1 Elementary Functions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Elementary Functions"

Transcript

1 Elementary Functions. Power of Binomials. Power series.0 + q =+q + qq + +! qq...q + + =! q If q is neither a natural number nor zero, the series converges absolutely for < and diverges for >. For =, the series converges for q> and diverges for q. For =,theseries converges absolutely for q>0. For =, it converges absolutely for q>0 and diverges for q<0. If q = n is a natural number, the series.0 is reduced to the finite sum.. FI II 5 n n. a + n = a n.. + = =. + = = 3. + / = / = = < ] see also. q + + = q + q qq 3 qq q 5 ] !! 3! <, q is a real number ] AD

2 6 The Eponential Function.. + q q q q... q ] + + =+ +! q q 3... q ] +q + q + +! <, q isarealnumber ] AD635.. Series of rational fractions... = + = = + < ] AD > ] AD The Eponential Function. Series representation.. e =!. a ln a =! 3. e =!. e = lim + n n. e + =.3. e e = e.5 n +! e = + + +! B! !. e sin =+ +! 3!. e cos = e + 5! 85 5!! ! 6! +... <π] FI II 50 AD AD ! 7! AD 660.5

3 .3 Series of eponentials 7 3. e tan =+ +! AD !! 5!.6. e arcsin =+ +! AD !!. e arctan =+ +! 3 3! AD 660.8!.7. π eπ + e π e π e π =. π e π e π = = = + cf.. 3 AD cf.. 3 AD Functional relations.. a = e ln a. a log a = a log a =.. e =cosh +sinh. e i =cos + i sin.3 ] e a e b =a bep a + b + a b ] π MO 6.3 Series of eponentials.3 a = a a>and<0or0<a<and>0].3. tanh =+ e >0]. sech = e + 3. cosech =. sin =ep e + n= ] cos n n >0] >0] 0 π]

4 8 Trigonometric and Hyperbolic Functions.3.3. Trigonometric and Hyperbolic Functions.30 Introduction The trigonometric and hyperbolic sines are related by the identities sinh = i sini, sin = i sinhi. The trigonometric and hyperbolic cosines are related by the identities cosh =cosi, cos =coshi. Because of this duality, every relation involving trigonometric functions has its formal counterpart involving the corresponding hyperbolic functions, and vice versa. In many though not all cases, both pairs of relationships are meaningful. The idea of matching the relationships is carried out in the list of formulas given below. However, not all the meaningful pairs are included in the list..3 The basic functional relations.3. sin = e i e i i = i sinhi. sinh = e e = i sini 3. cos = e i + e i =coshi. cosh = e + e =cosi 5. tan = sin cos = i tanhi 6. tanh = sinh cosh = i tani 7. cot = cos sin = tan = i cothi 8. coth = cosh sinh = = i cot i tanh.3. cos +sin =

5 .3 The basic functional relations 9. cosh sinh =.33. sin ± y =sincos y ± sin y cos. sinh ± y =sinhcosh y ± sinh y cosh 3. sin ± iy =sincosh y ± i sinh y cos. sinh ± iy =sinhcos y ± i sin y cosh 5. cos ± y = cos cos y sin sin y 6. cosh ± y =coshcosh y ± sinh sinh y 7. cos ± iy = cos cosh y i sin sinh y 8. cosh ± iy =coshcos y ± i sinh sin y 9. tan ± tan y tan ± y = tan tan y 0. tanh ± tanh y tanh ± y = ± tanh tanh y. tan ± i tanh y tan ± iy = i tan tanh y. tanh ± i tan y tanh ± iy = ± i tanh tan y.3. sin ± sin y =sin ± ycos y. sinh ± sinh y =sinh ± ycosh y 3. cos +cosy = cos + ycos y. cosh +coshy =cosh + ycosh y 5. cos cos y =sin + ysin y 6. cosh cosh y =sinh + ysinh y 7. sin ± y tan ± tan y = cos cos y sinh ± y 8. tanh ± tanh y = cosh cosh y 9. sin ± cos y = ±sin + y ± π ] sin y ± π ] = ±cos + y π ] cos y π ] =sin ± y ± π ] cos y π ]

6 30 Trigonometric and Hyperbolic Functions a sin ± b cos = a + ] b b sin ± arctan a a. ±a sin + b cos = b + a a ] cos arctan b b a 0]. a sin ± b cos y = q + r sin ± y + arctan q q =a + bcos b 0] ] r q ] y, r =a bsin s s ] 3. a cos + b cos y = t + cos t y + arctan t 0] t ] t t = s + cos y arctan s 0] s s s =a bsin ± y.35. sin sin y =sin + ysin y = cos y cos. sinh sinh y =sinh + ysinh y =cosh cosh y 3. cos sin y =cos + ycos y = cos y sin. sinh +cosh y =cosh + ycosh y =cosh +sinh y.36. cos + i sin n =cosn + i sin n n is an integer]. cosh +sinh n =sinhn +coshn n is an integer].37. sin = ± cos ] y ], t =a + bcos q 0] ] ± y. sinh = ± cosh 3. cos = ± + cos. cosh = cosh + 5. tan = cos = sin sin + cos

7 .3 Trigonometric and hyperbolic functions: epansion in multiple angles 3 6. tanh = cosh sinh = sinh cosh + The signs in front of the radical in formulas.37,.37, and.37 3aretaensoastoagree with the signs of the left-hand members. The sign of the left hand members depends in turn on the value of..3 The representation of powers of trigonometric and hyperbolic functions in terms of functions of multiples of the argument angle.30. sin n = n { n. sinh n = n n n n { n n n 3. sin n = n n. sinh n = n n { 5. cos n = n n { 6. cosh n = n n 7. cos n = n 8. cosh n = n n n+ cos n + n n n+ n n n n cos n + n n cosh n + cosh n + } n KR 56 0, n } n n sinn KR 56 0, sinhn } n KR 56 0, n } n n cosn KR 56 0, 3 coshn Special cases.3. sin = cos +. sin 3 = sin 3 +3sin 3. sin = cos cos sin 5 = sin 5 5sin3 +0sin 6

8 3 Trigonometric and Hyperbolic Functions.3 5. sin 6 = cos 6 +6cos 5 cos sin 7 = sin 7 +7sin5 sin 3 +35sin 6.3. sinh = cosh. sinh 3 = sinh 3 3sinh 3. sinh = cosh cosh sinh 5 = sinh 5 5sinh3 +0sinh 6 5. sinh 6 = cosh 6 6cosh +5cosh sinh 7 = sinh 7 7sinh5 +sinh3 +35sinh cos = cos +. cos 3 = cos cos 3. cos = cos +cos cos 5 = cos 5 +5cos3 +0cos 6 5. cos 6 = cos 6 +6cos +5cos cos 7 = cos 7 +7cos5 +cos3 +35cos 6.3. cosh = cosh +. cosh 3 = cosh 3 +3cosh 3. cosh = cosh + cosh cosh 5 = cosh cosh 3 +0cosh 6 5. cosh 6 = cosh cosh +5cosh cosh 7 = cosh cosh 5 +cosh3 +35cosh 6

9 .33 Trigonometric and hyperbolic functions: epansion in powers The representation of trigonometric and hyperbolic functions of multiples of the argument angle in terms of powers of these functions.33 n n. 7 sin n = n cos n sin cos n 3 sin 3 + cos n 5 sin 5...; 3 5 n =sin n cos n n 3 cos n 3 n 3 n + n 5 cos n 5 n 7 cos n sinh n = n+/] =sinh 3. cos n =cos n. 3 cosh n = n /] n sinh cosh n + n n cos n sin + = n cos n n n 3 cos n + n n n n 7 cos n n/] n sinh cosh n n cosh n n cos n sin...; n 3 n 5 cos n n/] = n cosh n + n n n cosh n.33 {. sin n =ncos sin n n sin 3 n } + sin ! 5! { = n cos n sin n n n 3 sin n 3! n 3n + n 5 sin n 5! } n n 5n 6 n 7 sin n ! AD 3.75 AD 3.75 AD 3.7 AD 3.73

10 3 Trigonometric and Hyperbolic Functions.333. sinn =n {sin n sin 3 3! n ] n 3 ] } + sin ! { = n n sin n n n sin n 3! n n + n 6 sin n 5! } n n 5n 6 n 8 sin n ! 3. cos n = n! sin + n n! = n { n sin n n! n 3 sin n sin n n n 6! sin AD 3.7 AD 3.7 AD nn 3 n 5 sin n! } nn n 5 n 7 sin n ! AD 3.73a. cosn =cos { n sin! n ] n 3 ] } + sin...! { = n cos n sin n n 3 n sin n! n n 5 + n 6 sin n 6! } n 5n 6n 7 n 8 sin n ! AD 3.7 AD 3.7 By using the formulas and values of.30, we can write formulas for sinh n, sinhn, coshn, and coshn that are analogous to those of.33, just as was done in the formulas in.33. Special cases.333. sin =sincos. sin 3 =3sin sin 3 3. sin =cos sin 8sin 3. sin 5 =5sin 0 sin 3 +6sin 5 5. sin 6 =cos 6sin 3 sin 3 +3sin 5

11 .337 Trigonometric and hyperbolic functions: epansion in powers sin 7 =7sin 56 sin 3 + sin 5 6 sin sinh =sinhcosh. sinh 3 =3sinh +sinh 3 3. sinh =cosh sinh +8sinh 3. sinh 5 =5sinh +0sinh 3 +6sinh 5 5. sinh 6 =cosh 6sinh +3sinh 3 +3sinh 5 6. sinh 7 =7sinh +56sinh 3 + sinh 5 +6sinh cos = cos. cos 3 = cos 3 3cos 3. cos = 8 cos 8cos +. cos 5 =6cos 5 0 cos cos 5. cos 6 =3cos 6 8 cos +8cos 6. cos 7 =6cos 7 cos 5 +56cos 3 7cos.336. cosh =cosh. cosh 3 =cosh 3 3cosh 3. cosh =8cosh 8cosh +. cosh 5 =6cosh 5 0 cosh 3 +5cosh 5. cosh 6 =3cosh 6 8 cosh +8cosh 6. cosh 7 =6cosh 7 cosh 5 +56cosh 3 7cosh.337. cos 3 cos 3 = 3tan. cos cos = 6tan +tan 3. cos 5 cos 5 = 0 tan +5tan. cos 6 cos 6 = 5 tan +5tan tan 6 5. sin 3 cos 3 =3tan tan3 6. sin cos =tan tan3

12 36 Trigonometric and Hyperbolic Functions.3 7. sin 5 cos 5 =5tan 0 tan3 +tan 5 8. sin 6 cos 6 =6tan 0 tan3 +6tan 5 9. cos 3 sin 3 =cot3 3cot 0. cos sin =cot 6cot +. cos 5 sin 5 =cot5 0 cot cot. cos 6 sin 6 =cot6 5 cot +5cot 3. sin 3 sin 3 = 3 cot. sin sin = cot3 cot 5. sin 5 sin 5 = 5 cot 0 cot + 6. sin 6 sin 6 = 6 cot5 0 cot cot.3 Certain sums of trigonometric and hyperbolic functions n n n n n sin + y =sin sinh + y =sinh cos + y = cos cosh + y =cosh + n y + n y + n y sin ny cosec y + n y sinh ny sinh y sin ny cosec y sinh ny sinh y cos + y =sin + n y sin ny sec y n sin + y =sin + n y + π sin ny + π sec y AD 36.8 AD 36.9 JO 0 AD 0a

13 .35 Sums of powers of trigonometric functions of multiple angles 37 Special cases.3. n. 0 n sin =sin n + sin n cosec cos =cos n + sin n cosec + =cos n n + sin cosec = + sin n + sin AD 36. AD 36. n sin =sin n cosec AD 36.7 n cos = sin n cosec JO 07 n cos = + n cos n+ cos n + n+ sin n sin = cos n cos 3 + n sin =sinn cos n +sinn cos +sin cosec AD 36. AD 36.0 JO n sin π n =cot π n n sin π n n = + cos nπ sin nπ n cos π n n = + cos nπ +sinnπ AD 36.9 AD 36.8 AD Sums of powers of trigonometric functions of multiple angles.35. n sin = n +sin sinn +]cosec = n cosn +sin n sin AD 36.3

14 38 Trigonometric and Hyperbolic Functions n cos = n + cos n sinn +cosec = n cosn +sin n + sin n sin 3 = 3 n cos 3 = 3 n + sin sin n cosec 3n + sin sin 3n cosec 3 n + cos sin n cosec + 3n + cos sin 3n cosec 3 AD 36.a JO 0 JO a n sin = 3n cosn +sin n cosec + cos n +sin n cosec ] JO 8 n cos = 3n +cosn +sin n cosec + cos n +sin n cosec ] JO n sin n sin = sin. n n cos n sin cos = n sin n cos n sin sin AD 36.5 AD n p sin = p sin pn sin n + p n+ sinn p cos + p AD 36.a n p sinh = p sinh pn sinh n + p n+ sinhn p cosh + p n p cos = p cos pn cos n + p n+ cosn p cos + p AD 36.3a n p cosh = p cosh pn cosh n + p n+ coshn p cosh + p JO Sums of products of trigonometric functions of multiple angles.36.. n sin sin + = n +sin sin n +]cosec JO n sin sin + = n cos cosn +3sin n cosec JO 6

15 .38 Sums leading to hyperbolic tangents and cotangents n sin cos y =sin ny + n + sin ny n + n +y sin cosec +y ny sin cosec y JO n n sin = n sin n sin AD 36.5 sec =cosec n cosec n AD Sums of tangents of multiple angles.37.. n n tan = n cot cot AD 36.6 n tan = n+ 3 n + cot n cot n AD Sums leading to hyperbolic tangents and cotangents.38.. n n tanh + n sin + n tanh + tan n π tanh n sin π n + tanh π tan n π =tanhn JO 0a =cothn tanh +coth JO 03 n

16 0 Trigonometric and Hyperbolic Functions n tanh n +sin + n + π + tanh + tan n + π tanh n n +sin π n + tanh + π tan n + =tanhn + tanh n + =cothn + coth n + JO 0 JO n = n tanh n JO 06 + sin n π + sinh tanh. n =ncoth n coth JO 07 π sin n + sinh tanh 3.. n n + =n +tanh + sin n + π + sinh tanh tanh n n + =n +coth coth π sin n + + sinh tanh JO 08 JO 09

17 .395 Representing sines and cosines as finite products.39 The representation of cosines and sines of multiples of the angle as finite products.39. sin n = n sin cos. cos n = n 3. sin n = n sin. cos n =cos n n n sin π sin n sin sin π n sin sin π n is even] JO 568 n sin n is even] JO 569 π sin n.39 n. sin n = n sin + π n. cos n = n n.393. n n..39 n cos + n π sin + n π = sin + n π n is odd] JO 570 n is odd] JO 57a = cos n n odd] n = n ] n cos n n even] n n sin n n odd] JO 58 JO 59 JO 53 = n n cos n n even] JO 5 { y cos α + π } + y = n n y n cos nα + y n JO 573 n.395 n {. cos n cos ny = n cos cos y + π } n JO 573

18 Trigonometric and Hyperbolic Functions.396 n. cosh n cos ny = n { cosh cos y + π } n JO n n n n cos πn + = n π cos n + + = n+ π +cos n + + = n+ + KR KR KR π cos + = n + KR n. The epansion of trigonometric and hyperbolic functions in power series.. sin =. sinh = 3. cos = + +! + +!!. cosh =! ] 5. tan = B < π! 6. tanh = = B! ] < π 7. cot = FI II 53 B <π ] FI II 53a! 8. coth = = + B! <π ] FI II 5a

19 . Trigonometric and hyperbolic functions: power series epansion 3 9. sec = E! 0. sech = =+. cosec = + B! E. cosech = = ] < π! ] < π CE 330a CE 330 <π ] CE 39a B! <π ] JO 8.. sin = +!. cos = 3. sin 3 =. cos 3 = +! JO 5a JO ! + JO 5aa 3 +3! JO 3a.3. sinh =cosec +!. cosh =sec +sec 3. sinh =sec! /]!. cosh =cosec /]! JO 508 JO 507 JO 50 JO cos n ln + ] + = n +0 n +... n + ] + +! < ] AD 656.

20 Trigonometric and Hyperbolic Functions.. sin n ln + ] + = n n n + + n n + ] + +! < ] AD 656. Power series for ln sin, ln cos, and lntan see.58.. Epansion in series of simple fractions.. tan π = π. 0 tanh π = π 3. cot π = π + π. coth π = π + π 5. tan π =.. sec π = π BR* 9, AD = π + π = 0 + cf..7 AD 695., JO 50a 3... ] JO 50 + AD 695.3a. sec π = π { } cosec π = π + π. cosec π = π 5. + cosec 6. cosec π = π.3 = = = JO 5a see also.7 AD 695.a = π + π + π + JO 6 JO 9 JO 50b π π m cosec m + π m cot π m = m JO 77

21 .39 Representation in the form of an infinite product 5.3 Representation in the form of an infinite product.3. sin =. sinh = 3. cos =. cosh = π + π + π + + π EU EU EU EU.3. cos cos y = y sin y. cosh cos y = +.33 cos π sin π = y sin y + π + y + + ] π + y π y π y AD 653. AD 653. BR* 89.3 cos = π ] π + + MO 6 π sin π + a.35 = + a + MO 6 sin πa a a + a.36 sin π ] sin πa = MO 6 a = sin 3.37 sin = ] MO 6 + π = cosh cos a ].38 = + MO 6 cos a π + a.39. sin =. sin = cos < ] AD 65, MO 6 = 3 sin 3 ] MO 6

22 6 Trigonometric and Hyperbolic Functions...5 Trigonometric Fourier series sin cos = π 0 <<π] FI III 539 = ln cos ] 0 <<π] FI III 530a, AD 68 sin cos = =ln cos π <<π] FI III 5 π <<π] FI III sin cos = π sign π <<π] FI III 5 = ln cot 0 <<π] sin = π ln tan + π ] <<π. 0 cos = π = π π ] <<π ] π <<3π BR* 68, JO 66, GI III95 BR* 68, JO 68a BR* 68, JO cos π n = n n πn n! n = n π n B n n! n B n ρ 0, ρ = ] CE 30, GE 7. sin π n+ = n n πn+ n +! π n+ n+ = n n +! B n+ n + B n + ρ 0 <<; ρ = ] CE 30

23 .5 Trigonometric Fourier series cos cos sin 3 cos sin 5 = π 6 π + sin + + cos + + = π = π 6 π + 3 = π 90 π + π3 8 = π 90 π π π] FI III 57 π π] FI III 5 0 π] =sin π sin sin cos ln sin π =cos sin +sin ln sin 0 π] AD π] AD π] BR* 68, GI III 90 0 π] BR* 68 sin + =sin cos + + cos sin ln MO 3 cos + =cos cos + sin + cos ln MO 3 sin + + = π π π ] = π π π 3 ] π cos = π π cos + = π 0 sin π ] sin + α = π sinh απ sinh απ MO 3 π π] FI III 56 JO 59 0 <<π] BR* 57, JO cos + α = π cosh απ α sinh απ α 0 π] BR* 57, JO 0

24 8 Trigonometric and Hyperbolic Functions cos + α sin + α = π sinh α sinh απ = π cosh α α sinh απ α π π] FI III 56 sin sin {αm +π ]} = π α sinαπ π <<π] FI III, 56 if =mπ, then ] =0 mπ < < m +π, α not an integer] MO 3 cos α = α π cos α {m +π }] α sin απ mπ m +π, α not an integer] MO 3 sin sinαmπ ] = π if =m +π, then ] =0, α sinαπ m π <<m +π, α not an integer] FI III 55a 8. cos α = α π cosαmπ ] α sin απ m π m +π, α not an integer] FI III 55a 9. n= e inα n β + γ = π e iβα π sinhγα+e iβα sinh γπ α] γ coshπγ cosπβ 0 α π] cos = π 8 cos 3 cos π π ] BR* 56, GI III 89 p p sin sin = p cos + p p < ] FI II 559 p p cos cos = p cos + p p < ] FI II p p cos = p cos + p p < ] FI II 559a, MO 3

25 .9 Trigonometric Fourier series 9.8. p sin =arctan p sin p cos 0 <<π, p ] FI II p cos p sin = ln p cos + p 0 <<π, p ] FI II 559 = arctan p sin p 0 <<π, p ] JO 59. p cos = ln +p cos + p p cos + p 0 <<π, p ] JO p sin = ln +p sin + p p sin + p 0 <<π, p ] JO 6 6. p cos = arctan p cos p 0 <<π, p ] JO p sin! p cos! = e p cos sin p sin = e p cos cos p sin p ] JO 86 p ] JO 85 Let S = cos + and C = sin. 3. n n a Sn =π Ca cotπasa] 0 <<π, a 0, ±, ±,...] n=. n= 5. n= n a Cn = a π Sa cotπaca] a 0 π, a 0, ±, ±,...] n n n a Sn =π cosecπasa π <<π, a 0, ±, ±,...]

26 50 Trigonometric and Hyperbolic Functions.5 6. n= 7. n= 8. n= 9. n= 0. n= n n Cn = a a + π cosecπaca π <<π, a 0, ±, ±,...] a n πa ] n a Sn =π Ca+tan Sa n a Cn = π Sa tan a n n a Sn = π πa a sec Sa n n πa n a Cn =π sec Ca πa Ca 0 <<π, a 0, ±, ±,...] ] 0 π, a 0, ±, ±,...] π π ], a 0, ±, ±,... π π, a 0, ±, ±,... ] Fourier epansions of hyperbolic functions ]. sinh =cos sin + JO 50 +! ]. cosh =cos +cos sin JO 503!.5. sinh cos θ=sec sin θ. cosh cos θ=sec sin θ 3. sinh cos θ=cosec sin θ. cosh cos θ=cosec sin θ + cos +θ +! cos θ! sin θ! + sin +θ +! < ] JO 39 < ] JO 390 <, sin θ 0 ] JO 393 <, sin θ 0 ] JO 39

27 .80 Lobachevsiy s Angle of Parallelism 5.6 Series of products of eponential and trigonometric functions.6. e t sin = sin cosh t cos e t sinh t cos = cosh t cos sin sin y. e cos ϕ cos sin ϕ =. e cos ϕ sin sin ϕ = e t = ln n=0 n= n cos nϕ n! n sin nϕ n! sin + y sin y t >0] MO 3 t >0] MO 3 +sinh t MO +sinh t < ] AD 676. < ] AD Series of hyperbolic functions sinh! cosh! = e cosh sinh sinh. JO 395 = e cosh cosh sinh. JO 39 m +π + 3 tanh + tanh ] m +π = π3 6 p p sinh sinh = p p cosh + p < ] JO 396 p cosh = p cosh p cosh + p p < ] JO 397a.8 Lobachevsiy s Angle of Parallelism Π.80 Definition.. Π = arccot e = arctan e 0] LO III 97, LOI 0

28 5 Trigonometric and Hyperbolic Functions.8. Π =π Π <0] LO III 83, LOI 93.8 Functional relations. sin Π = LO III 97 cosh. cos Π =tanh LO III tan Π = LO III 97 sinh. cot Π =sinh LO III sin Π + y = 6. cos Π + y = sin ΠsinΠy + cos ΠcosΠy cos Π + cos Πy + cos ΠcosΠy.8 Connection with the Gudermannian. gd =Π π Definite integral of the angle of parallelism: cf..58 and The hyperbolic amplitude the Gudermannian gd LO III 97 LO III Definition. dt. gd = 0 cosh t = arctan e π gd dt gd. = cos t =lntan + π 0 JA JA.9 Functional relations.. cosh = secgd AD 33., JA. sinh = tangd AD 33., JA π 3. e = secgd +tangd =tan + gd = +singd AD 33.5, JA cosgd. tanh = singd AD 33.3, JA 5. tanh =tan gd AD 33., JA 6. arctan tanh = gd AD 33.6a.9 If γ =gd, theni =gdiγ JA.93 Series epansion.. gd = + tanh+ JA

29 .53 Series representation 53. = + tan+ gd 3. gd = =gd + gd The Logarithm + gd 5.5 Series representation + JA + 6gd ln + = = ln = =. ln = 3. ln = ɛ ln = lim ɛ 0 ɛ gd < π ] < ] ] = 0 < ] = 0 <] ] + JA JA AD ln + = < ] FI II. ln + = > ] AD ln. ln 5. = or>] JO 88a = ln = + <] JO 88b <] JO 0

30 5 The Logarithm ln = 3 ln n= n = ln cos ϕ + =.55. ln + + cos ϕ ; see.63,.6,.6,.66 < ] JO 88e <] AD 65. ln + + =arcsinh, cos ϕ ] MO 98, FI II =ln ! =ln! ] JO 9. ln + + =ln =ln + +!!! + + ] AD ln + + =!! + +! ] JO 93 ln =! +! + ] JO {ln ± } = 6 {ln + }3 = ln + ln =. + n= n= n= { + ln + } +ln n n + n+ n n m= = + m < ] JO 86, JO 85 < ] AD 6. < ] JO <<] AD 65.

31 .5 Series of logarithms cf { ln + arctan } = + arctan ln = arctan ln + = n= n n n= + + n 0 < ] AD 65.3 < ] BR* 63 ] AD ln sin =ln B =ln +! 0 <<π] AD 63.a. 3 ln cos = B = =! sin ] < π 3. ln tan =ln , =ln + + B! 0 << π ] FI II 5 AD 63.3a.5 Series of logarithms cf ln π =lncos ln π =lnsin ln π ] <<π 0 <<π]

32 56 The Inverse Trigonometric and Hyperbolic Functions.6.6 The Inverse Trigonometric and Hyperbolic Functions.6 The domain of definition The principal values of the inverse trigonometric functions are defined by the inequalities:. π arcsin π ; 0 arccos π ] FI II 553. π < arctan <π ; 0 < arccot <π <<+ ] FI II Functional relations.6 The relationship between the inverse and the direct trigonometric functions.. arcsin sin = nπ = +n +π nπ π nπ + π ] n +π π n +π + π ]. arccos cos = nπ nπ n +π] = +n +π n +π n +π] 3. arctan tan = nπ nπ π <<nπ+ π ]. arccot cot = nπ nπ < < n +π].6 The relationship between the inverse trigonometric functions, the inverse hyperbolic functions, and the logarithm.. arcsin z = i ln iz + z = i arcsinhiz. arccos z = z i ln + z = i arccosh z 3. arctan z = +iz ln i iz = i arctanhiz. arccot z = iz ln i iz + = i arccothiz 5. arcsinh z =ln z + z + = i arcsiniz 6. arccosh z =ln z + z = i arccos z 7. arctanh z = 8. arccoth z = ln +z z = i arctaniz ln z + z = i arccot iz

33 .6 Functional relations 57 Relations between different inverse trigonometric functions.63. arcsin + arccos = π. arctan + arccot = π NV 3 NV 3.6. arcsin = arccos 0 ] NV 7 5 = arccos 0] NV 6. arcsin =arctan < ] 3. arcsin = arccot 0 < ] = arccot π <0] NV 9 0. arccos =arcsin 0 ] = π arcsin 0] NV arccos =arctan = π +arctan 6. arccos = arccot 7. arctan =arcsin + 8. arctan = arccos + = arccos + 0 < ] <0] NV 8 8 <] NV 6 NV 6 3 0] 0] NV arctan = arccot >0] = arccot π <0] NV arccot =arcsin + = π arcsin +. arccot = arccos + >0] <0] NV 9 NV 6

34 58 The Inverse Trigonometric and Hyperbolic Functions.65. arccot =arctan = π +arctan >0] <0] NV arcsin +arcsiny =arcsin y + y y 0or + y ] = π arcsin y + y >0, y > 0and + y > ] = π arcsin y + y <0, y < 0and + y > ]. arcsin +arcsiny = arccos y y = arccos y y 0, y 0] NV 5, GI I 880 <0, y < 0] NV arcsin +arcsiny =arctan y + y y y y 0or + y < ] =arctan y + y y y + π >0, y > 0and + y > ] =arctan y + y y y π <0, y < 0and + y > ]. arcsin arcsin y =arcsin y y y 0or + y ] = π arcsin y y >0, y < 0and + y > ] = π arcsin y y <0, y > 0and + y > ] 5. arcsin arcsin y = arccos y + y = arccos y + y y > y] NV 56 NV 55 <y] NV arccos + arccos y = arccos y y =π arccos y y 7. arccos arccos y = arccos y + y = arccos y + y + y 0] + y<0] NV 57 3 y] <y] NV 57

35 .67 Functional relations arctan +arctany =arctan + y y = π +arctan + y y = π +arctan + y y 9. arctan arctan y =arctan y +y = π +arctan y +y = π +arctan y +y y < ] >0, y > ] <0, y > ] y > ] >0, y < ] <0, y < ] NV 595, GI I 879 NV arcsin =arcsin ] = π arcsin ] < = π arcsin < ] NV 6 7. arccos = arccos 0 ] =π arccos <0] NV arctan =arctan < ] =arctan + π >] =arctan π < ] NV arctan +arctan = π = π >0] <0] GI I 878. arctan +arctan + = π > ] = 3 π < ] NV 6, GI I 88

36 60 The Inverse Trigonometric and Hyperbolic Functions arcsin = π arctan + ] = arctan ] = π arctan ] NV 65. arccos + = arctan 0] = arctan 0] NV π arctan tan π = E GI Relations between the inverse hyperbolic functions.. arcsinh = arccosh +=arctanh + JA. arccosh =arcsinh = arctanh 3. arctanh =arcsinh = arccosh = arccoth. arcsinh ± arcsinh y =arcsinh +y ± y + 5. arccosh ± arccosh y = arccosh y ± y 6. arctanh ± arctanh y =arctanh ± y ± y JA JA JA JA JA.6 Series representations.6. arcsin = π arccos = ! =! + + = F, ; 3 ; ] FI II 79. arcsinh = ; =!! + + = F, ; 3 ; ] FI II 80

37 .65 Series representations 6.6. arcsinh =ln ! =ln +!. arccosh =ln.63!!. arctan = = +. arctanh = = + + ] AD 680.a ] AD 680.3a ] FI II 79 < ] AD arctan = =! +! + F +, ; 3 ; + + < ] AD 6.3. arctan = π = π + + AD arcsec = π = π! +! + = π F, ; 3 ; > ]. arcsin =! + +! + 3. arcsin 3 = 3 + 3! 5! ! 7! 3 5 AD 6.5 ] AD 6., GI III 5a ] BR* 88, AD 6., GI III 53a

38 6 The Inverse Trigonometric and Hyperbolic Functions arcsinh = arcosech =!! + ] AD arccosh =arcsech =ln!! 0 < ] AD arcsinh = arcosech =ln + +!! 0 < ] AD 680.7a. arctanh = arccoth = + + > ] AD tanh π/ n+3 = πn+3 n j j n j+ Bj B n j+3 j!n j +! j= + n n+ B n+ n +!] sech π/ n+ = πn+ n n+3 j= n =0,,,..., j B j B n j j!n j! + B n n! + n Bn n]! n =,,..., The summation term on the right is to be omitted for n =. See page iii for the definition of B r.

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Review Exercises for Chapter 7

Review Exercises for Chapter 7 8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Trigonometry Functions (5B) Young Won Lim 7/24/14

Trigonometry Functions (5B) Young Won Lim 7/24/14 Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Comparison of Numerical Performance of Mathematica 11.2 and Maple

Comparison of Numerical Performance of Mathematica 11.2 and Maple Comparison of Numerical Performance of Mathematica. and Maple 07. Summary Category Tests Median Mathematica speed Real data operations 0 s faster Real data operations (manual type override) 0 s faster

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15 Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Διαβάστε περισσότερα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim. Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers 2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx. ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ) ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

1999 by CRC Press LLC

1999 by CRC Press LLC Plarikas A. D. Trignmetric and Hyperblic Fnctins The Handbk f Frmlas and Tables fr Signal Prcessing. Ed. Aleander D. Plarikas Bca Ratn: CRC Press LLC,999 999 by CRC Press LLC 43 Trignmetry and Hyperblic

Διαβάστε περισσότερα

1 Σύντομη επανάληψη βασικών εννοιών

1 Σύντομη επανάληψη βασικών εννοιών Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2, Logsine integrals Notes by G.J.O. Jameson The basic logsine integrals are: log sin θ dθ = log( sin θ) dθ = log cos θ dθ = π log, () log( cos θ) dθ =. () The equivalence of () and () is obvious. To prove

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

10.4 Trigonometric Identities

10.4 Trigonometric Identities 770 Foundations of Trigonometry 0. Trigonometric Identities In Section 0.3, we saw the utility of the Pythagorean Identities in Theorem 0.8 along with the Quotient and Reciprocal Identities in Theorem

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values PolyGamma Notations Traditional name Digamma function Traditional notation Ψz Mathematica StandardForm notation PolyGammaz Primary definition 06.4.02.000.0 Ψz k k k z Specific values Specialized values

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Formulario di Trigonometria

Formulario di Trigonometria Formulario di Trigonometria Indice degli argomenti Formule fondamentali Valori noti delle funzioni trigonometriche Simmetrie delle funzioni trigonometriche Relazioni tra funzioni goniometriche elementari

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα