1 Elementary Functions
|
|
- Σιλουανός Γαλάνης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Elementary Functions. Power of Binomials. Power series.0 + q =+q + qq + +! qq...q + + =! q If q is neither a natural number nor zero, the series converges absolutely for < and diverges for >. For =, the series converges for q> and diverges for q. For =,theseries converges absolutely for q>0. For =, it converges absolutely for q>0 and diverges for q<0. If q = n is a natural number, the series.0 is reduced to the finite sum.. FI II 5 n n. a + n = a n.. + = =. + = = 3. + / = / = = < ] see also. q + + = q + q qq 3 qq q 5 ] !! 3! <, q is a real number ] AD
2 6 The Eponential Function.. + q q q q... q ] + + =+ +! q q 3... q ] +q + q + +! <, q isarealnumber ] AD635.. Series of rational fractions... = + = = + < ] AD > ] AD The Eponential Function. Series representation.. e =!. a ln a =! 3. e =!. e = lim + n n. e + =.3. e e = e.5 n +! e = + + +! B! !. e sin =+ +! 3!. e cos = e + 5! 85 5!! ! 6! +... <π] FI II 50 AD AD ! 7! AD 660.5
3 .3 Series of eponentials 7 3. e tan =+ +! AD !! 5!.6. e arcsin =+ +! AD !!. e arctan =+ +! 3 3! AD 660.8!.7. π eπ + e π e π e π =. π e π e π = = = + cf.. 3 AD cf.. 3 AD Functional relations.. a = e ln a. a log a = a log a =.. e =cosh +sinh. e i =cos + i sin.3 ] e a e b =a bep a + b + a b ] π MO 6.3 Series of eponentials.3 a = a a>and<0or0<a<and>0].3. tanh =+ e >0]. sech = e + 3. cosech =. sin =ep e + n= ] cos n n >0] >0] 0 π]
4 8 Trigonometric and Hyperbolic Functions.3.3. Trigonometric and Hyperbolic Functions.30 Introduction The trigonometric and hyperbolic sines are related by the identities sinh = i sini, sin = i sinhi. The trigonometric and hyperbolic cosines are related by the identities cosh =cosi, cos =coshi. Because of this duality, every relation involving trigonometric functions has its formal counterpart involving the corresponding hyperbolic functions, and vice versa. In many though not all cases, both pairs of relationships are meaningful. The idea of matching the relationships is carried out in the list of formulas given below. However, not all the meaningful pairs are included in the list..3 The basic functional relations.3. sin = e i e i i = i sinhi. sinh = e e = i sini 3. cos = e i + e i =coshi. cosh = e + e =cosi 5. tan = sin cos = i tanhi 6. tanh = sinh cosh = i tani 7. cot = cos sin = tan = i cothi 8. coth = cosh sinh = = i cot i tanh.3. cos +sin =
5 .3 The basic functional relations 9. cosh sinh =.33. sin ± y =sincos y ± sin y cos. sinh ± y =sinhcosh y ± sinh y cosh 3. sin ± iy =sincosh y ± i sinh y cos. sinh ± iy =sinhcos y ± i sin y cosh 5. cos ± y = cos cos y sin sin y 6. cosh ± y =coshcosh y ± sinh sinh y 7. cos ± iy = cos cosh y i sin sinh y 8. cosh ± iy =coshcos y ± i sinh sin y 9. tan ± tan y tan ± y = tan tan y 0. tanh ± tanh y tanh ± y = ± tanh tanh y. tan ± i tanh y tan ± iy = i tan tanh y. tanh ± i tan y tanh ± iy = ± i tanh tan y.3. sin ± sin y =sin ± ycos y. sinh ± sinh y =sinh ± ycosh y 3. cos +cosy = cos + ycos y. cosh +coshy =cosh + ycosh y 5. cos cos y =sin + ysin y 6. cosh cosh y =sinh + ysinh y 7. sin ± y tan ± tan y = cos cos y sinh ± y 8. tanh ± tanh y = cosh cosh y 9. sin ± cos y = ±sin + y ± π ] sin y ± π ] = ±cos + y π ] cos y π ] =sin ± y ± π ] cos y π ]
6 30 Trigonometric and Hyperbolic Functions a sin ± b cos = a + ] b b sin ± arctan a a. ±a sin + b cos = b + a a ] cos arctan b b a 0]. a sin ± b cos y = q + r sin ± y + arctan q q =a + bcos b 0] ] r q ] y, r =a bsin s s ] 3. a cos + b cos y = t + cos t y + arctan t 0] t ] t t = s + cos y arctan s 0] s s s =a bsin ± y.35. sin sin y =sin + ysin y = cos y cos. sinh sinh y =sinh + ysinh y =cosh cosh y 3. cos sin y =cos + ycos y = cos y sin. sinh +cosh y =cosh + ycosh y =cosh +sinh y.36. cos + i sin n =cosn + i sin n n is an integer]. cosh +sinh n =sinhn +coshn n is an integer].37. sin = ± cos ] y ], t =a + bcos q 0] ] ± y. sinh = ± cosh 3. cos = ± + cos. cosh = cosh + 5. tan = cos = sin sin + cos
7 .3 Trigonometric and hyperbolic functions: epansion in multiple angles 3 6. tanh = cosh sinh = sinh cosh + The signs in front of the radical in formulas.37,.37, and.37 3aretaensoastoagree with the signs of the left-hand members. The sign of the left hand members depends in turn on the value of..3 The representation of powers of trigonometric and hyperbolic functions in terms of functions of multiples of the argument angle.30. sin n = n { n. sinh n = n n n n { n n n 3. sin n = n n. sinh n = n n { 5. cos n = n n { 6. cosh n = n n 7. cos n = n 8. cosh n = n n n+ cos n + n n n+ n n n n cos n + n n cosh n + cosh n + } n KR 56 0, n } n n sinn KR 56 0, sinhn } n KR 56 0, n } n n cosn KR 56 0, 3 coshn Special cases.3. sin = cos +. sin 3 = sin 3 +3sin 3. sin = cos cos sin 5 = sin 5 5sin3 +0sin 6
8 3 Trigonometric and Hyperbolic Functions.3 5. sin 6 = cos 6 +6cos 5 cos sin 7 = sin 7 +7sin5 sin 3 +35sin 6.3. sinh = cosh. sinh 3 = sinh 3 3sinh 3. sinh = cosh cosh sinh 5 = sinh 5 5sinh3 +0sinh 6 5. sinh 6 = cosh 6 6cosh +5cosh sinh 7 = sinh 7 7sinh5 +sinh3 +35sinh cos = cos +. cos 3 = cos cos 3. cos = cos +cos cos 5 = cos 5 +5cos3 +0cos 6 5. cos 6 = cos 6 +6cos +5cos cos 7 = cos 7 +7cos5 +cos3 +35cos 6.3. cosh = cosh +. cosh 3 = cosh 3 +3cosh 3. cosh = cosh + cosh cosh 5 = cosh cosh 3 +0cosh 6 5. cosh 6 = cosh cosh +5cosh cosh 7 = cosh cosh 5 +cosh3 +35cosh 6
9 .33 Trigonometric and hyperbolic functions: epansion in powers The representation of trigonometric and hyperbolic functions of multiples of the argument angle in terms of powers of these functions.33 n n. 7 sin n = n cos n sin cos n 3 sin 3 + cos n 5 sin 5...; 3 5 n =sin n cos n n 3 cos n 3 n 3 n + n 5 cos n 5 n 7 cos n sinh n = n+/] =sinh 3. cos n =cos n. 3 cosh n = n /] n sinh cosh n + n n cos n sin + = n cos n n n 3 cos n + n n n n 7 cos n n/] n sinh cosh n n cosh n n cos n sin...; n 3 n 5 cos n n/] = n cosh n + n n n cosh n.33 {. sin n =ncos sin n n sin 3 n } + sin ! 5! { = n cos n sin n n n 3 sin n 3! n 3n + n 5 sin n 5! } n n 5n 6 n 7 sin n ! AD 3.75 AD 3.75 AD 3.7 AD 3.73
10 3 Trigonometric and Hyperbolic Functions.333. sinn =n {sin n sin 3 3! n ] n 3 ] } + sin ! { = n n sin n n n sin n 3! n n + n 6 sin n 5! } n n 5n 6 n 8 sin n ! 3. cos n = n! sin + n n! = n { n sin n n! n 3 sin n sin n n n 6! sin AD 3.7 AD 3.7 AD nn 3 n 5 sin n! } nn n 5 n 7 sin n ! AD 3.73a. cosn =cos { n sin! n ] n 3 ] } + sin...! { = n cos n sin n n 3 n sin n! n n 5 + n 6 sin n 6! } n 5n 6n 7 n 8 sin n ! AD 3.7 AD 3.7 By using the formulas and values of.30, we can write formulas for sinh n, sinhn, coshn, and coshn that are analogous to those of.33, just as was done in the formulas in.33. Special cases.333. sin =sincos. sin 3 =3sin sin 3 3. sin =cos sin 8sin 3. sin 5 =5sin 0 sin 3 +6sin 5 5. sin 6 =cos 6sin 3 sin 3 +3sin 5
11 .337 Trigonometric and hyperbolic functions: epansion in powers sin 7 =7sin 56 sin 3 + sin 5 6 sin sinh =sinhcosh. sinh 3 =3sinh +sinh 3 3. sinh =cosh sinh +8sinh 3. sinh 5 =5sinh +0sinh 3 +6sinh 5 5. sinh 6 =cosh 6sinh +3sinh 3 +3sinh 5 6. sinh 7 =7sinh +56sinh 3 + sinh 5 +6sinh cos = cos. cos 3 = cos 3 3cos 3. cos = 8 cos 8cos +. cos 5 =6cos 5 0 cos cos 5. cos 6 =3cos 6 8 cos +8cos 6. cos 7 =6cos 7 cos 5 +56cos 3 7cos.336. cosh =cosh. cosh 3 =cosh 3 3cosh 3. cosh =8cosh 8cosh +. cosh 5 =6cosh 5 0 cosh 3 +5cosh 5. cosh 6 =3cosh 6 8 cosh +8cosh 6. cosh 7 =6cosh 7 cosh 5 +56cosh 3 7cosh.337. cos 3 cos 3 = 3tan. cos cos = 6tan +tan 3. cos 5 cos 5 = 0 tan +5tan. cos 6 cos 6 = 5 tan +5tan tan 6 5. sin 3 cos 3 =3tan tan3 6. sin cos =tan tan3
12 36 Trigonometric and Hyperbolic Functions.3 7. sin 5 cos 5 =5tan 0 tan3 +tan 5 8. sin 6 cos 6 =6tan 0 tan3 +6tan 5 9. cos 3 sin 3 =cot3 3cot 0. cos sin =cot 6cot +. cos 5 sin 5 =cot5 0 cot cot. cos 6 sin 6 =cot6 5 cot +5cot 3. sin 3 sin 3 = 3 cot. sin sin = cot3 cot 5. sin 5 sin 5 = 5 cot 0 cot + 6. sin 6 sin 6 = 6 cot5 0 cot cot.3 Certain sums of trigonometric and hyperbolic functions n n n n n sin + y =sin sinh + y =sinh cos + y = cos cosh + y =cosh + n y + n y + n y sin ny cosec y + n y sinh ny sinh y sin ny cosec y sinh ny sinh y cos + y =sin + n y sin ny sec y n sin + y =sin + n y + π sin ny + π sec y AD 36.8 AD 36.9 JO 0 AD 0a
13 .35 Sums of powers of trigonometric functions of multiple angles 37 Special cases.3. n. 0 n sin =sin n + sin n cosec cos =cos n + sin n cosec + =cos n n + sin cosec = + sin n + sin AD 36. AD 36. n sin =sin n cosec AD 36.7 n cos = sin n cosec JO 07 n cos = + n cos n+ cos n + n+ sin n sin = cos n cos 3 + n sin =sinn cos n +sinn cos +sin cosec AD 36. AD 36.0 JO n sin π n =cot π n n sin π n n = + cos nπ sin nπ n cos π n n = + cos nπ +sinnπ AD 36.9 AD 36.8 AD Sums of powers of trigonometric functions of multiple angles.35. n sin = n +sin sinn +]cosec = n cosn +sin n sin AD 36.3
14 38 Trigonometric and Hyperbolic Functions n cos = n + cos n sinn +cosec = n cosn +sin n + sin n sin 3 = 3 n cos 3 = 3 n + sin sin n cosec 3n + sin sin 3n cosec 3 n + cos sin n cosec + 3n + cos sin 3n cosec 3 AD 36.a JO 0 JO a n sin = 3n cosn +sin n cosec + cos n +sin n cosec ] JO 8 n cos = 3n +cosn +sin n cosec + cos n +sin n cosec ] JO n sin n sin = sin. n n cos n sin cos = n sin n cos n sin sin AD 36.5 AD n p sin = p sin pn sin n + p n+ sinn p cos + p AD 36.a n p sinh = p sinh pn sinh n + p n+ sinhn p cosh + p n p cos = p cos pn cos n + p n+ cosn p cos + p AD 36.3a n p cosh = p cosh pn cosh n + p n+ coshn p cosh + p JO Sums of products of trigonometric functions of multiple angles.36.. n sin sin + = n +sin sin n +]cosec JO n sin sin + = n cos cosn +3sin n cosec JO 6
15 .38 Sums leading to hyperbolic tangents and cotangents n sin cos y =sin ny + n + sin ny n + n +y sin cosec +y ny sin cosec y JO n n sin = n sin n sin AD 36.5 sec =cosec n cosec n AD Sums of tangents of multiple angles.37.. n n tan = n cot cot AD 36.6 n tan = n+ 3 n + cot n cot n AD Sums leading to hyperbolic tangents and cotangents.38.. n n tanh + n sin + n tanh + tan n π tanh n sin π n + tanh π tan n π =tanhn JO 0a =cothn tanh +coth JO 03 n
16 0 Trigonometric and Hyperbolic Functions n tanh n +sin + n + π + tanh + tan n + π tanh n n +sin π n + tanh + π tan n + =tanhn + tanh n + =cothn + coth n + JO 0 JO n = n tanh n JO 06 + sin n π + sinh tanh. n =ncoth n coth JO 07 π sin n + sinh tanh 3.. n n + =n +tanh + sin n + π + sinh tanh tanh n n + =n +coth coth π sin n + + sinh tanh JO 08 JO 09
17 .395 Representing sines and cosines as finite products.39 The representation of cosines and sines of multiples of the angle as finite products.39. sin n = n sin cos. cos n = n 3. sin n = n sin. cos n =cos n n n sin π sin n sin sin π n sin sin π n is even] JO 568 n sin n is even] JO 569 π sin n.39 n. sin n = n sin + π n. cos n = n n.393. n n..39 n cos + n π sin + n π = sin + n π n is odd] JO 570 n is odd] JO 57a = cos n n odd] n = n ] n cos n n even] n n sin n n odd] JO 58 JO 59 JO 53 = n n cos n n even] JO 5 { y cos α + π } + y = n n y n cos nα + y n JO 573 n.395 n {. cos n cos ny = n cos cos y + π } n JO 573
18 Trigonometric and Hyperbolic Functions.396 n. cosh n cos ny = n { cosh cos y + π } n JO n n n n cos πn + = n π cos n + + = n+ π +cos n + + = n+ + KR KR KR π cos + = n + KR n. The epansion of trigonometric and hyperbolic functions in power series.. sin =. sinh = 3. cos = + +! + +!!. cosh =! ] 5. tan = B < π! 6. tanh = = B! ] < π 7. cot = FI II 53 B <π ] FI II 53a! 8. coth = = + B! <π ] FI II 5a
19 . Trigonometric and hyperbolic functions: power series epansion 3 9. sec = E! 0. sech = =+. cosec = + B! E. cosech = = ] < π! ] < π CE 330a CE 330 <π ] CE 39a B! <π ] JO 8.. sin = +!. cos = 3. sin 3 =. cos 3 = +! JO 5a JO ! + JO 5aa 3 +3! JO 3a.3. sinh =cosec +!. cosh =sec +sec 3. sinh =sec! /]!. cosh =cosec /]! JO 508 JO 507 JO 50 JO cos n ln + ] + = n +0 n +... n + ] + +! < ] AD 656.
20 Trigonometric and Hyperbolic Functions.. sin n ln + ] + = n n n + + n n + ] + +! < ] AD 656. Power series for ln sin, ln cos, and lntan see.58.. Epansion in series of simple fractions.. tan π = π. 0 tanh π = π 3. cot π = π + π. coth π = π + π 5. tan π =.. sec π = π BR* 9, AD = π + π = 0 + cf..7 AD 695., JO 50a 3... ] JO 50 + AD 695.3a. sec π = π { } cosec π = π + π. cosec π = π 5. + cosec 6. cosec π = π.3 = = = JO 5a see also.7 AD 695.a = π + π + π + JO 6 JO 9 JO 50b π π m cosec m + π m cot π m = m JO 77
21 .39 Representation in the form of an infinite product 5.3 Representation in the form of an infinite product.3. sin =. sinh = 3. cos =. cosh = π + π + π + + π EU EU EU EU.3. cos cos y = y sin y. cosh cos y = +.33 cos π sin π = y sin y + π + y + + ] π + y π y π y AD 653. AD 653. BR* 89.3 cos = π ] π + + MO 6 π sin π + a.35 = + a + MO 6 sin πa a a + a.36 sin π ] sin πa = MO 6 a = sin 3.37 sin = ] MO 6 + π = cosh cos a ].38 = + MO 6 cos a π + a.39. sin =. sin = cos < ] AD 65, MO 6 = 3 sin 3 ] MO 6
22 6 Trigonometric and Hyperbolic Functions...5 Trigonometric Fourier series sin cos = π 0 <<π] FI III 539 = ln cos ] 0 <<π] FI III 530a, AD 68 sin cos = =ln cos π <<π] FI III 5 π <<π] FI III sin cos = π sign π <<π] FI III 5 = ln cot 0 <<π] sin = π ln tan + π ] <<π. 0 cos = π = π π ] <<π ] π <<3π BR* 68, JO 66, GI III95 BR* 68, JO 68a BR* 68, JO cos π n = n n πn n! n = n π n B n n! n B n ρ 0, ρ = ] CE 30, GE 7. sin π n+ = n n πn+ n +! π n+ n+ = n n +! B n+ n + B n + ρ 0 <<; ρ = ] CE 30
23 .5 Trigonometric Fourier series cos cos sin 3 cos sin 5 = π 6 π + sin + + cos + + = π = π 6 π + 3 = π 90 π + π3 8 = π 90 π π π] FI III 57 π π] FI III 5 0 π] =sin π sin sin cos ln sin π =cos sin +sin ln sin 0 π] AD π] AD π] BR* 68, GI III 90 0 π] BR* 68 sin + =sin cos + + cos sin ln MO 3 cos + =cos cos + sin + cos ln MO 3 sin + + = π π π ] = π π π 3 ] π cos = π π cos + = π 0 sin π ] sin + α = π sinh απ sinh απ MO 3 π π] FI III 56 JO 59 0 <<π] BR* 57, JO cos + α = π cosh απ α sinh απ α 0 π] BR* 57, JO 0
24 8 Trigonometric and Hyperbolic Functions cos + α sin + α = π sinh α sinh απ = π cosh α α sinh απ α π π] FI III 56 sin sin {αm +π ]} = π α sinαπ π <<π] FI III, 56 if =mπ, then ] =0 mπ < < m +π, α not an integer] MO 3 cos α = α π cos α {m +π }] α sin απ mπ m +π, α not an integer] MO 3 sin sinαmπ ] = π if =m +π, then ] =0, α sinαπ m π <<m +π, α not an integer] FI III 55a 8. cos α = α π cosαmπ ] α sin απ m π m +π, α not an integer] FI III 55a 9. n= e inα n β + γ = π e iβα π sinhγα+e iβα sinh γπ α] γ coshπγ cosπβ 0 α π] cos = π 8 cos 3 cos π π ] BR* 56, GI III 89 p p sin sin = p cos + p p < ] FI II 559 p p cos cos = p cos + p p < ] FI II p p cos = p cos + p p < ] FI II 559a, MO 3
25 .9 Trigonometric Fourier series 9.8. p sin =arctan p sin p cos 0 <<π, p ] FI II p cos p sin = ln p cos + p 0 <<π, p ] FI II 559 = arctan p sin p 0 <<π, p ] JO 59. p cos = ln +p cos + p p cos + p 0 <<π, p ] JO p sin = ln +p sin + p p sin + p 0 <<π, p ] JO 6 6. p cos = arctan p cos p 0 <<π, p ] JO p sin! p cos! = e p cos sin p sin = e p cos cos p sin p ] JO 86 p ] JO 85 Let S = cos + and C = sin. 3. n n a Sn =π Ca cotπasa] 0 <<π, a 0, ±, ±,...] n=. n= 5. n= n a Cn = a π Sa cotπaca] a 0 π, a 0, ±, ±,...] n n n a Sn =π cosecπasa π <<π, a 0, ±, ±,...]
26 50 Trigonometric and Hyperbolic Functions.5 6. n= 7. n= 8. n= 9. n= 0. n= n n Cn = a a + π cosecπaca π <<π, a 0, ±, ±,...] a n πa ] n a Sn =π Ca+tan Sa n a Cn = π Sa tan a n n a Sn = π πa a sec Sa n n πa n a Cn =π sec Ca πa Ca 0 <<π, a 0, ±, ±,...] ] 0 π, a 0, ±, ±,...] π π ], a 0, ±, ±,... π π, a 0, ±, ±,... ] Fourier epansions of hyperbolic functions ]. sinh =cos sin + JO 50 +! ]. cosh =cos +cos sin JO 503!.5. sinh cos θ=sec sin θ. cosh cos θ=sec sin θ 3. sinh cos θ=cosec sin θ. cosh cos θ=cosec sin θ + cos +θ +! cos θ! sin θ! + sin +θ +! < ] JO 39 < ] JO 390 <, sin θ 0 ] JO 393 <, sin θ 0 ] JO 39
27 .80 Lobachevsiy s Angle of Parallelism 5.6 Series of products of eponential and trigonometric functions.6. e t sin = sin cosh t cos e t sinh t cos = cosh t cos sin sin y. e cos ϕ cos sin ϕ =. e cos ϕ sin sin ϕ = e t = ln n=0 n= n cos nϕ n! n sin nϕ n! sin + y sin y t >0] MO 3 t >0] MO 3 +sinh t MO +sinh t < ] AD 676. < ] AD Series of hyperbolic functions sinh! cosh! = e cosh sinh sinh. JO 395 = e cosh cosh sinh. JO 39 m +π + 3 tanh + tanh ] m +π = π3 6 p p sinh sinh = p p cosh + p < ] JO 396 p cosh = p cosh p cosh + p p < ] JO 397a.8 Lobachevsiy s Angle of Parallelism Π.80 Definition.. Π = arccot e = arctan e 0] LO III 97, LOI 0
28 5 Trigonometric and Hyperbolic Functions.8. Π =π Π <0] LO III 83, LOI 93.8 Functional relations. sin Π = LO III 97 cosh. cos Π =tanh LO III tan Π = LO III 97 sinh. cot Π =sinh LO III sin Π + y = 6. cos Π + y = sin ΠsinΠy + cos ΠcosΠy cos Π + cos Πy + cos ΠcosΠy.8 Connection with the Gudermannian. gd =Π π Definite integral of the angle of parallelism: cf..58 and The hyperbolic amplitude the Gudermannian gd LO III 97 LO III Definition. dt. gd = 0 cosh t = arctan e π gd dt gd. = cos t =lntan + π 0 JA JA.9 Functional relations.. cosh = secgd AD 33., JA. sinh = tangd AD 33., JA π 3. e = secgd +tangd =tan + gd = +singd AD 33.5, JA cosgd. tanh = singd AD 33.3, JA 5. tanh =tan gd AD 33., JA 6. arctan tanh = gd AD 33.6a.9 If γ =gd, theni =gdiγ JA.93 Series epansion.. gd = + tanh+ JA
29 .53 Series representation 53. = + tan+ gd 3. gd = =gd + gd The Logarithm + gd 5.5 Series representation + JA + 6gd ln + = = ln = =. ln = 3. ln = ɛ ln = lim ɛ 0 ɛ gd < π ] < ] ] = 0 < ] = 0 <] ] + JA JA AD ln + = < ] FI II. ln + = > ] AD ln. ln 5. = or>] JO 88a = ln = + <] JO 88b <] JO 0
30 5 The Logarithm ln = 3 ln n= n = ln cos ϕ + =.55. ln + + cos ϕ ; see.63,.6,.6,.66 < ] JO 88e <] AD 65. ln + + =arcsinh, cos ϕ ] MO 98, FI II =ln ! =ln! ] JO 9. ln + + =ln =ln + +!!! + + ] AD ln + + =!! + +! ] JO 93 ln =! +! + ] JO {ln ± } = 6 {ln + }3 = ln + ln =. + n= n= n= { + ln + } +ln n n + n+ n n m= = + m < ] JO 86, JO 85 < ] AD 6. < ] JO <<] AD 65.
31 .5 Series of logarithms cf { ln + arctan } = + arctan ln = arctan ln + = n= n n n= + + n 0 < ] AD 65.3 < ] BR* 63 ] AD ln sin =ln B =ln +! 0 <<π] AD 63.a. 3 ln cos = B = =! sin ] < π 3. ln tan =ln , =ln + + B! 0 << π ] FI II 5 AD 63.3a.5 Series of logarithms cf ln π =lncos ln π =lnsin ln π ] <<π 0 <<π]
32 56 The Inverse Trigonometric and Hyperbolic Functions.6.6 The Inverse Trigonometric and Hyperbolic Functions.6 The domain of definition The principal values of the inverse trigonometric functions are defined by the inequalities:. π arcsin π ; 0 arccos π ] FI II 553. π < arctan <π ; 0 < arccot <π <<+ ] FI II Functional relations.6 The relationship between the inverse and the direct trigonometric functions.. arcsin sin = nπ = +n +π nπ π nπ + π ] n +π π n +π + π ]. arccos cos = nπ nπ n +π] = +n +π n +π n +π] 3. arctan tan = nπ nπ π <<nπ+ π ]. arccot cot = nπ nπ < < n +π].6 The relationship between the inverse trigonometric functions, the inverse hyperbolic functions, and the logarithm.. arcsin z = i ln iz + z = i arcsinhiz. arccos z = z i ln + z = i arccosh z 3. arctan z = +iz ln i iz = i arctanhiz. arccot z = iz ln i iz + = i arccothiz 5. arcsinh z =ln z + z + = i arcsiniz 6. arccosh z =ln z + z = i arccos z 7. arctanh z = 8. arccoth z = ln +z z = i arctaniz ln z + z = i arccot iz
33 .6 Functional relations 57 Relations between different inverse trigonometric functions.63. arcsin + arccos = π. arctan + arccot = π NV 3 NV 3.6. arcsin = arccos 0 ] NV 7 5 = arccos 0] NV 6. arcsin =arctan < ] 3. arcsin = arccot 0 < ] = arccot π <0] NV 9 0. arccos =arcsin 0 ] = π arcsin 0] NV arccos =arctan = π +arctan 6. arccos = arccot 7. arctan =arcsin + 8. arctan = arccos + = arccos + 0 < ] <0] NV 8 8 <] NV 6 NV 6 3 0] 0] NV arctan = arccot >0] = arccot π <0] NV arccot =arcsin + = π arcsin +. arccot = arccos + >0] <0] NV 9 NV 6
34 58 The Inverse Trigonometric and Hyperbolic Functions.65. arccot =arctan = π +arctan >0] <0] NV arcsin +arcsiny =arcsin y + y y 0or + y ] = π arcsin y + y >0, y > 0and + y > ] = π arcsin y + y <0, y < 0and + y > ]. arcsin +arcsiny = arccos y y = arccos y y 0, y 0] NV 5, GI I 880 <0, y < 0] NV arcsin +arcsiny =arctan y + y y y y 0or + y < ] =arctan y + y y y + π >0, y > 0and + y > ] =arctan y + y y y π <0, y < 0and + y > ]. arcsin arcsin y =arcsin y y y 0or + y ] = π arcsin y y >0, y < 0and + y > ] = π arcsin y y <0, y > 0and + y > ] 5. arcsin arcsin y = arccos y + y = arccos y + y y > y] NV 56 NV 55 <y] NV arccos + arccos y = arccos y y =π arccos y y 7. arccos arccos y = arccos y + y = arccos y + y + y 0] + y<0] NV 57 3 y] <y] NV 57
35 .67 Functional relations arctan +arctany =arctan + y y = π +arctan + y y = π +arctan + y y 9. arctan arctan y =arctan y +y = π +arctan y +y = π +arctan y +y y < ] >0, y > ] <0, y > ] y > ] >0, y < ] <0, y < ] NV 595, GI I 879 NV arcsin =arcsin ] = π arcsin ] < = π arcsin < ] NV 6 7. arccos = arccos 0 ] =π arccos <0] NV arctan =arctan < ] =arctan + π >] =arctan π < ] NV arctan +arctan = π = π >0] <0] GI I 878. arctan +arctan + = π > ] = 3 π < ] NV 6, GI I 88
36 60 The Inverse Trigonometric and Hyperbolic Functions arcsin = π arctan + ] = arctan ] = π arctan ] NV 65. arccos + = arctan 0] = arctan 0] NV π arctan tan π = E GI Relations between the inverse hyperbolic functions.. arcsinh = arccosh +=arctanh + JA. arccosh =arcsinh = arctanh 3. arctanh =arcsinh = arccosh = arccoth. arcsinh ± arcsinh y =arcsinh +y ± y + 5. arccosh ± arccosh y = arccosh y ± y 6. arctanh ± arctanh y =arctanh ± y ± y JA JA JA JA JA.6 Series representations.6. arcsin = π arccos = ! =! + + = F, ; 3 ; ] FI II 79. arcsinh = ; =!! + + = F, ; 3 ; ] FI II 80
37 .65 Series representations 6.6. arcsinh =ln ! =ln +!. arccosh =ln.63!!. arctan = = +. arctanh = = + + ] AD 680.a ] AD 680.3a ] FI II 79 < ] AD arctan = =! +! + F +, ; 3 ; + + < ] AD 6.3. arctan = π = π + + AD arcsec = π = π! +! + = π F, ; 3 ; > ]. arcsin =! + +! + 3. arcsin 3 = 3 + 3! 5! ! 7! 3 5 AD 6.5 ] AD 6., GI III 5a ] BR* 88, AD 6., GI III 53a
38 6 The Inverse Trigonometric and Hyperbolic Functions arcsinh = arcosech =!! + ] AD arccosh =arcsech =ln!! 0 < ] AD arcsinh = arcosech =ln + +!! 0 < ] AD 680.7a. arctanh = arccoth = + + > ] AD tanh π/ n+3 = πn+3 n j j n j+ Bj B n j+3 j!n j +! j= + n n+ B n+ n +!] sech π/ n+ = πn+ n n+3 j= n =0,,,..., j B j B n j j!n j! + B n n! + n Bn n]! n =,,..., The summation term on the right is to be omitted for n =. See page iii for the definition of B r.
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Section 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
Derivations of Useful Trigonometric Identities
Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation
Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Trigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
Comparison of Numerical Performance of Mathematica 11.2 and Maple
Comparison of Numerical Performance of Mathematica. and Maple 07. Summary Category Tests Median Mathematica speed Real data operations 0 s faster Real data operations (manual type override) 0 s faster
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets
System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.
ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα
1999 by CRC Press LLC
Plarikas A. D. Trignmetric and Hyperblic Fnctins The Handbk f Frmlas and Tables fr Signal Prcessing. Ed. Aleander D. Plarikas Bca Ratn: CRC Press LLC,999 999 by CRC Press LLC 43 Trignmetry and Hyperblic
1 Σύντομη επανάληψη βασικών εννοιών
Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=
Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,
Logsine integrals Notes by G.J.O. Jameson The basic logsine integrals are: log sin θ dθ = log( sin θ) dθ = log cos θ dθ = π log, () log( cos θ) dθ =. () The equivalence of () and () is obvious. To prove
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type
Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
COMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
10.4 Trigonometric Identities
770 Foundations of Trigonometry 0. Trigonometric Identities In Section 0.3, we saw the utility of the Pythagorean Identities in Theorem 0.8 along with the Quotient and Reciprocal Identities in Theorem
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
F-TF Sum and Difference angle
F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
= df. f (n) (x) = dn f dx n
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0
2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.
5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values
PolyGamma Notations Traditional name Digamma function Traditional notation Ψz Mathematica StandardForm notation PolyGammaz Primary definition 06.4.02.000.0 Ψz k k k z Specific values Specialized values
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Formulario di Trigonometria
Formulario di Trigonometria Indice degli argomenti Formule fondamentali Valori noti delle funzioni trigonometriche Simmetrie delle funzioni trigonometriche Relazioni tra funzioni goniometriche elementari
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response