C Θ 2 Y S A ΘΘ 2 Y S Θ 2 { a 2 χ) + Y CA ΦΦ 2 Y C Φ 2 + Y CA ΦΦ 2 Y S Φ 2 1 R C = 4π dx W χ, Θ) 1 x 2 2 Y 2 Y C A ΘΘ Θ + Y CB 2 Θ Θ +2 Y 2 Y C SA ΘΦ Θ Φ + Y Y C CB Θ Θ + Y Y C CB Φ Φ +2 Y CA ΘΦ 2 Y S Θ Φ + Y CB Θ Y S Θ + Y CB Φ Y S Φ b Y C B χ Y b 2 2 Y C A χθ Θ + Y CB χ Y 2 b C 2 Y C A χθ Y C Θ +2 Y CA χφ Y C Φ + Y CB χ Y C b S 2 Y C A χθ Y S Θ +2 Y CA χφ Y S Φ + Y CB χ Y S { a 2 χ) 1 R S = 4π + Y SA ΦΦ 2 Y C Φ 2 + Y SA ΦΦ 2 Y S Φ 2 + Y C F } 34) dx W χ, Θ) 1 x 2 2 Y 2 Y S A ΘΘ Θ + Y SB 2 Θ Θ +2 Y 2 Y C SA ΘΦ Θ Φ + Y Y C SB Θ Θ + Y Y C SB Φ Φ +2 Y SA ΘΦ 2 Y S Θ Φ + Y SB Θ Y S Θ + Y SB Φ Y S Φ b Y S B χ Y b 2 2 Y S A χθ Θ + Y SB χ Y 2 37

38 Y C b C 2 Y S A χθ Θ +2 Y Y C SA χφ Φ + Y SB χ Y C b S 2 Y S A χθ Y S Θ +2 Y SA χφ Y S Φ + Y SB χ Y S + Y S F } 35) In the 4 1 case, the mode is fixed, and the 2, the C, and the S mode are propagated. Then the equations to be solved are: d 2 a α 2 dχ + α d 2 a dχ + α d 2 a C 2 2C α C d 2 a α S d 2 a To separate these we define + α d 2 a 2 C2 dχ + α d 2 a C 2 CC + α d 2 a 2 S2 dχ + α d 2 a C 2 SC + α d 2 a S 2S = R 2 36) + α d 2 a S CS = R C 37) + α d 2 a S SS = R S. 38) D 2CS α 22 α CC α SS + α C2 α SC α 2S + α S2 α 2C α CS α 2C α C2 α SS α 22 α SC α CS α S2 α CC α 2S 39) so that d 2 a 2 1 d 2 ) a = α SS α CC α SC α CS ) R 2 α 2 D 2CS d 2 ) a d 2 ) a + α 2S α SC α SS α 2C ) R C α C + α 2C α CS α CC α 2S ) R S α S 31) d 2 a C 1 d 2 ) a = α S2 α CS α SS α C2 ) R 2 α 2 D 2CS d 2 ) a d 2 ) a + α 22 α SS α S2 α 2S ) R C α C + α C2 α 2S α 22 α CS ) R S α S 311) d 2 a S 1 d 2 ) a = α C2 α SC α S2 α CC ) R 2 α 2 D 2CS d 2 ) a d 2 ) a + α S2 α 2C α 22 α SC ) R C α C + α CC α 22 α 2C α C2 ) R S α S. 312) WARNING! We will want to keep α ij distinct from α ji, since we may be using different weight functions to project out Eq. 36) 38). 38

(As on April 16, 2002 no changes since Dec 24.)

(As on April 16, 2002 no changes since Dec 24.) ~rprice/area51/documents/roswell.tex ROSWELL COORDINATES FOR TWO CENTERS As on April 16, 00 no changes since Dec 4. I. Definitions of coordinates We define the Roswell coordinates χ, Θ. A better name will

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Laplace s Equation on a Sphere

Laplace s Equation on a Sphere Laplace s Equation on a Sphere J. Robert Buchanan Department of Mathematics Millersville University P.O. Box, Millersville, PA 7 Bob.Buchanan@millersville.edu April, Problem Description Consider the heat

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα